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Introduction
Mobile devices have become an indispensable part of modern life style. Originally 
designed and built to facilitate remote communications such as phone calls and text 
messaging, mobile devices now support portable computing, context-aware commu-
nication, enhanced user interaction, and high-connectivity systems [36]. The operating 
system—that powers-up mobile devices—enables the execution of third party applica-
tions (apps for short) that support a variety of tasks on the go [21]. These capabilities 
of modern mobile devices make them smart and open up the gate for a multitude of 
applications that support a variety of tasks that includes but not limited to mobile com-
merce, health monitoring, and location querying [12]. There are thousands of mobile 
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applications available on application stores such as Google Play and Apple Apps Store 
for the two most popular mobile operating systems Android and iOS [2, 16].

Android is Google’s open source applications development platform as well as an 
operating system. It is based on Linux kernel and powers up mobile devices such as 
smart phones and tablets [17]. According to Statista [39], Android’s market share in sales 
to end users in second quarter of 2017 was 87%. Android provides a software develop-
ment kit (SDK) with other developer tools and application programming interface (API) 
for building innovative mobile applications. Application components, namely activ-
ity, service, broadcast receiver and content provider are the essential building blocks of 
an Android application. Such a modular application framework allows mutually non-
trusting Android applications to share their functionalities and resources using security 
enforcement mechanism based on permissions [15, 18]. These applications can access 
(hardware and software) resources of the device, such as camera and contacts, and share 
data with other applications or components of the same application. In Android, mes-
saging or data passing between applications on a mobile device is achieved with inter-
component communication (ICC) using intents [28]. Through the ICC messaging, both 
control and data can flow between applications that may lead to numerous security and 
reliability issues such as a malicious application trying to access private data or applica-
tion crashes that may lead to catastrophic impacts on mobile computing. If an applica-
tion, for example, crashes due to failure of intent resolution, the user is likely to abandon 
the application for a competitor [30].

Considering the security perspective of Android framework, ICC can be exploited by 
the attackers to leak sensitive user information. A recent case for compromise on data 
security and privacy is reported in [27], where a gaming application frequently moni-
tored the viewing habits of their users (some of them may be children) even when the 
game was not active. By using a device’s microphone, the gaming application was able 
to sense what people watched by identifying audio signals in TV ads and shows. Even 
worst, the gaming application could match the information about the places people 
visit and the movies they watch. Second, from the application’s stability point of view, 
application crashes negatively impact the performance and user experience of mobile 
computing. This means that, Android’s ICC that enables data communication between 
components within or outside application can also compromise the data security, pri-
vacy and stability of mobile applications [13]. The security aspect of applications is 
equally important, though, the main focus of this paper is to study applications’ safety 
against crashes caused by failure in intent resolution.

Research context and challenges Android applications can crash at run time due to 
intents, i.e., an application crashes if there is no application component that can receive 
the intent [20]. In an empirical study, Maji et  al. tested more than 6 million intents 
against more than 800 applications and found that around 10% Android components 
tested crashed due to intents. In a separate analysis, Chin et al. [9] found 1414 exposed 
surfaces in 100 Android applications, with most of them (1013) were caused by intents. 
Application crash is the major problem (62% of all) faced by the users, with most of them 
drive users to uninstall the app [41]. ICC, in addition, can cause information leak: Li 
et al. [26] tested 15,000 Google Play applications and found that about 16% (337 out of 
15,000) were leaking information through ICC.
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The existing mechanism to protect against such crashes and information leaks is 
to check explicitly, before invoking an intent, that the intent follow certain security 
rules: e.g. checking there exists at least an application component to address the 
intent. To the best of our knowledge, none of these approaches provide formal proofs 
of guarantee that security rules are indeed followed. Android applications’ security 
and reliability has been studied from different perspective, including structure of 
applications [38], permission systems [8, 15] and ICC [7, 8, 32, 40]. These analysis are 
helpful to investigate and mitigate the security challenges that relate to mobile appli-
cations in general but they lack security and reliability analysis targeted towards ICC 
and in particular intent resolution. In the context of Android applications, one of the 
most vulnerable part of Android framework is its ICC [7, 40] that require a rigorous 
and formal analysis to ensure application’s safety, reliability and security.

The official documentation [19] of Android’s ICC is in English—an informal docu-
mentation—that leads to misinterpretations, and lack of formal reasoning and anal-
ysis. The lack of formal reasoning of informal documentation and methods affects 
their overall acceptance. The digital forensic used in criminal investigation and evi-
dence, for example, is unproven and is highly criticised in legal proceedings [4]. Such 
non-rigorous specifications can cause interpretation issues, most commonly devel-
opers often choosing undocumented practices that can lead to applications vulner-
able to security and privacy threats [1]. A typical consequence of misinterpreting the 
informal documentation may lead to a scenario where an application developer may 
incautiously expose a component to third party applications [23]. Furthermore, as the 
informal specification of ICC do not have a mathematical foundation and hence can-
not be used to formally prove correctness of Android applications.

Solution overview In this paper, we propose to formally specify the ICC—as defined 
in Android’s official documentation—using theorem prover Coq [22]. The formalism 
is a simple but careful translation from English to logical notations and formulas. An 
overview of the proposed solution is provided in Fig. 1 that illustrates formal speci-
fication of the Android application’s ICC from its informal documentation. Android 
application components and their interaction with each other through ICC is cur-
rently viewed through its English documentation. The informal (English based) docu-
mentation for ICC can be intuitive and simple for application developers but it can 
not be used for formal reasoning. The informal specification of ICC is manually trans-
lated to a precise formal Coq specification that is machine readable. Once a formal 
specification defined in the logic of Coq is available, the Coq proof facility can be 
used to formally prove theorems about ICC. This is demonstrated by proving the cor-
rectness of Android ICC using the Coq proof facility. Furthermore, as the tools for 
security analysis normally rely on formal models [29], the formal model in Coq can 
provide a foundation for such tools for a rigorous and automated analysis of ICC. The 
major contributions of this paper are:

  • To enable a formal reasoning of Android’s ICC using computer tools, a formal 
model of the Android’s ICCs is built using the logic behind Coq theorem prover,

  • To demonstrate the effectiveness of our formal model, a simple Android applica-
tion is encoded using the formal notations developed, and
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  • To support proofs, formal proofs of crash-safety property in general and in par-
ticular for the encoded application are conducted using the proof facility of Coq.

The proposed solution CrashSafe offers twofold benefits including formal (i) proof of 
correctness of inter-component communication in Android systems and (ii) foundations 
for other tools to assess Android applications’ reliability and safety. The rest of the paper 
is organized as the following: In the next section, a brief overview of the Android appli-
cation framework and ICC is given. In “Formalizing inter-component communication” 
section, the Coq formalization of the ICC and encoding of a simple application in the 
formal notations developed is presented. The proofs of correctness of Android ICC are 
listed in “Proofs” section. A summary of the related work is presented in “Related work” 
section and the paper is concluded in “Conclusion and future research” section.

Background
In this section, we present the background information and technical details about (i) 
Android application framework and its components, (ii) inter component communica-
tions along with (iii) types and (iv) structure of the intent. The concepts and terminolo-
gies introduced in this section are used throughout the paper.

Android application framework and components

Android application framework allows developers to build innovative applications for 
mobile devices using programming languages Koltlin, C++ and Java [18]. The Android 
SDK tools compile the application source code into an Android application package 
(APK) containing all the contents of Android application which is then used by Android-
powered devices to install the application. Android operating system treats each 

Fig. 1 Overview of the proposed solution in the context of Android ICC
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application as a different user and assigns each of them a unique user ID. Each appli-
cation is executed in isolation by a separate process using its own virtual machine. By 
default, Android implements the principle of least privilege, where each application is 
given permission only to access components required for its work and no more [17]. 
Applications with the same user ID (e.g., by sharing the same Linux user ID) can share 
data with each other and can run in the same process.

In Android systems, applications comprise of a number of components that can be 
classified into four main types namely: activity, service, receiver and provider. Each of 
these components provides a different entry point for the Android framework to man-
age the applications [9].

  • Activity is the entry-point for interacting with the user of the device through a sin-
gle screen. It supports different types of activities performed in the Android applica-
tion framework. Typical example of activity component are users’ activities such as 
interaction with the system, input to the system or manipulation of application’s logic 
and data. Specifically, user interface that allows application display and enables user 
interaction with it is managed by the activity component. A single application can 
have more than one activity and the user can switch between different activities.

  • Service component is a general-purpose entry point and supports variety of (back-
ground or foreground) services such as audio and visual notifications, component 
authentication, or application execution monitoring. Services may run in the back-
ground and perform long-running operations without necessarily providing any user 
interface. Alternatively, services may interact with users and notify them through ser-
vice notifications. For example, an anti-spam application can continuously execute in 
the background and can update the user only when a potential spam is detected.

  • Broadcast receiver is the type of components that depends on other components to 
receive any activity or service to complete their functionality. For example, the broad-
cast receivers receive intents from Android application framework. Intents [19] are 
type of messages used by applications to request functionalities from other services 
or activities. Most of the broadcast messages originate from the system, for exam-
ple, the system may announce that the battery is low. Applications may also initiate 
broadcasts to let other applications know about a broadcast event (e.g., when some 
data is downloaded and is available for them to use).

  • Content provider provides services or required functionality to other components 
through component communication. In other words, the content providers provide 
data storage to the applications. Other applications can access the data by querying 
the storage or even can modify it provided that the content provider allows it.

Intents

Android is a Linux-based operating system where each application is assigned a unique 
user ID and is run in an isolated virtual machine to provide better application manage-
ment and security [37]. To work as a single entity for better user experience, Android 
applications uses intents, mediated by Android runtime, to share data and services 
with each other. This sharing can be inter-application (a component of one application 
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communicate with a component of another) or intra-application (among components 
within an application). One component sends an intent including optional name of tar-
get component, name of action to be performed, data to operate on and category. The 
receiving component, likewise, include intent filter with specification of intents that it is 
interested to receive.

An action is a string that specifies the action to be performed (e.g., VIEW) or has hap-
pened and is reported (e.g., BATTERY_LOW). In addition, intent includes a (possibly 
empty) list of categories, each contains additional information about the component 
that should handle the intent. The data field of the intent include a uniform resource 
identifier (URI) to identify the data to act upon and the multi-purpose internet mail 
extensions (MIME) data type. The type of the data can be inferred from the data itself, 
though, it is important to add the type of data as it helps Android system to locate the 
most appropriate component for the intent. The intent fields just described are sufficient 
for the system to identify a relevant component it should start to receive the intent and 
hence are included in the formal definitions (“Formalizing inter-component communi-
cation” section). There are additional fields to carry extra information as key-value pairs 
and flags to carry metadata, however, none of them affects the way an intent is resolved 
to a component.

Based on the way a set of target components are identified, intents are categorized as 
explicit and implicit. In an explicit intent, a component is addressed explicitly using a 
fully-qualified name and are normally used in an application to communicate with its 
own components as they are known to the owner. For explicit intent, the mechanism 
to find an appropriate component for an action is straight forward: the component is 
described by a full-qualified name inside the intent which the system can easily locate. 
On the other hand, in an implicit intent, a component is addressed using other fields 
action, data (URI and MIME type) and category. As a running example to understand 
intents and intent filters, consider an Email and a Browser application are installed on 
Android device. The Email application displays an email message, having a hyperlink to 
a web page, in an activity. When the user clicks on the link in the message displayed to 
the user by the activity of the Email application, the activity sends an intent to Android 
system for opening (viewing) the requested web page by the browser.

An implicit intent exampleIntent is created as an object of Intent class using the 
new constructor as shown in Listing 1. The target component name is not provided any-
where which makes the intent created implicit. The values for the fields action, category, 
data URI and data (MIME) type are added using methods setAction(), addCat-
egory(), setData() and setType(), respectively on lines 3–7. The next function 
startActivity() on line 8 starts an activity for the desired action and provides the 
intent exampleIntent including other necessary data. The implicit intent in Listing 1 
can be made explicit just by replacing the code on line 2 with Intent exampleIn-
tent = new Intent(this, exampleActivity.class));. This code adds 
the name of target activity exampleActivity explicitly to the intent created.
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1 String URL = "https://www_example.com:200/intents.html";
2 Intent exampleIntent = new Intent();
3 exampleIntent.setAction(Intent.ACTION_VIEW);
4 exampleIntent.addCategory(Intent.CATEGRY_DEFAULT);
5 exampleIntent.addCategory(Intent.CATEGRY_BROWSABLE)
6 exampleIntent.setData(Uri.parse(URL));
7 exampleIntent.setType("text/html");
8 startActivity(exampleIntent);

Listing 1 Example of an intent

Inter‑component communication

For an application to communicate with another application, a component of the first 
application creates and sends an intent to a component of the target application, as 
shown in Fig. 2. The component A wants component B to perform some action on its 
data of a particular category. To do this, it creates an intent with name of action, data 
and its category and sends it to B, which performs the requested action on the data.

Communication based on intents can be with or without the target component name 
in intent. If a target name is included in the intent (explicit intent), Android system 
passes on the intent to the target component. Inter-component communication using 
explicit intent is straight forward and is not included in this work. To address a com-
ponent using an intent without the target component name (implicit intent), a general 
action is declared and the target is resolved by the Android system (runtime). The type 
of action in implicit intent, to be performed by a component, enables the system to find 
a set of appropriate components for that action. Finding the target component for an 
implicit intent is complicated: the system takes the intent’s data and looks for an appro-
priate set of components in the applications available on the mobile device. In case only 
one appropriate component is found, the system start that component, however, for 
more options, the system asks the user using a dialogue to choose from the list.

When a component intends to start another component using implicit intent (see 
example below), it sends an intent and the system looks for appropriate components 
by looking into the intent content (action) and comparing with intent filters declared in 
applications on the device. Android enforces this mechanism using intent filters (Listing 
2) declared in a manifest file: application specifies the type of intents in its manifest file 
it should receive. For the Browser application to receive the intent created by the Email 
application (Listing 1), the Browser must have the filter as defined in Listing 2. This filter 
declares an action ACTION_VIEW, categories DEFAULT and BROWSABLE and data URL 
and type text/hmtl for an activity to display the web page in a tab. When the Browser 
application receives this intent, it is checked against the filter and as it can deliver the 
requested service (see proof of this in “Proofs” section), an activity of the Browser opens 
the web page from the URL provided in a tab. Declaring an intent filter for a component 

Fig. 2 High-level description of inter-component communication [32]
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enable other applications to start it. A component, with no intent filter declared in mani-
fest file, can only be started by an explicit intent.

1 <intent-filter>
2 <action android:name="android.intent.action.ACTION_VIEW" />
3 <category android:name="android.intent.category.DEFAULT" />
4 <category android:name="android.intent.category.BROWSABLE" />
5 <data android:mimeType="text/html"
6 android:scheme="https"
7 android:host="www.example.com"
8 android:port="200"
9 android:path="intents.html" />

10 ...
11 </intent-filter>

Listing 2 Example of an intent filter

The inter-component communication between two components in Fig.  2 appears a 
direct communication between two components A and B, but in fact it is mediated by 
the Android system as shown in Fig. 3. The Email application in our running example 
communicates with a different application to display a web page in response to the user 
click on a hyperlink received in the email opened by an activity of the Email application. 
Let assume, there exists application Browser that can better serve Email, but the latter 
does not know if the former exists or can perform the desired action. For this operation, 
the activity A of Email starts implicitly the activity B of Browser without mentioning the 
name of target as the following: (1) activity A creates the intent (in Listing 1) with action 
ACTION_VIEW it wants to be performed and passes it by calling the method start-
Activity(). (2) The Android system receives the intent sent by A and looks for a rel-
evant component among components of applications currently installed on the device. 
Let assume it matches (the filter in Listing 2 of ) activity B in application Browser. (3) 
Android system activates B by calling its method onCreate with the intent received 
from A and as result, the Browser application displays the requested web page in a tab. 
This sequence of events appears to the user from a single application (Email) but in-fact 
it is rendered by two different applications namely Email and Browser. This all happens 
seamlessly to the user using ICC.

Even though, ICC is the major mechanism for inter-application interactions and con-
tributes to rich user experience of mobile computing, but there are design limitations 
[1] in it and is one of the favourite targets to security threats [7, 40]. In the next section, 

Fig. 3 Implicit inter-component communication [17]
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formal definitions of intents, intent filters and inter-component communication are 
described and used in the formal reasoning about inter-component communication.

Formalizing inter‑component communication
In the context of Android’s ICC, when an application component intends to communi-
cate with other component(s), it sends an explicit intent by providing the name of the 
component (if known), otherwise, an implicit intent (without the target name) is sent. 
Explicit intent does not require any evaluation and are simple to understand, while 
implicit intent requires a number of tests done by the system before an intent is passed 
on to an appropriate component. The existing specifications of intents, intent filters and 
the mechanism used to match a particular message request by a source component to 
a target component is informal and can not be used within formal proofs. In this sec-
tion, the structure of implicit intent, intent filter and the mechanism to find the most 
appropriate component to receive implicit intent are formalized in theorem prover Coq. 
Such a formal definition can be used to prove theorems about intents, intent filters and 
inter-component communication using the Coq proof facility and the proof script can 
be checked mechanically using the Coq proof checker. The Coq source code and proofs 
of theorems are available on-line at [24].

Syntax of intent and intent filter

The main components of Android ICC are the data structures intent, intent filter and 
matching functions. An intent represents the content and the requested operation 
while the filter models a component. The data structures intent and intent filters are 
formalized in this sub-section and the matching functions are formalized in the next 
sub-section.

An implicit intent is a simple data structure containing the address and type of the data 
to act upon, the action to perform on data and some additional information. An intent 
is inductively defined in Coq as shown in Listing 3. The inductive definition consists of 
only one constructor (int, line 2) to construct elements (intents) of type intent. The 
constructor take as arguments an action, list of categories, URI and MIME type of the 
data. All the names (such as actions, categories, schemes, hosts and MIME types) are 
represented using the type atom defined in the library Atom, edited from [5]. The third 
argument of intent of type uri represents the content URI and is defined in Listing 4. 
A URI include optional elements scheme, host, port and path, represented by the argu-
ments on lines 3, 4, 5 and 6, respectively. All the URI elements have type atom except 
port (line 5) which is modelled as a natural.

2 int: atom → list atom → uri → atom → intent.

Listing 3 Data type intent

1 Inductive intent:Type :=
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1 Inductive uri:Type :=
2 | url:
3 option atom →
4 option atom →
5 option nat →
6 option atom → uri.

Listing 4 Data type URI

To map an intent to a component, the elements of an intent are matched against the 
elements in the intent filter of a component defined in the manifest file of Android appli-
cation. Intent filter filter is inductively defined in Listing 5. The only constructor filt 
of type filter gets four arguments: list of actions, list of categories, list of content URIs 
and MIME types (lines 3, 4, 5 and 6, respectively). The definitions of intent and intent 
filters are used to define Android application (line 1, Listing 6) at a high level modelled 
as a list of intents that it may invoke to integrate with other applications on the device. 
The mobile device environment (line 2, Listing 6) is the list of applications on the mobile 
device, represented by the list of filters in all the applications installed.

1 Inductive filter:Type :=
2 filt:
3 list atom →
4 list atom →
5 list uri →
6 list atom → filter.

Listing 5 Data type intent filter

1 Definition application := list intent.
2 Definition environment := list filter.

Listing 6 Android application and mobile device environment

Encoding Android application and environment

To demonstrate the applicability of our formal developments, a simple Android applica-
tion and mobile device environment is created using formal notations defined. For sim-
plicity, we assume the application consists of a single intent and the device contains a 
single application with just one intent filter. To realize this scenario, the intent and intent 
filter from Listings 1 and 2 are encoded in the formal notations developed in “Syntax of 
intent and intent filter” section. The encoding is used in a formal proof in next section.

1 Parameter ACTION_VIEW: atom.
2 Parameter CATEGORY_DEFAULT: atom.
3 Parameter CATEGORY_BROWSABLE: atom.
4 Parameter text_html: atom.
5 Parameter https: atom.
6 Parameter www_example_com: atom.
7 Parameter intent_html: atom.
8 Definition URL: uri := url (Some https) (Some www_example_com)
9 (Some 200) (Some intent_html).

Listing 7 Intent parameters

The intent ingredients including the action ACTION_VIEW, two categories CAT-
EGORY_DEFAULT and CATEGORY_BROWSABLE, data type text_html and ele-
ments (scheme, host, port and path) of data URL are defined of type atom in Listing 
7 (lines 5–7). The URL of the web page (line 1, Listing 1) is defined on lines 8–9 with 
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scheme, host, port number and path. All these parameters just defined are used to 
define intent and filter from Listings 1 and 2, respectively. In other words, the Coq 
definitions exampleintent and examplefilter of intent and filter (Listing 8) are 
the formal representations of the corresponding Java definitions in Listings 1 and 2. 
The implicit intent exampleintent is defined with action ACTION_VIEW, list of 
categories including CATEGORY_DEFAULT and CATEGORY_BROWSABLE, data URL 
and MIME type text_html. Similarly, the filter (for the Browser activity) is defined 
with a list of actions that it can perform, data categories, data URLs and types.

1 Definition exampleintent: intent :=
2 int ACTION_VIEW (CATEGORY_DEFAULT::CATEGORY_BROWSABLE::nil)
3 URL text_html.
4 Definition examplefilter: filter := filt (ACTION_VIEW::nil)
5 (CATEGORY_DEFAULT::CATEGORY_BROWSABLE::nil)
6 (URL::nil) (text_html::nil).
7 Definition exampleapp := exampleintent::nil.
8 Definition exampleenv := examplefilter::nil.

Listing 8 Encoding example application and environment

Finally, the example intent is used to define the application exampleapp (repre-
senting Email) and the filter is used to define the device environment exampleenv. 
The exampleenv represents the only application Browser on the device with one 
filter examplefilter. The major advantage of such formal definitions is that they 
can be used to mathematically reason about Android applications as demonstrated in 
“Proofs” section.

Intent resolution

After Android system receives an intent, it starts the appropriate target component 
for the intent based on the result of three tests [24] for action, category and data, 
respectively, against the corresponding elements in the intent filter of the target com-
ponent. For an intent to resolve to a component, it must pass all these three tests. If 
the intent can not be resolved to any component, the source application may crash 
[17]. Following are the formal definitions of these three tests.

The action test is simple: the action in intent is matched against actions in the filter. 
This is modelled by the function testaction defined using the keyword Defini-
tion in Listing 9. The function definition in turn is using another function find which 
searches the action of type atom in intent (first argument) in the list of actions in filter 
(second argument). The space holder _ is used to represent arguments whose values are 
not important in the function body. The category test compares all the categories in the 
intent with the categories in the filter. The recursive function testcategory (Listing 
10) takes a list of categories (of type atom) and categories listed in the intent filter and 
checks if all the categories in intent exist in the filter.
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1 Definition testaction (action:atom) (f:filter):bool :=
2 match f with
3 | filt actions _ _ _ ⇒ find action actions
4 end.

Listing 9 Matching action

The third test, defined as a recursive function testdata in Listing 11, checks if the 
URI and MIME type of the content in the intent exist in the list of URIs and MIME 
types in the intent filter. Based on whether or not the URI and/or MIME type exists in 
the intent and/or filter, there are five different results. The first four cases in the func-
tion body (lines 4–10) correspond to the four rules on Android developers’ website 
[19]. These (informal) rules are (formally) implemented using pattern matching on the 
four arguments namely, intent URI (iuri), intent type (itype), list of URIs in filter 
(filuris) and list of MIME types in filter (filtypes).

1 Fixpoint testcategory (intentcats:list atom)
2 (filtercats:list atom ) {struct intentcats}:bool :=
3 match intentcats with
4 | nil ⇒ true
5 | cons x l ⇒
6 match (find x intentcats) with
7 | false ⇒ false
8 | true ⇒ testcategory l filtercats
9 end

10 end.

Listing 10 Matching categories

1 Fixpoint testdata (iuri:option uri) (itype:option atom)
2 (filuris:list uri) (filtypes:list atom):bool :=
3 match iuri, itype, filuris, filtypes with
4 | None, None, nil, nil ⇒ true
5 | Some u, None, cons u’ ul, nil ⇒
6 orb (testuri u’ u) (testdata iuri None ul nil)
7 | None, Some it, nil, ftl ⇒ testtype ftl it
8 | Some u, Some it, cons u’ ul, ftl ⇒
9 (orb (testuri u’ u) (testdata iuri None ul nil)) &

10 (testtype ftl it)
11 | _, _, _, _ ⇒ false

Listing 11 Matching data

The first rule states that an intent with no URI and no MIME type passes the test if 
there are no URI and MIME types listed in the filter. This is represented on the line 4 
where values of all the four arguments are None (option type) or nil (list). The 
second case (line 5) models rule b in the documentation, which states that an intent with 
a URI but no MIME type can be accepted only if its URI matches a URI pattern in the 
filter and the MIME type specification list is empty. The rule c is represented by the case 
3 (line 7). An intent with only MIME type can pass the test if the same type exists in the 
list of types in the filter and there is no URI specification in the filter. The fourth rule 
is modelled by the case 4 (lines 8–10). An intent with URI and MIME type is accepted 
only if both, the URI and MIME type, matches with URI and MIME type in the filter. In 
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all other cases, such as | None, None, cons u’ ul, cons t’ tl ⇒ false, 
implicitly included in the code using space holders on line 11, the test fails.

The function testdata is calling two other functions testtype and testuri 
(lines 6, 7 and 9, Listing 11). For the first rule of function testdata, there is no URI 
and no MIME type and the result is true. For the next three rules, however, at least one 
of the URI and MIME type exists and the corresponding test function(s) is/are called. 
The test function testtype (Listing 12) is simple: it searches intent type in the list of 
filter types. If there is no intent type and likewise the filter does not require one (list of 
types in filter is empty), the test is passed. The formalization include explicit types and 
does not model implicit types. In the later case, the type would be inferred from the URI.

1 Definition testtype (filtypes:list atom)
2 (itype:atom):bool :=
3 match filtypes, itype with
4 | nil, _ ⇒ true
5 | filtypes, it ⇒ find it filtypes
6 end.

Listing 12 Matching type

1 Fixpoint testuri (filuri iuri:uri):bool :=
2 match filuri, iuri with
3 | url None None None None, _ ⇒ true
4 | url None _ (Some port) (Some path),
5 url _ _ porto patho ⇒
6 beq_nato (Some port) porto &
7 cmpoattr (Some path) patho
8 | url (Some scheme) None _ (Some path),
9 url schemeo _ _ patho ⇒

10 cmpoattr (Some scheme) schemeo &
11 cmpoattr (Some path) patho
12 | url None None (Some port) _,
13 url _ _ porto _ ⇒
14 beq_nato (Some port) porto
15 | url (Some scheme) None None None,
16 url (Some scheme’) _ _ _ ⇒
17 scheme =?= scheme’
18 | url (Some scheme) (Some host) _ None,
19 url (Some scheme’) (Some host’) _ _ ⇒
20 (scheme =?= scheme’) & (host =?= host’)
21 | url (Some scheme) (Some host) _ (Some path), url
22 (Some scheme’) (Some host’) _ (Some path’) ⇒
23 (scheme =?= scheme’) &
24 (host =?= host’) &
25 (path =?= path’)
26 | url schemeo hosto porto patho,
27 url schemeo’ hosto’ porto’ patho’ ⇒
28 cmpoattr schemeo schemeo’ &
29 cmpoattr hosto hosto’ &
30 beq_nato porto porto’ &
31 cmpoattr patho patho’
32 end.

Listing 13 Matching URI

The definition of testuri is shown in Listing 13. It gets the list of filter URIs and 
the intent URI as arguments and compares the intent URI to a URI specification in the 
filter by comparing it only to the parts of URI included in the filter. In the first case, 
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no URI in the intent, test is passed. The next six cases (lines 4–25) models the text 
If a scheme is not specified . . . authority, and path pass the filter. in the official docu-
mentation [19]. The last case (lines 26–31) represents the tests for all other cases: the 
axillary function cmpoattr compares the optional filter URI attribute with an intent 
URI attribute. For the attribute test to pass, the intent must include the same attribute 
listed in the filter and for the URI test to pass, all the attributes must pass the attrib-
ute test.

1 Definition resolve (i:intent) (f:filter):bool :=
2 match i, f with
3 | int a cl u t, filt fal fcl ful ftl ⇒
4 testaction a (filt fal fcl ful ftl) &
5 testcategory cl fcl &
6 testdata (Some u) (Some t) ful ftl
7 end.

Listing 14 Intent resolution

Finally, all the tests are combined together in function resolve defined in Listing 
14. This function gets an intent and a filter and returns true if all the tests, namely 
testaction, testcategory and testdata, are passed. In other words, given 
an intent and a filter, the formal developments enable one to check if an intent would 
resolve to (accepted by) a component.

Application crash‑safety

After intent, intent filter and intent resolution are defined, Android applications’ safety 
against crashes due to intents is formally defined. The definition resolve is used to 
formally describe crash-safety property intent_crash_safety of an intent (Listing 
15). This property is too strong: it defines an intent is crash safe if it must be accepted by 
the filter. To define crash-safety of an intent with respect to the entire device, a recursive 
function intent_crash_safetey_env is defined in Listing 16. An intent is crash-
safe in the device if there exists at least an application (filter) that accepts the intent.

1 Definition intent_crash_safety (i: intent) (f: filter) :=
2 resolve i f.

Listing 15 Crash-safe intent

1 Fixpoint intent_crash_safetey_env (i: intent) (e: environment) :
2 bool :=
3 match e with
4 | nil => false
5 | f::tl =>
6 orb (intent_crash_safety i f) (intent_crash_safetey_env i tl)
7 end.

Listing 16 Crash-safe intent wrt. to the device
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1 Fixpoint crash_safe_app (a: application) (e: environment) : bool
:=

2 match a with
3 | nil => true
4 | i::tl => andb (intent_crash_safetey_env i e) (crash_safe_app

tl e)
5 end.

Listing 17 Crash safe application

Finally, a crash-safe application is defined in Listing 17. An application (represented 
by the intents it may invoke) is crash-safe if every intent it may invoke resolves to an 
application component (represented by a filter) on the device. In the next section (“4” 
section), we formally prove that the example Android application with invoked intent 
exampleintent does not crash in the context of another application examplefil-
ter on the device.

Proofs
In the previous sections, Android intent and intent filter were formalized and a high 
level formal model of Android ICC was built. The formalized definitions are rigorous, 
precise and can be used to formally reason about the ICC using computer-aided veri-
fication tool Coq. Using the logic of Coq proof assistant, formal proofs can be carried 
and checked mechanically using Coq proof checker. To demonstrate the significance of 
formal developments carried in “Formalizing inter-component communication” section, 
following formal proofs are carried out in this section:

  • Proof of crash-safety of a simple real-life (Email) Android application (“Proof of 
application crash-safety” section),

  • Proof of broadcast intent delivery to every application component (“Proof of broad-
cast resolution” section), and

  • Proof of robust extension of component filters (“Robust environment extension” sec-
tion).

Proof of application crash‑safety

When an application invokes an intent, there must be an application on the mobile 
device to handle the intent, otherwise, the application that invoked the intent will crash 
[20]. Android platform ‘guarantees’ an intent must resolve to an application. The exist-
ing enforcement mechanism is to test, there exists an activity to respond to the invoked 
intent, when the source application activity first starts. The Java code to perform such 
a test is listed in Listing 18. The value of the boolean variable isIntentSafe determines if 
invoking the intent is safe for the application. Such tests are performed dynamically at 
run time after the application is deployed which is too late to avoid bad user experience. 
Furthermore, there is no proof of guarantee of robustness of the test and hence no proof 
of guarantee of application crash safety. In this section, we formally prove for the Email 
application whether or not the intent it generates resolves to the application Browser. It 
follows the proof of crash-safety of the application built from the example intent (by the 
Email app) in the environment created from the example filter (by the Browser app).
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1 PackageManager manager = getPackageManager();
2 List<ResolveInfo> activities =
3 manager.queryIntentActivities(intent,manager.MATCH_DEFAULT_ONLY);
4 boolean isIntentSafe = activities.size() > 0;

Listing 18 Intent resolution test in Java [20]

For the first proof, a general proof of intent resolution is carried (theorem resolve_
intent, Listing 19) which is used in the proof of resolution of our example intent 
exampleintent to filter examplefilter from Listing 8 (theorem examplein-
tent_res_to_examplefilter, Listing 20). Theorem resolve_intent defined in 
Listing 19 states that given an intent and a filter, if the intent passes action, category and 
data tests, it will be accepted by the application component with the filter defined in its 
manifest file. Note that the intent is constructed using the intent fields (the arguments of 
constructor int in Listing 3). This theorem is proved by first unfolding the definition of 
function resolve (using tactic unfold) and then using rewriting and simplification 
by Coq commands (tactics) rewrite and simpl, respectively. The proof of this theo-
rem begins with keyword Proof at line 6 and ends at line 13. The last tactic Qed adds 
the proof to internal database for later retrieval in other proofs (see proof in Listing 20 
for an example).

1 Theorem resolve_intent: forall a cl u t fal fcl ful ftl,
2 testaction a (filt fal fcl ful ftl) = true →
3 testcategory cl fcl = true →
4 testdata (Some u) (Some t) ful ftl = true →
5 resolve (int a cl u t) (filt fal fcl ful ftl) = true.
6 Proof.
7 intros ???????? TA TC TD.
8 unfold resolve.
9 rewrite TA.

10 rewrite TC.
11 rewrite TD.
12 simpl.
13 auto.
14 Qed.

Listing 19 Theorem 1–intent resolution

1 Theorem exampleintent_res_to_examplefilter:
2 intent_crash_safety exampleintent examplefilter = true.
3 Proof.
4 unfold intent_crash_safety.
5 apply resolve_intent; simpl.
6 (*CASE-testaction*)
7 rewrite eq_dec_atom_same; simpl; auto.
8 (*CASE-testcategory*)
9 do 2 rewrite eq_dec_atom_same.

10 destruct eq_atom; simpl; auto.
11 (*CASE-testdata*)
12 do 4 rewrite eq_dec_atom_same; simpl; auto.
13 Qed.

Listing 20 Theorem 2–proof of example intent resolution

The proof of theorem exampleintent_res_to_examplefilter in Listing 20 
formally verifies that the intent exampleintent resolves to filter examplefilter. 
This theorem is proved by first unfolding the definition of intent_crash_safety 
and then applying the theorem resolve_intent. This opens up three sub-goals 
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which are closed by case analysis on the definition of equality using tactic destruct 
and rewriting an axillary lemma eq_dec_atom_same (see source code [24] for all def-
initions and proofs).

Finally, the example application Email modelled as exampleapp from Listing 8 
is proved crash-safe in the device environment exampleenv with one application 
Browser modelled as examplefilter in Listing 8. The theorem exampleapp_is_
crash_safe_app (Listing 21) states that the Email application can safely invokes the 
intent for opening a URL in a browser tab by requesting the Browser application installed 
on the mobile device.

1 Theorem exampleapp_is_crash_safe_app:
2 crash_safe_app exampleapp exampleenv = true.
3 Proof.
4 unfold crash_safe_app.
5 simpl.
6 do 7 rewrite eq_dec_atom_same.
7 simpl.
8 destruct eq_atom; simpl; auto.
9 Qed.

Listing 21 Theorem 3–proof of crash-safety of example application

Proof of broadcast resolution

A broadcast is a message wrapped in an intent and is received by any application that 
has declared a broadcast receiver, most commonly, in its manifest file. The method 
sendBroadcast(intent) is used to send a broadcast intent to multiple receivers. 
Using the developed formal setting, a formal proof that a broadcast message is indeed 
received by the applications subscribed for it (by declaring a receiver), is carried in Coq 
theorem prover.

1 Fixpoint broadcast (i: intent) (e: environment) : bool :=
2 match e with
3 | nil => true
4 | cons f tl => (resolve i f) & broadcast i tl
5 end.

Listing 22 Intent broadcast

1 Theorem broadcast_general: forall i f s,
2 broadcast i s = true ->
3 In f s ->
4 resolve i f = true.
5 Proof.
6 intros ?????.
7 apply In_split in H0.
8 destruct H0.
9 destruct H0.

10 rewrite H0 in H.
11 rewrite -> broadcast_append in H.
12 unfold andb in *.
13 destruct (resolve i f).
14 (*CASE true*)
15 auto.
16 (*CASE false*)
17 inversion H.
18 Qed.

Listing 23 Theorem 4–broadcast intent resolution
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To do this, first a broadcast message (intent) is precisely defined in Listing 22. A broad-
cast intent is accepted (resolved to) by every application inside Android device environ-
ment that has declared a receiver for it. For simplicity, we assume every application on 
the mobile device (system) has declared broadcast receiver. This concept is formalized 
using recursive function broadcast in Listing 22. It takes an intent and system envi-
ronment (list of applications’ filters) and returns true if the intent is accepted by every 
application on the device.

Theorem 4 (Listing 23) states if an intent in a system is broadcast, it must resolve to 
(accepted by) every application on the system. This theorem is proved using rewriting, 
unfolding the definitions of function broadcast and then using case analysis on the 
boolean argument of andb. This later would generate two sub-goals: the first one is 
easy and is closed using tactic auto and the second one is closed using inversion. In 
addition to tactics used in earlier proofs, this proof is using an axillary lemma broad-
cast_append, tactics In_split and inversion.

Robust environment extension

Given a mobile environment and an application, it was formally verified in “Proof of 
application crash-safety” section that the application is safe in the environment. With 
the passage of time, it is normal for the user to install more applications and/or extend 
the intent filters of existing ones. It is necessary to ensure such an extension does not 
invalidate the guarantee previously provided. To further highlight the usefulness of our 
formal framework, we carry formal proof of application safety (Listing 24) and then 
prove that extending the filter with more categories is safe (Listing 25).

1 Definition aURL (s h p: atom) : uri :=
2 url (Some s) (Some h) (Some 200) (Some p).
3

4 Definition anintent (a c p s h: atom) : intent :=
5 int a (c::nil) (aURL s h p) p.
6

7 Definition afilter (a c p s h: atom) : filter :=
8 filt (a::nil) (c::nil) (aURL s h p::nil) (p::nil).
9

10 Theorem aninttent_resoves_to_filter: forall a c p s h,
11 resolve (anintent a c p s h) (afilter a c p s h) = true.
12 Proof.
13 intros. simpl.
14 do 5 rewrite eq_dec_atom_same.
15 destruct eq_atom; simpl; auto.
16 Qed.

Listing 24 Intent resolution to a filter
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1 Definition afilterplus (a c p s h: atom) (cats: list atom):
filter :=

2 filt (a::nil) (c::cats) (aURL s h p::nil) (p::nil).
3

4 Theorem aninttent_resoves_to_filterplus: forall a c p s h cats,
5 resolve (anintent a c p s h) (afilterplus a c p s h cats) =

true.
6 Proof.
7 intros. simpl.
8 do 5 rewrite eq_dec_atom_same.
9 destruct eq_atom; simpl; auto.

10 Qed.

Listing 25 Intent resolution to an extended filter

The Coq script in Listing 24 defines a general URL, intent and a filter. The theorem 
aninttent_resoves_to_filter formally proves that the intent resolves to (be 
accepted) by the components with filter afilter. In Listing 25, it is checked that the 
same intent also resolves to an extended (with categories cats) intent filter afilter-
plus. In other words, the proof of theorem aninttent_resoves_to_filterplus 
in Listing 25 confirms that if further categories are added to a filter, the application send-
ing the intent is still safe and will not crash. Note that, variables a, c, p, s, h, 
cats used in definitions in Listings 24, 25 range over any action, category, path, scheme, 
host and categories, it generalizes the scope of the formal guarantees to any application 
and system.

Evaluation of the formal model

Demonstrating the usability of formal definitions of intent, filter and ICC, the proofs 
given in Listings 20, 21, 23, 24 and 25 statically (before executing them) guarantees that 
the applications invoking the intent will never fail given the conditions. These conditions 
are formally stated on lines 2–3 for the last theorem in Listing 23. For the theorems in 
Listings 20 and 21, there is no condition (hypothesis) and the proofs are guaranteed for 
the specific example intent and filter. The major advantage of proofs carried in mechani-
cal theorem prover Coq is that the proof scripts are rigorous and their correctness can 
be checked using computer.

Formal modelling and proofs using interactive theorem prover, such as Coq, are more 
expressive and powerful than conventional simulation and formal proofs using model 
checking [10]. Simulation and model checking based approaches can be used to prove 
functional properties, however, they cannot be used to guarantee safety and security 
properties or can prove but with limited scope. Formal methods based on interactive 
theorem proving overcomes the disadvantages (e.g., state explosion problem) of model 
checking [3]. As the formal model CrashSafe has been defined in interactive theorem 
prover Coq, the formal developments and proofs are rigorous, reliable, have wide spread 
scope and can be mechanically checked. It can be used to prove safety properties of 
Android applications and can serve as a formal specification of Android ICC. The formal 
model, for example, can be applied to mathematically prove the shift of JavaScript pro-
cess from a browser application on to a cloud-based computer for better performance 
[25] preserves the intended functionality.
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Related work
There is a body of research carried to support secure mobile computing [34] in general 
and Android systems security [13, 14], in particular. In this section, we highlight the 
most relevant research related to ICC that is focused on application failures and security 
issues involving intents. From Android’s mobile platform’s perspective, ICC using intents 
is the major message passing technique among Android components and one of the 
major sources of application failures: both data and control can flow between the com-
ponents, which can be exploited to leak secret information such as contacts. Android 
security in terms of data and control flows through ICC have been studied using static 
[9, 32, 35, 40] and dynamic [6, 11] analysis techniques.

Application crashes due to ICC

The most relevant research work is the study of Android applications crashes due to ICC. 
Ye et al. built an automated testing tool DroidFuzzer [41] to find bugs in Android appli-
cations. The tool, tailored towards activity components of applications, creates (crash) 
logs of abnormal data based on the data types (video and audio) a target component 
can accept as described in its intent filter. The tool was evaluated against three applica-
tions, two music players and one browser, using Android emulator and found 14 bugs. 
DroidFuzzer is limited only to activity component of Android applications and addresses 
applications crashes caused by the type of data. The formal analysis in this paper, on 
the other hand, studies crashes in any type of application component caused by any 
parameter of the intent (including data type, URL, action and category). A similar tool, 
intent fuzzer [35], was built for fuzzing inter-component communication in Android. 
Similar to DroidFuzzer, intent fuzzer generates a set of empty intents that a component 
can receive based on action and data type parameters. Inter fuzzer is rich in terms of 
coverage as it considers action, in addition to data type considered in DroidFuzzer. The 
most recently developed tool is CrashScope [30]. CrashScope automatically test Android 
applications using a systematic input generation based on several static and dynamic 
strategies and generates detailed crash reports in natural language formate. Another tool 
VanarSena [33] was developed for reporting crashes in applications by dynamically ana-
lysing applications’ behaviour at runtime. The tool has been extensively tested against 
3000 applications and found 2969 bugs. As VanarSena has been developed for and tested 
against Windows applications, we consider it orthogonal to our work.

The first fundamental difference between these tools and the work in this paper is that 
the former find bugs in applications using their data receiving capabilities (by generat-
ing several input pattens) while our work checks if an application crashes based on the 
receiving capabilities of other applications. The second difference is that these tools cre-
ates set of intents from the given data using mutation while our work generalizes on 
all possible intents using universal quantification. The third, and the most important, 
difference is that the approaches described do not have formal foundation and hence 
can be used to detect presence of failures/crashes but the formal model built in Coq 
can be used to prove absence of crashes in applications, the later being more power full 
approach.



Page 21 of 24Khan et al. Hum. Cent. Comput. Inf. Sci.  (2018) 8:21 

Tools and frameworks for ICC analysis

Amandroid [40] is a framework that is tailored for Android applications to analyse their 
inter-component data flow. It captures both control and data flows by building a pre-
cise flow and context-sensitive inter-component data flow graph for application. The 
graph includes ICC edges and data and control can flow through these edges. A flow 
and context-sensitive algorithm is used to match the inter-component call source to the 
target. The flows are tracked by first inferring parameters for Android API calls for ICC, 
then resolve to the target (implicit or explicit) component(s) and track the flow from 
the source to target. There are other tools such as JarJarBinks [28] used to find bugs and 
study robustness of ICC in Android applications.

Chin et al. provided a tool ComDroid [9] for Android applications analysis. They ana-
lysed Davlik bytecode and detected vulnerabilities in inter-application communication 
of Android. Based on static analysis, ComDroid can detect a range of vulnerabilities 
including intent spoofing, broadcast theft, activity and service hijacking. Bugliesi et al. 
[7] developed a formal framework for the analysis of ICC. Their framework is based on 
typing techniques and include a formal calculus to reason about ICC. They implemented 
a prototype called Lintent that performs security type checking for Android applications.

Methods and techniques for ICC analysis

Later on, inspired from ComDroid [9], Octeau et  al. [31] adopted a more general 
approach and developed a solver using a declarative language COAL. Using COAL, the 
inter-component objects are modelled and the required values of objects are inferred by 
taking the correlation between object fields. Even though, the solver applied to Android, 
it can be used in general static program analysis, in particular, where values of objects 
need to be inferred. Li et  al. proposed a static taint analyser IccTA [26] for detecting 
leaks in ICC by tainting data. IccTA work on Dalvik bytecode and can detect inter-com-
ponent based privacy leaks by providing a control-flow graph.

Addressing ICC as an instance of interprocedural distributive environment, Octeau 
et al. [32] developed a static analysis technique. In their approach, a specification is iden-
tified for every source and target of the ICC. The specification include values such as 
component name, action, category and data type and infers the missing values. By using 
[32], an analysis tool Epicc has been developed and more than a thousand applications 
were analysed for ICC vulnerabilities. Epicc analyses retargeted Java bytecode and does 
not handle URIs and content providers.

The state-of-the-art research work addresses Android security in terms of informa-
tion leaks [26, 40] through ICC or finds bugs and vulnerabilities in ICC [7, 9, 28, 32]. On 
the contrary, CrashSafe checks application’s safety against crashes caused by ICC. The 
tools DroidFuzzer [41], intent fuzzer [35], CrashScope [30] and VanarSena [33] investi-
gate Applications’ safety against crashes caused by ICC, however, their results can not be 
formally guaranteed. Furthermore, they are limited only to activities of applications [41], 
lack support for Android applications [33], or addresses applications’ failures based on 
their own receiving capabilities. CrashSafe, on the other hand, has a formal foundation 
which makes it more rigorous, powerful and allows one to mathematically reason about 
all components of applications.
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Conclusion and future research
Inter-component communication is the major mechanism for Android applications to 
share data and services with each other through messages called intents. An Android 
application crashes if it invokes an intent that cannot be received by any application on 
the phone. Application failures frustrates users and push them towards competitors, 
therefore, developers need to test their applications before deployment to avoid unpre-
dictable behaviour and crashes at runtime. The official documentation for inter-compo-
nent communication is not rigorous and hence can not be precisely studied, interpreted 
and used to reason about inter-component communication. In this paper, a formal 
model of the inter-component communication, dubbed as CrashSafe, was built in theo-
rem prover Coq. The formal developments include formal definition of intents, applica-
tions (modelled as intent filters) and definitions of conditions to receive messages. The 
formal notations were used to encode simplified versions of an Email and a Browser 
application and it was proved the Email application can safely request the Browser appli-
cation to open a web page in a tab. The formal model, in addition, was used in proving 
the correctness of the intent broadcasts. The formal model CrashSafe enables one to (i) 
check the correctness of inter-component communication in Android systems and (ii) 
establishes a formal foundation for other tools to assess Android applications’ reliability 
and safety, while at the same time it is simple to understand and use as formal specifica-
tion. The widespread use of Android in the global market makes our formal develop-
ments useful for most of the mobile device users.

Dimensions of future research The formal proof of crash-safety was carried for Android 
applications represented at a high level. It would be more interesting had the proof been 
carried for applications including all the elements (e.g., all the filters and intents involved 
in the Email and Browser applications). The current model is targeted towards Android 
system and hence cannot be used to asses applications’ reliability developed using other 
popular platforms such as Apple’s iOS. To assess the formal model and increase its prac-
ticality in real-life environment, a proof-of-concept tool implementing the logic behind 
the formal model needs to be developed.
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