
CrashSafe: a formal model for proving
crash‑safety of Android applications
Wilayat Khan1* , Habib Ullah2, Aakash Ahmad2, Khalid Sultan2, Abdullah J. Alzahrani2, Sultan Daud Khan2,
Mohammad Alhumaid2 and Sultan Abdulaziz2

Introduction
Mobile devices have become an indispensable part of modern life style. Originally
designed and built to facilitate remote communications such as phone calls and text
messaging, mobile devices now support portable computing, context-aware commu-
nication, enhanced user interaction, and high-connectivity systems [36]. The operating
system—that powers-up mobile devices—enables the execution of third party applica-
tions (apps for short) that support a variety of tasks on the go [21]. These capabilities
of modern mobile devices make them smart and open up the gate for a multitude of
applications that support a variety of tasks that includes but not limited to mobile com-
merce, health monitoring, and location querying [12]. There are thousands of mobile

Abstract

Each software application running on Android powered devices consists of application
components that communicate with each other to support application’s functionality
for enhanced user experience of mobile computing. Application components inside
Android system communicate with each other using inter-component communica-
tion mechanism based on messages called intents. An android application crashes if
it invokes an intent that can not be received by (or resolved to) any application on the
device. Application crashes represent a severe fault that relates to compromised users’
experience, consequently resulting in decreased ratings, usage trends and revenues for
such applications. To address this issue—by formally proving crash-safety property of
Android applications—we have defined a formal model of Android inter-component
communication using Coq theorem prover. The mathematical model defined in theo-
rem prover allows one to prove the properties of inter-component communication
system and check the correctness of the proof in an automated way. To demonstrate
the significance of the formal model developed, we carried proof of crash-safety of
Android applications using Coq tool. The proposed solution named CrashSafe supports
a formal approach that enables one to (i) check the correctness of inter-component
communication in Android systems and (ii) establish a formal foundation for other
tools to assess Android applications’ reliability and safety.

Keywords: Android, Inter-component communication, Mobile computing, Coq,
Formal analysis, Security and reliability

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21
https://doi.org/10.1186/s13673‑018‑0144‑7

*Correspondence:
wilayat@ciitwah.edu.pk
1 COMSATS University,
Islamabad, Wah Campus,
Wah Cantt, Pakistan
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-0993-5964
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-018-0144-7&domain=pdf

Page 2 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

applications available on application stores such as Google Play and Apple Apps Store
for the two most popular mobile operating systems Android and iOS [2, 16].

Android is Google’s open source applications development platform as well as an
operating system. It is based on Linux kernel and powers up mobile devices such as
smart phones and tablets [17]. According to Statista [39], Android’s market share in sales
to end users in second quarter of 2017 was 87%. Android provides a software develop-
ment kit (SDK) with other developer tools and application programming interface (API)
for building innovative mobile applications. Application components, namely activ-
ity, service, broadcast receiver and content provider are the essential building blocks of
an Android application. Such a modular application framework allows mutually non-
trusting Android applications to share their functionalities and resources using security
enforcement mechanism based on permissions [15, 18]. These applications can access
(hardware and software) resources of the device, such as camera and contacts, and share
data with other applications or components of the same application. In Android, mes-
saging or data passing between applications on a mobile device is achieved with inter-
component communication (ICC) using intents [28]. Through the ICC messaging, both
control and data can flow between applications that may lead to numerous security and
reliability issues such as a malicious application trying to access private data or applica-
tion crashes that may lead to catastrophic impacts on mobile computing. If an applica-
tion, for example, crashes due to failure of intent resolution, the user is likely to abandon
the application for a competitor [30].

Considering the security perspective of Android framework, ICC can be exploited by
the attackers to leak sensitive user information. A recent case for compromise on data
security and privacy is reported in [27], where a gaming application frequently moni-
tored the viewing habits of their users (some of them may be children) even when the
game was not active. By using a device’s microphone, the gaming application was able
to sense what people watched by identifying audio signals in TV ads and shows. Even
worst, the gaming application could match the information about the places people
visit and the movies they watch. Second, from the application’s stability point of view,
application crashes negatively impact the performance and user experience of mobile
computing. This means that, Android’s ICC that enables data communication between
components within or outside application can also compromise the data security, pri-
vacy and stability of mobile applications [13]. The security aspect of applications is
equally important, though, the main focus of this paper is to study applications’ safety
against crashes caused by failure in intent resolution.

Research context and challenges Android applications can crash at run time due to
intents, i.e., an application crashes if there is no application component that can receive
the intent [20]. In an empirical study, Maji et al. tested more than 6 million intents
against more than 800 applications and found that around 10% Android components
tested crashed due to intents. In a separate analysis, Chin et al. [9] found 1414 exposed
surfaces in 100 Android applications, with most of them (1013) were caused by intents.
Application crash is the major problem (62% of all) faced by the users, with most of them
drive users to uninstall the app [41]. ICC, in addition, can cause information leak: Li
et al. [26] tested 15,000 Google Play applications and found that about 16% (337 out of
15,000) were leaking information through ICC.

Page 3 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

The existing mechanism to protect against such crashes and information leaks is
to check explicitly, before invoking an intent, that the intent follow certain security
rules: e.g. checking there exists at least an application component to address the
intent. To the best of our knowledge, none of these approaches provide formal proofs
of guarantee that security rules are indeed followed. Android applications’ security
and reliability has been studied from different perspective, including structure of
applications [38], permission systems [8, 15] and ICC [7, 8, 32, 40]. These analysis are
helpful to investigate and mitigate the security challenges that relate to mobile appli-
cations in general but they lack security and reliability analysis targeted towards ICC
and in particular intent resolution. In the context of Android applications, one of the
most vulnerable part of Android framework is its ICC [7, 40] that require a rigorous
and formal analysis to ensure application’s safety, reliability and security.

The official documentation [19] of Android’s ICC is in English—an informal docu-
mentation—that leads to misinterpretations, and lack of formal reasoning and anal-
ysis. The lack of formal reasoning of informal documentation and methods affects
their overall acceptance. The digital forensic used in criminal investigation and evi-
dence, for example, is unproven and is highly criticised in legal proceedings [4]. Such
non-rigorous specifications can cause interpretation issues, most commonly devel-
opers often choosing undocumented practices that can lead to applications vulner-
able to security and privacy threats [1]. A typical consequence of misinterpreting the
informal documentation may lead to a scenario where an application developer may
incautiously expose a component to third party applications [23]. Furthermore, as the
informal specification of ICC do not have a mathematical foundation and hence can-
not be used to formally prove correctness of Android applications.

Solution overview In this paper, we propose to formally specify the ICC—as defined
in Android’s official documentation—using theorem prover Coq [22]. The formalism
is a simple but careful translation from English to logical notations and formulas. An
overview of the proposed solution is provided in Fig. 1 that illustrates formal speci-
fication of the Android application’s ICC from its informal documentation. Android
application components and their interaction with each other through ICC is cur-
rently viewed through its English documentation. The informal (English based) docu-
mentation for ICC can be intuitive and simple for application developers but it can
not be used for formal reasoning. The informal specification of ICC is manually trans-
lated to a precise formal Coq specification that is machine readable. Once a formal
specification defined in the logic of Coq is available, the Coq proof facility can be
used to formally prove theorems about ICC. This is demonstrated by proving the cor-
rectness of Android ICC using the Coq proof facility. Furthermore, as the tools for
security analysis normally rely on formal models [29], the formal model in Coq can
provide a foundation for such tools for a rigorous and automated analysis of ICC. The
major contributions of this paper are:

 • To enable a formal reasoning of Android’s ICC using computer tools, a formal
model of the Android’s ICCs is built using the logic behind Coq theorem prover,

 • To demonstrate the effectiveness of our formal model, a simple Android applica-
tion is encoded using the formal notations developed, and

Page 4 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

 • To support proofs, formal proofs of crash-safety property in general and in par-
ticular for the encoded application are conducted using the proof facility of Coq.

The proposed solution CrashSafe offers twofold benefits including formal (i) proof of
correctness of inter-component communication in Android systems and (ii) foundations
for other tools to assess Android applications’ reliability and safety. The rest of the paper
is organized as the following: In the next section, a brief overview of the Android appli-
cation framework and ICC is given. In “Formalizing inter-component communication”
section, the Coq formalization of the ICC and encoding of a simple application in the
formal notations developed is presented. The proofs of correctness of Android ICC are
listed in “Proofs” section. A summary of the related work is presented in “Related work”
section and the paper is concluded in “Conclusion and future research” section.

Background
In this section, we present the background information and technical details about (i)
Android application framework and its components, (ii) inter component communica-
tions along with (iii) types and (iv) structure of the intent. The concepts and terminolo-
gies introduced in this section are used throughout the paper.

Android application framework and components

Android application framework allows developers to build innovative applications for
mobile devices using programming languages Koltlin, C++ and Java [18]. The Android
SDK tools compile the application source code into an Android application package
(APK) containing all the contents of Android application which is then used by Android-
powered devices to install the application. Android operating system treats each

Fig. 1 Overview of the proposed solution in the context of Android ICC

Page 5 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

application as a different user and assigns each of them a unique user ID. Each appli-
cation is executed in isolation by a separate process using its own virtual machine. By
default, Android implements the principle of least privilege, where each application is
given permission only to access components required for its work and no more [17].
Applications with the same user ID (e.g., by sharing the same Linux user ID) can share
data with each other and can run in the same process.

In Android systems, applications comprise of a number of components that can be
classified into four main types namely: activity, service, receiver and provider. Each of
these components provides a different entry point for the Android framework to man-
age the applications [9].

 • Activity is the entry-point for interacting with the user of the device through a sin-
gle screen. It supports different types of activities performed in the Android applica-
tion framework. Typical example of activity component are users’ activities such as
interaction with the system, input to the system or manipulation of application’s logic
and data. Specifically, user interface that allows application display and enables user
interaction with it is managed by the activity component. A single application can
have more than one activity and the user can switch between different activities.

 • Service component is a general-purpose entry point and supports variety of (back-
ground or foreground) services such as audio and visual notifications, component
authentication, or application execution monitoring. Services may run in the back-
ground and perform long-running operations without necessarily providing any user
interface. Alternatively, services may interact with users and notify them through ser-
vice notifications. For example, an anti-spam application can continuously execute in
the background and can update the user only when a potential spam is detected.

 • Broadcast receiver is the type of components that depends on other components to
receive any activity or service to complete their functionality. For example, the broad-
cast receivers receive intents from Android application framework. Intents [19] are
type of messages used by applications to request functionalities from other services
or activities. Most of the broadcast messages originate from the system, for exam-
ple, the system may announce that the battery is low. Applications may also initiate
broadcasts to let other applications know about a broadcast event (e.g., when some
data is downloaded and is available for them to use).

 • Content provider provides services or required functionality to other components
through component communication. In other words, the content providers provide
data storage to the applications. Other applications can access the data by querying
the storage or even can modify it provided that the content provider allows it.

Intents

Android is a Linux-based operating system where each application is assigned a unique
user ID and is run in an isolated virtual machine to provide better application manage-
ment and security [37]. To work as a single entity for better user experience, Android
applications uses intents, mediated by Android runtime, to share data and services
with each other. This sharing can be inter-application (a component of one application

Page 6 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

communicate with a component of another) or intra-application (among components
within an application). One component sends an intent including optional name of tar-
get component, name of action to be performed, data to operate on and category. The
receiving component, likewise, include intent filter with specification of intents that it is
interested to receive.

An action is a string that specifies the action to be performed (e.g., VIEW) or has hap-
pened and is reported (e.g., BATTERY_LOW). In addition, intent includes a (possibly
empty) list of categories, each contains additional information about the component
that should handle the intent. The data field of the intent include a uniform resource
identifier (URI) to identify the data to act upon and the multi-purpose internet mail
extensions (MIME) data type. The type of the data can be inferred from the data itself,
though, it is important to add the type of data as it helps Android system to locate the
most appropriate component for the intent. The intent fields just described are sufficient
for the system to identify a relevant component it should start to receive the intent and
hence are included in the formal definitions (“Formalizing inter-component communi-
cation” section). There are additional fields to carry extra information as key-value pairs
and flags to carry metadata, however, none of them affects the way an intent is resolved
to a component.

Based on the way a set of target components are identified, intents are categorized as
explicit and implicit. In an explicit intent, a component is addressed explicitly using a
fully-qualified name and are normally used in an application to communicate with its
own components as they are known to the owner. For explicit intent, the mechanism
to find an appropriate component for an action is straight forward: the component is
described by a full-qualified name inside the intent which the system can easily locate.
On the other hand, in an implicit intent, a component is addressed using other fields
action, data (URI and MIME type) and category. As a running example to understand
intents and intent filters, consider an Email and a Browser application are installed on
Android device. The Email application displays an email message, having a hyperlink to
a web page, in an activity. When the user clicks on the link in the message displayed to
the user by the activity of the Email application, the activity sends an intent to Android
system for opening (viewing) the requested web page by the browser.

An implicit intent exampleIntent is created as an object of Intent class using the
new constructor as shown in Listing 1. The target component name is not provided any-
where which makes the intent created implicit. The values for the fields action, category,
data URI and data (MIME) type are added using methods setAction(), addCat-
egory(), setData() and setType(), respectively on lines 3–7. The next function
startActivity() on line 8 starts an activity for the desired action and provides the
intent exampleIntent including other necessary data. The implicit intent in Listing 1
can be made explicit just by replacing the code on line 2 with Intent exampleIn-
tent = new Intent(this, exampleActivity.class));. This code adds
the name of target activity exampleActivity explicitly to the intent created.

Page 7 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 String URL = "https://www_example.com:200/intents.html";
2 Intent exampleIntent = new Intent();
3 exampleIntent.setAction(Intent.ACTION_VIEW);
4 exampleIntent.addCategory(Intent.CATEGRY_DEFAULT);
5 exampleIntent.addCategory(Intent.CATEGRY_BROWSABLE)
6 exampleIntent.setData(Uri.parse(URL));
7 exampleIntent.setType("text/html");
8 startActivity(exampleIntent);

Listing 1 Example of an intent

Inter‑component communication

For an application to communicate with another application, a component of the first
application creates and sends an intent to a component of the target application, as
shown in Fig. 2. The component A wants component B to perform some action on its
data of a particular category. To do this, it creates an intent with name of action, data
and its category and sends it to B, which performs the requested action on the data.

Communication based on intents can be with or without the target component name
in intent. If a target name is included in the intent (explicit intent), Android system
passes on the intent to the target component. Inter-component communication using
explicit intent is straight forward and is not included in this work. To address a com-
ponent using an intent without the target component name (implicit intent), a general
action is declared and the target is resolved by the Android system (runtime). The type
of action in implicit intent, to be performed by a component, enables the system to find
a set of appropriate components for that action. Finding the target component for an
implicit intent is complicated: the system takes the intent’s data and looks for an appro-
priate set of components in the applications available on the mobile device. In case only
one appropriate component is found, the system start that component, however, for
more options, the system asks the user using a dialogue to choose from the list.

When a component intends to start another component using implicit intent (see
example below), it sends an intent and the system looks for appropriate components
by looking into the intent content (action) and comparing with intent filters declared in
applications on the device. Android enforces this mechanism using intent filters (Listing
2) declared in a manifest file: application specifies the type of intents in its manifest file
it should receive. For the Browser application to receive the intent created by the Email
application (Listing 1), the Browser must have the filter as defined in Listing 2. This filter
declares an action ACTION_VIEW, categories DEFAULT and BROWSABLE and data URL
and type text/hmtl for an activity to display the web page in a tab. When the Browser
application receives this intent, it is checked against the filter and as it can deliver the
requested service (see proof of this in “Proofs” section), an activity of the Browser opens
the web page from the URL provided in a tab. Declaring an intent filter for a component

Fig. 2 High-level description of inter-component communication [32]

Page 8 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

enable other applications to start it. A component, with no intent filter declared in mani-
fest file, can only be started by an explicit intent.

1 <intent-filter>
2 <action android:name="android.intent.action.ACTION_VIEW" />
3 <category android:name="android.intent.category.DEFAULT" />
4 <category android:name="android.intent.category.BROWSABLE" />
5 <data android:mimeType="text/html"
6 android:scheme="https"
7 android:host="www.example.com"
8 android:port="200"
9 android:path="intents.html" />

10 ...
11 </intent-filter>

Listing 2 Example of an intent filter

The inter-component communication between two components in Fig. 2 appears a
direct communication between two components A and B, but in fact it is mediated by
the Android system as shown in Fig. 3. The Email application in our running example
communicates with a different application to display a web page in response to the user
click on a hyperlink received in the email opened by an activity of the Email application.
Let assume, there exists application Browser that can better serve Email, but the latter
does not know if the former exists or can perform the desired action. For this operation,
the activity A of Email starts implicitly the activity B of Browser without mentioning the
name of target as the following: (1) activity A creates the intent (in Listing 1) with action
ACTION_VIEW it wants to be performed and passes it by calling the method start-
Activity(). (2) The Android system receives the intent sent by A and looks for a rel-
evant component among components of applications currently installed on the device.
Let assume it matches (the filter in Listing 2 of) activity B in application Browser. (3)
Android system activates B by calling its method onCreate with the intent received
from A and as result, the Browser application displays the requested web page in a tab.
This sequence of events appears to the user from a single application (Email) but in-fact
it is rendered by two different applications namely Email and Browser. This all happens
seamlessly to the user using ICC.

Even though, ICC is the major mechanism for inter-application interactions and con-
tributes to rich user experience of mobile computing, but there are design limitations
[1] in it and is one of the favourite targets to security threats [7, 40]. In the next section,

Fig. 3 Implicit inter-component communication [17]

Page 9 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

formal definitions of intents, intent filters and inter-component communication are
described and used in the formal reasoning about inter-component communication.

Formalizing inter‑component communication
In the context of Android’s ICC, when an application component intends to communi-
cate with other component(s), it sends an explicit intent by providing the name of the
component (if known), otherwise, an implicit intent (without the target name) is sent.
Explicit intent does not require any evaluation and are simple to understand, while
implicit intent requires a number of tests done by the system before an intent is passed
on to an appropriate component. The existing specifications of intents, intent filters and
the mechanism used to match a particular message request by a source component to
a target component is informal and can not be used within formal proofs. In this sec-
tion, the structure of implicit intent, intent filter and the mechanism to find the most
appropriate component to receive implicit intent are formalized in theorem prover Coq.
Such a formal definition can be used to prove theorems about intents, intent filters and
inter-component communication using the Coq proof facility and the proof script can
be checked mechanically using the Coq proof checker. The Coq source code and proofs
of theorems are available on-line at [24].

Syntax of intent and intent filter

The main components of Android ICC are the data structures intent, intent filter and
matching functions. An intent represents the content and the requested operation
while the filter models a component. The data structures intent and intent filters are
formalized in this sub-section and the matching functions are formalized in the next
sub-section.

An implicit intent is a simple data structure containing the address and type of the data
to act upon, the action to perform on data and some additional information. An intent
is inductively defined in Coq as shown in Listing 3. The inductive definition consists of
only one constructor (int, line 2) to construct elements (intents) of type intent. The
constructor take as arguments an action, list of categories, URI and MIME type of the
data. All the names (such as actions, categories, schemes, hosts and MIME types) are
represented using the type atom defined in the library Atom, edited from [5]. The third
argument of intent of type uri represents the content URI and is defined in Listing 4.
A URI include optional elements scheme, host, port and path, represented by the argu-
ments on lines 3, 4, 5 and 6, respectively. All the URI elements have type atom except
port (line 5) which is modelled as a natural.

2 int: atom → list atom → uri → atom → intent.

Listing 3 Data type intent

1 Inductive intent:Type :=

Page 10 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 Inductive uri:Type :=
2 | url:
3 option atom →
4 option atom →
5 option nat →
6 option atom → uri.

Listing 4 Data type URI

To map an intent to a component, the elements of an intent are matched against the
elements in the intent filter of a component defined in the manifest file of Android appli-
cation. Intent filter filter is inductively defined in Listing 5. The only constructor filt
of type filter gets four arguments: list of actions, list of categories, list of content URIs
and MIME types (lines 3, 4, 5 and 6, respectively). The definitions of intent and intent
filters are used to define Android application (line 1, Listing 6) at a high level modelled
as a list of intents that it may invoke to integrate with other applications on the device.
The mobile device environment (line 2, Listing 6) is the list of applications on the mobile
device, represented by the list of filters in all the applications installed.

1 Inductive filter:Type :=
2 filt:
3 list atom →
4 list atom →
5 list uri →
6 list atom → filter.

Listing 5 Data type intent filter

1 Definition application := list intent.
2 Definition environment := list filter.

Listing 6 Android application and mobile device environment

Encoding Android application and environment

To demonstrate the applicability of our formal developments, a simple Android applica-
tion and mobile device environment is created using formal notations defined. For sim-
plicity, we assume the application consists of a single intent and the device contains a
single application with just one intent filter. To realize this scenario, the intent and intent
filter from Listings 1 and 2 are encoded in the formal notations developed in “Syntax of
intent and intent filter” section. The encoding is used in a formal proof in next section.

1 Parameter ACTION_VIEW: atom.
2 Parameter CATEGORY_DEFAULT: atom.
3 Parameter CATEGORY_BROWSABLE: atom.
4 Parameter text_html: atom.
5 Parameter https: atom.
6 Parameter www_example_com: atom.
7 Parameter intent_html: atom.
8 Definition URL: uri := url (Some https) (Some www_example_com)
9 (Some 200) (Some intent_html).

Listing 7 Intent parameters

The intent ingredients including the action ACTION_VIEW, two categories CAT-
EGORY_DEFAULT and CATEGORY_BROWSABLE, data type text_html and ele-
ments (scheme, host, port and path) of data URL are defined of type atom in Listing
7 (lines 5–7). The URL of the web page (line 1, Listing 1) is defined on lines 8–9 with

Page 11 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

scheme, host, port number and path. All these parameters just defined are used to
define intent and filter from Listings 1 and 2, respectively. In other words, the Coq
definitions exampleintent and examplefilter of intent and filter (Listing 8) are
the formal representations of the corresponding Java definitions in Listings 1 and 2.
The implicit intent exampleintent is defined with action ACTION_VIEW, list of
categories including CATEGORY_DEFAULT and CATEGORY_BROWSABLE, data URL
and MIME type text_html. Similarly, the filter (for the Browser activity) is defined
with a list of actions that it can perform, data categories, data URLs and types.

1 Definition exampleintent: intent :=
2 int ACTION_VIEW (CATEGORY_DEFAULT::CATEGORY_BROWSABLE::nil)
3 URL text_html.
4 Definition examplefilter: filter := filt (ACTION_VIEW::nil)
5 (CATEGORY_DEFAULT::CATEGORY_BROWSABLE::nil)
6 (URL::nil) (text_html::nil).
7 Definition exampleapp := exampleintent::nil.
8 Definition exampleenv := examplefilter::nil.

Listing 8 Encoding example application and environment

Finally, the example intent is used to define the application exampleapp (repre-
senting Email) and the filter is used to define the device environment exampleenv.
The exampleenv represents the only application Browser on the device with one
filter examplefilter. The major advantage of such formal definitions is that they
can be used to mathematically reason about Android applications as demonstrated in
“Proofs” section.

Intent resolution

After Android system receives an intent, it starts the appropriate target component
for the intent based on the result of three tests [24] for action, category and data,
respectively, against the corresponding elements in the intent filter of the target com-
ponent. For an intent to resolve to a component, it must pass all these three tests. If
the intent can not be resolved to any component, the source application may crash
[17]. Following are the formal definitions of these three tests.

The action test is simple: the action in intent is matched against actions in the filter.
This is modelled by the function testaction defined using the keyword Defini-
tion in Listing 9. The function definition in turn is using another function find which
searches the action of type atom in intent (first argument) in the list of actions in filter
(second argument). The space holder _ is used to represent arguments whose values are
not important in the function body. The category test compares all the categories in the
intent with the categories in the filter. The recursive function testcategory (Listing
10) takes a list of categories (of type atom) and categories listed in the intent filter and
checks if all the categories in intent exist in the filter.

Page 12 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 Definition testaction (action:atom) (f:filter):bool :=
2 match f with
3 | filt actions _ _ _ ⇒ find action actions
4 end.

Listing 9 Matching action

The third test, defined as a recursive function testdata in Listing 11, checks if the
URI and MIME type of the content in the intent exist in the list of URIs and MIME
types in the intent filter. Based on whether or not the URI and/or MIME type exists in
the intent and/or filter, there are five different results. The first four cases in the func-
tion body (lines 4–10) correspond to the four rules on Android developers’ website
[19]. These (informal) rules are (formally) implemented using pattern matching on the
four arguments namely, intent URI (iuri), intent type (itype), list of URIs in filter
(filuris) and list of MIME types in filter (filtypes).

1 Fixpoint testcategory (intentcats:list atom)
2 (filtercats:list atom) {struct intentcats}:bool :=
3 match intentcats with
4 | nil ⇒ true
5 | cons x l ⇒
6 match (find x intentcats) with
7 | false ⇒ false
8 | true ⇒ testcategory l filtercats
9 end

10 end.

Listing 10 Matching categories

1 Fixpoint testdata (iuri:option uri) (itype:option atom)
2 (filuris:list uri) (filtypes:list atom):bool :=
3 match iuri, itype, filuris, filtypes with
4 | None, None, nil, nil ⇒ true
5 | Some u, None, cons u’ ul, nil ⇒
6 orb (testuri u’ u) (testdata iuri None ul nil)
7 | None, Some it, nil, ftl ⇒ testtype ftl it
8 | Some u, Some it, cons u’ ul, ftl ⇒
9 (orb (testuri u’ u) (testdata iuri None ul nil)) &

10 (testtype ftl it)
11 | _, _, _, _ ⇒ false

Listing 11 Matching data

The first rule states that an intent with no URI and no MIME type passes the test if
there are no URI and MIME types listed in the filter. This is represented on the line 4
where values of all the four arguments are None (option type) or nil (list). The
second case (line 5) models rule b in the documentation, which states that an intent with
a URI but no MIME type can be accepted only if its URI matches a URI pattern in the
filter and the MIME type specification list is empty. The rule c is represented by the case
3 (line 7). An intent with only MIME type can pass the test if the same type exists in the
list of types in the filter and there is no URI specification in the filter. The fourth rule
is modelled by the case 4 (lines 8–10). An intent with URI and MIME type is accepted
only if both, the URI and MIME type, matches with URI and MIME type in the filter. In

Page 13 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

all other cases, such as | None, None, cons u’ ul, cons t’ tl ⇒ false,
implicitly included in the code using space holders on line 11, the test fails.

The function testdata is calling two other functions testtype and testuri
(lines 6, 7 and 9, Listing 11). For the first rule of function testdata, there is no URI
and no MIME type and the result is true. For the next three rules, however, at least one
of the URI and MIME type exists and the corresponding test function(s) is/are called.
The test function testtype (Listing 12) is simple: it searches intent type in the list of
filter types. If there is no intent type and likewise the filter does not require one (list of
types in filter is empty), the test is passed. The formalization include explicit types and
does not model implicit types. In the later case, the type would be inferred from the URI.

1 Definition testtype (filtypes:list atom)
2 (itype:atom):bool :=
3 match filtypes, itype with
4 | nil, _ ⇒ true
5 | filtypes, it ⇒ find it filtypes
6 end.

Listing 12 Matching type

1 Fixpoint testuri (filuri iuri:uri):bool :=
2 match filuri, iuri with
3 | url None None None None, _ ⇒ true
4 | url None _ (Some port) (Some path),
5 url _ _ porto patho ⇒
6 beq_nato (Some port) porto &
7 cmpoattr (Some path) patho
8 | url (Some scheme) None _ (Some path),
9 url schemeo _ _ patho ⇒

10 cmpoattr (Some scheme) schemeo &
11 cmpoattr (Some path) patho
12 | url None None (Some port) _,
13 url _ _ porto _ ⇒
14 beq_nato (Some port) porto
15 | url (Some scheme) None None None,
16 url (Some scheme’) _ _ _ ⇒
17 scheme =?= scheme’
18 | url (Some scheme) (Some host) _ None,
19 url (Some scheme’) (Some host’) _ _ ⇒
20 (scheme =?= scheme’) & (host =?= host’)
21 | url (Some scheme) (Some host) _ (Some path), url
22 (Some scheme’) (Some host’) _ (Some path’) ⇒
23 (scheme =?= scheme’) &
24 (host =?= host’) &
25 (path =?= path’)
26 | url schemeo hosto porto patho,
27 url schemeo’ hosto’ porto’ patho’ ⇒
28 cmpoattr schemeo schemeo’ &
29 cmpoattr hosto hosto’ &
30 beq_nato porto porto’ &
31 cmpoattr patho patho’
32 end.

Listing 13 Matching URI

The definition of testuri is shown in Listing 13. It gets the list of filter URIs and
the intent URI as arguments and compares the intent URI to a URI specification in the
filter by comparing it only to the parts of URI included in the filter. In the first case,

Page 14 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

no URI in the intent, test is passed. The next six cases (lines 4–25) models the text
If a scheme is not specified . . . authority, and path pass the filter. in the official docu-
mentation [19]. The last case (lines 26–31) represents the tests for all other cases: the
axillary function cmpoattr compares the optional filter URI attribute with an intent
URI attribute. For the attribute test to pass, the intent must include the same attribute
listed in the filter and for the URI test to pass, all the attributes must pass the attrib-
ute test.

1 Definition resolve (i:intent) (f:filter):bool :=
2 match i, f with
3 | int a cl u t, filt fal fcl ful ftl ⇒
4 testaction a (filt fal fcl ful ftl) &
5 testcategory cl fcl &
6 testdata (Some u) (Some t) ful ftl
7 end.

Listing 14 Intent resolution

Finally, all the tests are combined together in function resolve defined in Listing
14. This function gets an intent and a filter and returns true if all the tests, namely
testaction, testcategory and testdata, are passed. In other words, given
an intent and a filter, the formal developments enable one to check if an intent would
resolve to (accepted by) a component.

Application crash‑safety

After intent, intent filter and intent resolution are defined, Android applications’ safety
against crashes due to intents is formally defined. The definition resolve is used to
formally describe crash-safety property intent_crash_safety of an intent (Listing
15). This property is too strong: it defines an intent is crash safe if it must be accepted by
the filter. To define crash-safety of an intent with respect to the entire device, a recursive
function intent_crash_safetey_env is defined in Listing 16. An intent is crash-
safe in the device if there exists at least an application (filter) that accepts the intent.

1 Definition intent_crash_safety (i: intent) (f: filter) :=
2 resolve i f.

Listing 15 Crash-safe intent

1 Fixpoint intent_crash_safetey_env (i: intent) (e: environment) :
2 bool :=
3 match e with
4 | nil => false
5 | f::tl =>
6 orb (intent_crash_safety i f) (intent_crash_safetey_env i tl)
7 end.

Listing 16 Crash-safe intent wrt. to the device

Page 15 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 Fixpoint crash_safe_app (a: application) (e: environment) : bool
:=

2 match a with
3 | nil => true
4 | i::tl => andb (intent_crash_safetey_env i e) (crash_safe_app

tl e)
5 end.

Listing 17 Crash safe application

Finally, a crash-safe application is defined in Listing 17. An application (represented
by the intents it may invoke) is crash-safe if every intent it may invoke resolves to an
application component (represented by a filter) on the device. In the next section (“4”
section), we formally prove that the example Android application with invoked intent
exampleintent does not crash in the context of another application examplefil-
ter on the device.

Proofs
In the previous sections, Android intent and intent filter were formalized and a high
level formal model of Android ICC was built. The formalized definitions are rigorous,
precise and can be used to formally reason about the ICC using computer-aided veri-
fication tool Coq. Using the logic of Coq proof assistant, formal proofs can be carried
and checked mechanically using Coq proof checker. To demonstrate the significance of
formal developments carried in “Formalizing inter-component communication” section,
following formal proofs are carried out in this section:

 • Proof of crash-safety of a simple real-life (Email) Android application (“Proof of
application crash-safety” section),

 • Proof of broadcast intent delivery to every application component (“Proof of broad-
cast resolution” section), and

 • Proof of robust extension of component filters (“Robust environment extension” sec-
tion).

Proof of application crash‑safety

When an application invokes an intent, there must be an application on the mobile
device to handle the intent, otherwise, the application that invoked the intent will crash
[20]. Android platform ‘guarantees’ an intent must resolve to an application. The exist-
ing enforcement mechanism is to test, there exists an activity to respond to the invoked
intent, when the source application activity first starts. The Java code to perform such
a test is listed in Listing 18. The value of the boolean variable isIntentSafe determines if
invoking the intent is safe for the application. Such tests are performed dynamically at
run time after the application is deployed which is too late to avoid bad user experience.
Furthermore, there is no proof of guarantee of robustness of the test and hence no proof
of guarantee of application crash safety. In this section, we formally prove for the Email
application whether or not the intent it generates resolves to the application Browser. It
follows the proof of crash-safety of the application built from the example intent (by the
Email app) in the environment created from the example filter (by the Browser app).

Page 16 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 PackageManager manager = getPackageManager();
2 List<ResolveInfo> activities =
3 manager.queryIntentActivities(intent,manager.MATCH_DEFAULT_ONLY);
4 boolean isIntentSafe = activities.size() > 0;

Listing 18 Intent resolution test in Java [20]

For the first proof, a general proof of intent resolution is carried (theorem resolve_
intent, Listing 19) which is used in the proof of resolution of our example intent
exampleintent to filter examplefilter from Listing 8 (theorem examplein-
tent_res_to_examplefilter, Listing 20). Theorem resolve_intent defined in
Listing 19 states that given an intent and a filter, if the intent passes action, category and
data tests, it will be accepted by the application component with the filter defined in its
manifest file. Note that the intent is constructed using the intent fields (the arguments of
constructor int in Listing 3). This theorem is proved by first unfolding the definition of
function resolve (using tactic unfold) and then using rewriting and simplification
by Coq commands (tactics) rewrite and simpl, respectively. The proof of this theo-
rem begins with keyword Proof at line 6 and ends at line 13. The last tactic Qed adds
the proof to internal database for later retrieval in other proofs (see proof in Listing 20
for an example).

1 Theorem resolve_intent: forall a cl u t fal fcl ful ftl,
2 testaction a (filt fal fcl ful ftl) = true →
3 testcategory cl fcl = true →
4 testdata (Some u) (Some t) ful ftl = true →
5 resolve (int a cl u t) (filt fal fcl ful ftl) = true.
6 Proof.
7 intros ???????? TA TC TD.
8 unfold resolve.
9 rewrite TA.

10 rewrite TC.
11 rewrite TD.
12 simpl.
13 auto.
14 Qed.

Listing 19 Theorem 1–intent resolution

1 Theorem exampleintent_res_to_examplefilter:
2 intent_crash_safety exampleintent examplefilter = true.
3 Proof.
4 unfold intent_crash_safety.
5 apply resolve_intent; simpl.
6 (*CASE-testaction*)
7 rewrite eq_dec_atom_same; simpl; auto.
8 (*CASE-testcategory*)
9 do 2 rewrite eq_dec_atom_same.

10 destruct eq_atom; simpl; auto.
11 (*CASE-testdata*)
12 do 4 rewrite eq_dec_atom_same; simpl; auto.
13 Qed.

Listing 20 Theorem 2–proof of example intent resolution

The proof of theorem exampleintent_res_to_examplefilter in Listing 20
formally verifies that the intent exampleintent resolves to filter examplefilter.
This theorem is proved by first unfolding the definition of intent_crash_safety
and then applying the theorem resolve_intent. This opens up three sub-goals

Page 17 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

which are closed by case analysis on the definition of equality using tactic destruct
and rewriting an axillary lemma eq_dec_atom_same (see source code [24] for all def-
initions and proofs).

Finally, the example application Email modelled as exampleapp from Listing 8
is proved crash-safe in the device environment exampleenv with one application
Browser modelled as examplefilter in Listing 8. The theorem exampleapp_is_
crash_safe_app (Listing 21) states that the Email application can safely invokes the
intent for opening a URL in a browser tab by requesting the Browser application installed
on the mobile device.

1 Theorem exampleapp_is_crash_safe_app:
2 crash_safe_app exampleapp exampleenv = true.
3 Proof.
4 unfold crash_safe_app.
5 simpl.
6 do 7 rewrite eq_dec_atom_same.
7 simpl.
8 destruct eq_atom; simpl; auto.
9 Qed.

Listing 21 Theorem 3–proof of crash-safety of example application

Proof of broadcast resolution

A broadcast is a message wrapped in an intent and is received by any application that
has declared a broadcast receiver, most commonly, in its manifest file. The method
sendBroadcast(intent) is used to send a broadcast intent to multiple receivers.
Using the developed formal setting, a formal proof that a broadcast message is indeed
received by the applications subscribed for it (by declaring a receiver), is carried in Coq
theorem prover.

1 Fixpoint broadcast (i: intent) (e: environment) : bool :=
2 match e with
3 | nil => true
4 | cons f tl => (resolve i f) & broadcast i tl
5 end.

Listing 22 Intent broadcast

1 Theorem broadcast_general: forall i f s,
2 broadcast i s = true ->
3 In f s ->
4 resolve i f = true.
5 Proof.
6 intros ?????.
7 apply In_split in H0.
8 destruct H0.
9 destruct H0.

10 rewrite H0 in H.
11 rewrite -> broadcast_append in H.
12 unfold andb in *.
13 destruct (resolve i f).
14 (*CASE true*)
15 auto.
16 (*CASE false*)
17 inversion H.
18 Qed.

Listing 23 Theorem 4–broadcast intent resolution

Page 18 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

To do this, first a broadcast message (intent) is precisely defined in Listing 22. A broad-
cast intent is accepted (resolved to) by every application inside Android device environ-
ment that has declared a receiver for it. For simplicity, we assume every application on
the mobile device (system) has declared broadcast receiver. This concept is formalized
using recursive function broadcast in Listing 22. It takes an intent and system envi-
ronment (list of applications’ filters) and returns true if the intent is accepted by every
application on the device.

Theorem 4 (Listing 23) states if an intent in a system is broadcast, it must resolve to
(accepted by) every application on the system. This theorem is proved using rewriting,
unfolding the definitions of function broadcast and then using case analysis on the
boolean argument of andb. This later would generate two sub-goals: the first one is
easy and is closed using tactic auto and the second one is closed using inversion. In
addition to tactics used in earlier proofs, this proof is using an axillary lemma broad-
cast_append, tactics In_split and inversion.

Robust environment extension

Given a mobile environment and an application, it was formally verified in “Proof of
application crash-safety” section that the application is safe in the environment. With
the passage of time, it is normal for the user to install more applications and/or extend
the intent filters of existing ones. It is necessary to ensure such an extension does not
invalidate the guarantee previously provided. To further highlight the usefulness of our
formal framework, we carry formal proof of application safety (Listing 24) and then
prove that extending the filter with more categories is safe (Listing 25).

1 Definition aURL (s h p: atom) : uri :=
2 url (Some s) (Some h) (Some 200) (Some p).
3

4 Definition anintent (a c p s h: atom) : intent :=
5 int a (c::nil) (aURL s h p) p.
6

7 Definition afilter (a c p s h: atom) : filter :=
8 filt (a::nil) (c::nil) (aURL s h p::nil) (p::nil).
9

10 Theorem aninttent_resoves_to_filter: forall a c p s h,
11 resolve (anintent a c p s h) (afilter a c p s h) = true.
12 Proof.
13 intros. simpl.
14 do 5 rewrite eq_dec_atom_same.
15 destruct eq_atom; simpl; auto.
16 Qed.

Listing 24 Intent resolution to a filter

Page 19 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

1 Definition afilterplus (a c p s h: atom) (cats: list atom):
filter :=

2 filt (a::nil) (c::cats) (aURL s h p::nil) (p::nil).
3

4 Theorem aninttent_resoves_to_filterplus: forall a c p s h cats,
5 resolve (anintent a c p s h) (afilterplus a c p s h cats) =

true.
6 Proof.
7 intros. simpl.
8 do 5 rewrite eq_dec_atom_same.
9 destruct eq_atom; simpl; auto.

10 Qed.

Listing 25 Intent resolution to an extended filter

The Coq script in Listing 24 defines a general URL, intent and a filter. The theorem
aninttent_resoves_to_filter formally proves that the intent resolves to (be
accepted) by the components with filter afilter. In Listing 25, it is checked that the
same intent also resolves to an extended (with categories cats) intent filter afilter-
plus. In other words, the proof of theorem aninttent_resoves_to_filterplus
in Listing 25 confirms that if further categories are added to a filter, the application send-
ing the intent is still safe and will not crash. Note that, variables a, c, p, s, h,
cats used in definitions in Listings 24, 25 range over any action, category, path, scheme,
host and categories, it generalizes the scope of the formal guarantees to any application
and system.

Evaluation of the formal model

Demonstrating the usability of formal definitions of intent, filter and ICC, the proofs
given in Listings 20, 21, 23, 24 and 25 statically (before executing them) guarantees that
the applications invoking the intent will never fail given the conditions. These conditions
are formally stated on lines 2–3 for the last theorem in Listing 23. For the theorems in
Listings 20 and 21, there is no condition (hypothesis) and the proofs are guaranteed for
the specific example intent and filter. The major advantage of proofs carried in mechani-
cal theorem prover Coq is that the proof scripts are rigorous and their correctness can
be checked using computer.

Formal modelling and proofs using interactive theorem prover, such as Coq, are more
expressive and powerful than conventional simulation and formal proofs using model
checking [10]. Simulation and model checking based approaches can be used to prove
functional properties, however, they cannot be used to guarantee safety and security
properties or can prove but with limited scope. Formal methods based on interactive
theorem proving overcomes the disadvantages (e.g., state explosion problem) of model
checking [3]. As the formal model CrashSafe has been defined in interactive theorem
prover Coq, the formal developments and proofs are rigorous, reliable, have wide spread
scope and can be mechanically checked. It can be used to prove safety properties of
Android applications and can serve as a formal specification of Android ICC. The formal
model, for example, can be applied to mathematically prove the shift of JavaScript pro-
cess from a browser application on to a cloud-based computer for better performance
[25] preserves the intended functionality.

Page 20 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

Related work
There is a body of research carried to support secure mobile computing [34] in general
and Android systems security [13, 14], in particular. In this section, we highlight the
most relevant research related to ICC that is focused on application failures and security
issues involving intents. From Android’s mobile platform’s perspective, ICC using intents
is the major message passing technique among Android components and one of the
major sources of application failures: both data and control can flow between the com-
ponents, which can be exploited to leak secret information such as contacts. Android
security in terms of data and control flows through ICC have been studied using static
[9, 32, 35, 40] and dynamic [6, 11] analysis techniques.

Application crashes due to ICC

The most relevant research work is the study of Android applications crashes due to ICC.
Ye et al. built an automated testing tool DroidFuzzer [41] to find bugs in Android appli-
cations. The tool, tailored towards activity components of applications, creates (crash)
logs of abnormal data based on the data types (video and audio) a target component
can accept as described in its intent filter. The tool was evaluated against three applica-
tions, two music players and one browser, using Android emulator and found 14 bugs.
DroidFuzzer is limited only to activity component of Android applications and addresses
applications crashes caused by the type of data. The formal analysis in this paper, on
the other hand, studies crashes in any type of application component caused by any
parameter of the intent (including data type, URL, action and category). A similar tool,
intent fuzzer [35], was built for fuzzing inter-component communication in Android.
Similar to DroidFuzzer, intent fuzzer generates a set of empty intents that a component
can receive based on action and data type parameters. Inter fuzzer is rich in terms of
coverage as it considers action, in addition to data type considered in DroidFuzzer. The
most recently developed tool is CrashScope [30]. CrashScope automatically test Android
applications using a systematic input generation based on several static and dynamic
strategies and generates detailed crash reports in natural language formate. Another tool
VanarSena [33] was developed for reporting crashes in applications by dynamically ana-
lysing applications’ behaviour at runtime. The tool has been extensively tested against
3000 applications and found 2969 bugs. As VanarSena has been developed for and tested
against Windows applications, we consider it orthogonal to our work.

The first fundamental difference between these tools and the work in this paper is that
the former find bugs in applications using their data receiving capabilities (by generat-
ing several input pattens) while our work checks if an application crashes based on the
receiving capabilities of other applications. The second difference is that these tools cre-
ates set of intents from the given data using mutation while our work generalizes on
all possible intents using universal quantification. The third, and the most important,
difference is that the approaches described do not have formal foundation and hence
can be used to detect presence of failures/crashes but the formal model built in Coq
can be used to prove absence of crashes in applications, the later being more power full
approach.

Page 21 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

Tools and frameworks for ICC analysis

Amandroid [40] is a framework that is tailored for Android applications to analyse their
inter-component data flow. It captures both control and data flows by building a pre-
cise flow and context-sensitive inter-component data flow graph for application. The
graph includes ICC edges and data and control can flow through these edges. A flow
and context-sensitive algorithm is used to match the inter-component call source to the
target. The flows are tracked by first inferring parameters for Android API calls for ICC,
then resolve to the target (implicit or explicit) component(s) and track the flow from
the source to target. There are other tools such as JarJarBinks [28] used to find bugs and
study robustness of ICC in Android applications.

Chin et al. provided a tool ComDroid [9] for Android applications analysis. They ana-
lysed Davlik bytecode and detected vulnerabilities in inter-application communication
of Android. Based on static analysis, ComDroid can detect a range of vulnerabilities
including intent spoofing, broadcast theft, activity and service hijacking. Bugliesi et al.
[7] developed a formal framework for the analysis of ICC. Their framework is based on
typing techniques and include a formal calculus to reason about ICC. They implemented
a prototype called Lintent that performs security type checking for Android applications.

Methods and techniques for ICC analysis

Later on, inspired from ComDroid [9], Octeau et al. [31] adopted a more general
approach and developed a solver using a declarative language COAL. Using COAL, the
inter-component objects are modelled and the required values of objects are inferred by
taking the correlation between object fields. Even though, the solver applied to Android,
it can be used in general static program analysis, in particular, where values of objects
need to be inferred. Li et al. proposed a static taint analyser IccTA [26] for detecting
leaks in ICC by tainting data. IccTA work on Dalvik bytecode and can detect inter-com-
ponent based privacy leaks by providing a control-flow graph.

Addressing ICC as an instance of interprocedural distributive environment, Octeau
et al. [32] developed a static analysis technique. In their approach, a specification is iden-
tified for every source and target of the ICC. The specification include values such as
component name, action, category and data type and infers the missing values. By using
[32], an analysis tool Epicc has been developed and more than a thousand applications
were analysed for ICC vulnerabilities. Epicc analyses retargeted Java bytecode and does
not handle URIs and content providers.

The state-of-the-art research work addresses Android security in terms of informa-
tion leaks [26, 40] through ICC or finds bugs and vulnerabilities in ICC [7, 9, 28, 32]. On
the contrary, CrashSafe checks application’s safety against crashes caused by ICC. The
tools DroidFuzzer [41], intent fuzzer [35], CrashScope [30] and VanarSena [33] investi-
gate Applications’ safety against crashes caused by ICC, however, their results can not be
formally guaranteed. Furthermore, they are limited only to activities of applications [41],
lack support for Android applications [33], or addresses applications’ failures based on
their own receiving capabilities. CrashSafe, on the other hand, has a formal foundation
which makes it more rigorous, powerful and allows one to mathematically reason about
all components of applications.

Page 22 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

Conclusion and future research
Inter-component communication is the major mechanism for Android applications to
share data and services with each other through messages called intents. An Android
application crashes if it invokes an intent that cannot be received by any application on
the phone. Application failures frustrates users and push them towards competitors,
therefore, developers need to test their applications before deployment to avoid unpre-
dictable behaviour and crashes at runtime. The official documentation for inter-compo-
nent communication is not rigorous and hence can not be precisely studied, interpreted
and used to reason about inter-component communication. In this paper, a formal
model of the inter-component communication, dubbed as CrashSafe, was built in theo-
rem prover Coq. The formal developments include formal definition of intents, applica-
tions (modelled as intent filters) and definitions of conditions to receive messages. The
formal notations were used to encode simplified versions of an Email and a Browser
application and it was proved the Email application can safely request the Browser appli-
cation to open a web page in a tab. The formal model, in addition, was used in proving
the correctness of the intent broadcasts. The formal model CrashSafe enables one to (i)
check the correctness of inter-component communication in Android systems and (ii)
establishes a formal foundation for other tools to assess Android applications’ reliability
and safety, while at the same time it is simple to understand and use as formal specifica-
tion. The widespread use of Android in the global market makes our formal develop-
ments useful for most of the mobile device users.

Dimensions of future research The formal proof of crash-safety was carried for Android
applications represented at a high level. It would be more interesting had the proof been
carried for applications including all the elements (e.g., all the filters and intents involved
in the Email and Browser applications). The current model is targeted towards Android
system and hence cannot be used to asses applications’ reliability developed using other
popular platforms such as Apple’s iOS. To assess the formal model and increase its prac-
ticality in real-life environment, a proof-of-concept tool implementing the logic behind
the formal model needs to be developed.

Abbreviations
iOS: Apple’s operating system; SDK: software development kit; API: application programming interface; ICC: inter-compo-
nent communication; TV: television; APK: application package; ID: identifier; URI: uniform resource identifier; MIME: multi-
purpose internet mail extensions; URL: universal resource locator; COAL: computer organization and assembly language.

Authors’ contributions
WK, AA and HU defined the Coq formalization, carried Coq proofs and wrote the paper in LaTeX. KS, AJA and SDK inves-
tigated the literature and created Figs. 1 and 3. The definitions of Email and Browser applications in Java were defined
and encoded in the formal syntax by MA and SA. All the authors reviewed the existing paper and helped improving its
structure. All authors read and approved the final manuscript.

Author details
1 COMSATS University, Islamabad, Wah Campus, Wah Cantt, Pakistan. 2 College of Computer Science and Engineering,
University of Hail, Hail, Kingdom of Saudi Arabia.

Acknowledgements
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
We have provided Coq source code and proofs of theorems—as extended details for interested readers—in [24].

Page 23 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

Funding
Not application.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 April 2018 Accepted: 6 July 2018

References
 1. Ahmad W, Kästner C, Sunshine J, Aldrich J (2016) Inter-app communication in android: developer challenges. In:

Proceedings of the 13th international conference on mining software repositories. ACM, New York, pp 177–188
 2. Apple Inc (2017) Apple Apps Store. https ://itune s.apple .com/us/genre /ios/id36?mt=8. Accessed June 2017
 3. Armstrong RC, Punnoose RJ, Wong MH, Mayo JR (2014) Survey of existing tools for formal verification. Tech Rep,

Sandia National Laboratories
 4. Arshad H, Jantan AB, Abiodun OI (2018) Digital forensics: review of issues in scientific validation of digital evi-

dence. J Inf Process Syst 14(2):346–376
 5. Aydemir B, Charguéraud A, Pierce BC, Pollack R, Weirich S (2008) Engineering formal metatheory. In: Acm sigplan

notices, vol 43. ACM, New York, pp 3–15
 6. Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi AR, Shastry B (2012) Towards taming privilege-escalation

attacks on android. In: NDSS, vol 17, p 19
 7. Bugliesi M, Calzavara S, Spanò A (2013) Lintent: towards security type-checking of android applications. In:

Formal techniques for distributed systems. Springer, Berlin, pp 289–304
 8. Chaudhuri A (2009) Language-based security on android. In: Proceedings of the ACM SIGPLAN fourth workshop

on programming languages and analysis for security. ACM, New York, pp 1–7
 9. Chin E, Felt AP, Greenwood K, Wagner D (2011) Analyzing inter-application communication in android. In: Pro-

ceedings of the 9th international conference on Mobile systems, applications, and services. ACM, New York, pp
239–252

 10. Clarke EM, Grumberg O, Peled D (1999) Model checking. MIT press, Cambridge
 11. Dietz M, Shekhar S, Pisetsky Y, Shu A, Wallach DS (2011) Quire: lightweight provenance for smart phone operat-

ing systems. In: USENIX security symposium, vol 31
 12. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture, applications, and

approaches. Wireless Commun Mobile Comput 13(18):1587–1611
 13. Enck W, Ongtang M, McDaniel P (2009) Understanding android security. IEEE Secur Privacy 7(1):50–57
 14. Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2015) Android security: a survey of

issues, malware penetration, and defenses. IEEE Commun Surv Tutorials 17(2):998–1022
 15. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In: Proceedings of the 18th

ACM conference on computer and communications security. ACM, New York, pp 627–638
 16. Google Inc. Android Apps on Google Play. https ://play.googl e.com/store /apps?hl=en
 17. Google Inc. Android. https ://www.andro id.com/
 18. Google Inc (2017) Application fundamentals. https ://devel oper.andro id.com/guide /compo nents /funda menta

ls.html. Accessed June 2017
 19. Google Inc (2017) Intents and intent filters. https ://devel oper.andro id.com/guide /compo nents /inten ts-filte

rs.html. Accessed June 2017
 20. Google Inc (2018) Sending the User to Another App. https ://devel oper.andro id.com/train ing/basic s/inten ts/

sendi ng.html. Accessed May 2018
 21. Hall SP, Anderson E (2009) Operating systems for mobile computing. J Comput Sci Coll 25(2):64–71
 22. INRIA. The Coq Proof Assistant. https ://coq.inria .fr/
 23. Kantola D, Chin E, He W, Wagner D (2012) Reducing attack surfaces for intra-application communication in

android. In: Proceedings of the second ACM workshop on security and privacy in smartphones and mobile
devices. ACM, New York, pp 69–80

 24. Khan W, Habib U, Akash A, Khalid S, Sultan Daud K (2017) Coq Script. https ://githu b.com/wilst ef/andro id-ipc.
Accessed June 2017

 25. Kim D (2017) Cloud computing to improve Javascript processing efficiency of mobile applications. J Inf Process
Syst 13(4):4

 26. Li L, Bartel A, Bissyandé TF, Klein J, Le Traon Y, Arzt S, Rasthofer S, Bodden E, Octeau D, McDaniel P (2015) Iccta:
detecting inter-component privacy leaks in android apps. In: Proceedings of the 37th international conference
on software engineering, vol 1. IEEE Press, pp 280–291

 27. Maheshwari S (2018) That game on your phone may be tracking what you’re watching on tv. https ://www.nytim
es.com/2017/12/28/busin ess/media /alpho nso-app-track ing.html

 28. Maji AK, Arshad FA, Bagchi S, Rellermeyer JS (2012) An empirical study of the robustness of inter-component
communication in android. In: 2012 42nd annual IEEE/IFIP international conference on dependable systems and
networks (DSN), pp 1–12

 29. Meier S, Schmidt B, Cremers C, Basin D (2013) The tamarin prover for the symbolic analysis of security protocols.
In: International conference on computer aided verification. Springer, Berlin, pp 696–701

 30. Moran K, Linares-Vásquez M, Bernal-Cárdenas C, Vendome C, Poshyvanyk D (2017) Crashscope: a practical tool
for automated testing of android applications. In: 2017 IEEE/ACM 39th international conference on software
engineering companion (ICSE-C), pp 15–18

https://itunes.apple.com/us/genre/ios/id36?mt=8
https://play.google.com/store/apps?hl=en
https://www.android.com/
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/training/basics/intents/sending.html
https://developer.android.com/training/basics/intents/sending.html
https://coq.inria.fr/
https://github.com/wilstef/android-ipc
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html
https://www.nytimes.com/2017/12/28/business/media/alphonso-app-tracking.html

Page 24 of 24Khan et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:21

 31. Octeau D, Luchaup D, Dering M, Jha S, McDaniel P (2015) Composite constant propagation: application to
android inter-component communication analysis. In: Proceedings of the 37th international conference on
software engineering, vol 1, IEEE Press, pp. 77–88

 32. Octeau D, McDaniel P, Jha S, Bartel A, Bodden E, Klein J, Le Traon Y (2013) Effective inter-component communi-
cation mapping in android with epicc: an essential step towards holistic security analysis. In: Proceedings of the
22nd USENIX security symposium, pp. 543–558

 33. Ravindranath L, Nath S, Padhye J, Balakrishnan H (2014) Automatic and scalable fault detection for mobile
applications. In: Proceedings of the 12th annual international conference on mobile systems, applications, and
services. ACM, New York, pp 190–203

 34. Sajjad M, Abbasi AA, Malik A, Altamimi AB, Alseadoon IM (2018) Classification and mapping of adaptive security
for mobile computing. IEEE Trans Emerg Topics Comput. https ://doi.org/10.1109/TETC.2018.27914 59

 35. Sasnauskas R, Regehr J (2014) Intent fuzzer: crafting intents of death. In: Proceedings of the 2014 joint interna-
tional workshop on dynamic analysis (WODA) and software and system performance testing, debugging, and
analytics (PERTEA). ACM, New York, pp 1–5

 36. Satyanarayanan M (2010) Mobile computing: the next decade. In: Proceedings of the 1st ACM workshop on
mobile cloud computing & services: social networks and beyond. ACM, New York, p 5

 37. Schmidt AD, Schmidt HG, Clausen J, Yuksel KA, Kiraz O, Camtepe A, Albayrak S (2008) Enhancing security of
linux-based android devices. In: Proceedings of 15th international Linux Kongress. Lehmann

 38. Shao J, Kuk G, Terrell M, Chen S (2014) Why do applications request my contacts data? a large-scale study on
openness and control of user contacts permission in android mobile applicaitons marketplace. Front Bus Res
China 8(1):113–135

 39. The Statistics Portal. Global mobile OS market share 2009–2017, by quarter. https ://www.stati sta.com/stati stics
/26613 6/globa l-marke t-share -held-by-smart phone -opera ting-syste ms/

 40. Wei F, Roy S, Ou X et al (2014) Amandroid: a precise and general inter-component data flow analysis framework for
security vetting of android apps. In: Proceedings of the 2014 ACM SIGSAC conference on computer and communi-
cations security. ACM, New York, pp 1329–1341

 41. Ye H, Cheng S, Zhang L, Jiang F (2013) Droidfuzzer: fuzzing the android apps with intent-filter tag. In: Proceedings of
international conference on advances in mobile computing & multimedia. ACM, New York, p 68

https://doi.org/10.1109/TETC.2018.2791459
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/

	CrashSafe: a formal model for proving crash-safety of Android applications
	Abstract
	Introduction
	Background
	Android application framework and components
	Intents
	Inter-component communication

	Formalizing inter-component communication
	Syntax of intent and intent filter
	Encoding Android application and environment
	Intent resolution
	Application crash-safety

	Proofs
	Proof of application crash-safety
	Proof of broadcast resolution
	Robust environment extension
	Evaluation of the formal model

	Related work
	Application crashes due to ICC
	Tools and frameworks for ICC analysis
	Methods and techniques for ICC analysis

	Conclusion and future research
	Authors’ contributions
	References

