
Exploring the support for high
performance applications in the container
runtime environment
John Paul Martin1*  , A. Kandasamy1 and K. Chandrasekaran2

Introduction
Cloud computing is being used for innumerable applications these days. The end-users
vary from naive clients to expertised technicians. Cloud is a pool of resources shared
among number of users [1]. Presently, in the world of cloud computing, it is the era of
XaaS (Anything-as-a-Service) which means that the providers offer a wide variety of ser-
vices [2, 3]. One of the most recent services provided through the cloud is high per-
formance computing (HPC) environments for the complex applications. Virtualization
is the technology which enables users to share a single entity among a group of users.

Abstract 

Cloud computing is the driving power behind the current technological era. Virtualiza-
tion is rightly referred to as the backbone of cloud computing. Impacts of virtualiza-
tion employed in high performance computing (HPC) has been much reviewed by
researchers. The overhead in the virtualization layer was one of the reasons which
hindered its application in the HPC environment. Recent developments in virtu-
alization, especially the OS container based virtualization provides a solution that
employs a lightweight virtualization layer and promises lesser overhead. Containers
are advantageous over virtual machines in terms of performance overhead which is a
major concern in the case of both data intensive applications and compute intensive
applications. Currently, several industries have adopted container technologies such as
Docker. While Docker is widely used, it has certain pitfalls such as security issues. The
recently introduced CoreOS Rkt container technology overcomes these shortcomings
of Docker. There has not been much research on how the Rkt environment is suited
for high performance applications. The differences in the stack of the Rkt containers
suggest better support for high performance applications. High performance applica-
tions consist of CPU-intensive and data-intensive applications. The High Performance
Linpack Library and the Graph500 are the commonly used computation intensive and
data-intensive benchmark applications respectively. In this work, we explore the feasi-
bility of this inter-operable Rkt container in high performance applications by running
the HPL and Graph500 applications and compare its performance with the commonly
used container technologies such as LXC and Docker containers.

Keywords:  Cloud computing, Containers, High performance computing, Core OS Rkt,
Docker, LXC, Linpack, Graph 500

Open Access

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1
https://doi.org/10.1186/s13673-017-0124-3

*Correspondence:
johnpm12@gmail.com
1 Department
of Mathematical
and Computational
Sciences, National Institute
of Technology Karnataka,
Surathkal, Karnataka, India
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0002-6850-9079
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13673-017-0124-3&domain=pdf

Page 2 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

Based on the position of the virtualization layer, virtualization can be of different types
like full virtualization, paravirtualization and OS level virtualization.

Traditional HPC clusters are composed of many separate dedicated servers called
nodes and may be shared among different organizations. The requirements of each user
or organization will be different, which demands the creation of customized environ-
ments without affecting others. This is not an easy task in traditional HPC systems. As
a solution for this, virtualization was adopted for HPC. Virtualization materializes the
task by creating separate customized virtual environments of the system based on the
requirements of each user.

The overhead associated with virtualization hindered its usage in HPC environments.
There exists different kinds of virtualization techniques [4]. One of the popular tech-
niques involves a Hypervisor (Virtual Machine Manager). Here virtualization services
are mainly provided through virtual machines (VM), but this creates an additional over-
head due to the running of a fully installed OS. The guest OS in VMs creates calls to
the hypervisor rather than direct communication with the hardware, which causes some
reduction in application performance. This overhead and limitation results in insuffi-
cient adaptability to the HPC environment. Virtualization technique based on the OS
level offers a model called Container Virtualization as a solution to all these overheads,
which gives near native performance [5]. Container virtualization allows to deploy and
run applications without creating separate VMs for each user. Multiple isolated con-
tainers are run on a single host with sharing a single kernel. The Linux features such as
namespaces, chroot and cgroups provides secure execution of containers in the same
kernel. When compared to traditional virtualization, since containers do not use sepa-
rate OS instances, it requires less CPU, memory and storage, thus the same host can
incorporate more number of virtualized containers. The time required to create and
deploy containers is very less compare to the virtual machine manager based systems.

The Hypervisor based virtualization employs a full guest OS in each virtual machine
along with the necessary binaries and libraries for the applications. Containers will hold
only the necessary binaries required by any application to run [6]. Containers possess
packaged, ready to deploy applications or parts of applications, and if necessary mid-
dleware and business logic to run those applications [7]. Figures 1 and 2 shows the two
different virtualization architectures [8].

There exists different container management technologies for managing the entire life
cycle of containers. This includes creating, deleting and performing modifications on
images and tools associated with it. Linux LXC, Docker and the latest release Rkt are the
major managing technologies. All the technologies work on the same base principle that
the application space should be isolated within the operating system.

The Rkt container runtime was recently introduced to overcome the limitations of
the existing container runtimes. Being a more recent technology, the Rkt container is
expected to provide better support for HPC applications. Most of the current generation
applications demand high performance capabilities. It is essentially required to enhance
the support available for such applications. Researchers have been on the quest for tech-
nologies that will enable them to achieve performance which most resembles the bare
metal scenarios. In alignment with this research interest, we have identified the follow-
ing objectives:

Page 3 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

• • Investigate the existing works which aim at comparing and contrasting the various
container technologies in a performance-oriented perspective.

• • Explore the features which differentiate the Rkt container runtime from the other
runtimes.

• • Implement archetypes to assess the variation in support provided by the Rkt con-
tainer runtime for applications with high performance requirements.

Fig. 1  Hypervisor-based virtualization

Fig. 2  Container virtualization

Page 4 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

• • Analyze how the different features impact the performance of computationally chal-
lenging tasks.

• • Analyze the impact of the features specific to the Rkt container runtime on the data
intensive tasks.

Our primary aim is thus to explore the feasibility of the recent Rkt container [9] for HPC
environments and compare its performance with LXC and Docker containers. We are
mainly analyzing the performance results of computing intensive and data intensive
practical applications in all the scenarios. To the best of the authors’ knowledge, this is
the first work attempting to analyze the support provided by the Rkt container runtime
and contrast it with its predecessor, Docker. The results of the work presented in this
paper will be of equal interest to researchers attempting to enhance the features of Rkt
and the group of researchers looking for the adoption of Rkt containers in high perfor-
mance environments.

The rest of this paper is structured as follows: “Background and related work” section
contains the history of containers and similar works in this area. Detailed description
and specification of experiment setup and various benchmarking tools is elaborated in
“Experimental setup and benchmarking tools” section. “Results and discussions” section
contains the obtained results and analysis done based on it. Finally, the conclusion and
future scope of research is described in “Conclusion” section.

Background and related work
High performance computing is an activity which requires more than a normal com-
puter’s ability to execute it. Such activities are generally executed using parallel pro-
gramming efficiently. High performance computing centers are now beginning to use
container based cloud environments for solving their complex problems [10]. Adopting
containers in HPC is not an easy task-it involves a lot of challenges [11].

Container technology has been there for more than a decade and it allows the operat-
ing system to be virtualized and share the same instance of the OS. Containerization
was initiated by UNIX operating system in 1979 with their system called chroot. Then,
in 2000 Free BSD jail container technology evolved, which was similar to the chroot, but
incorporated features for isolating file system, users and networking. Linux VServer was
another jail mechanism and an initial implementation of virtual private servers. OpenVZ
containers emerged in 2005 which uses patched linux kernel. Each of the OpenVZ con-
tainer possess isolated file systems. The first complete implementation of linux container
manager is LXC and it evolved in 2007 [12]. Later, people begin to think of containers as
processes with extra isolation, and thus helps in reducing the overhead associated with
virtual machines. Heroku PaaS provider initiated this concept of containers to deploy
applications. In 2013, Docker came up with an entire ecosystem for managing contain-
ers. Rocket containers came into existence for solving the drawbacks of Docker and to
provide more stringent security measures. In 2016, Microsoft Windows introduced a
container technology called Windows Containers for supporting windows server sys-
tems. The standardised code in the containers can be easily plugged-in and run in the
operating systems. This eases the portability of the applications.

Page 5 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

The technologies available in the linux such as namespace, cgroup are used by the con-
tainer management systems for managing the various operations in containers. Major
existing technologies for container management are Linux LXC, Docker and Rkt. The
common objectives of these technologies are achieved in a different manner.

• • LXC LXC is an interface for the linux kernel containment features and allows the
users to run multiple isolated images on a single host. The isolation among LXC con-
tainers are provided through kernel namespaces. LXC containers uses PID names-
pace, IPC namespace and file system namespace for virtualizing and isolating PIDs,
IPCs and mount points respectively. Network namespace is used to connect the vir-
tual interface in a namespace to the physical interface and supports route based and
bridge based configurations. Resource management is done through cgroup. Some
other key responsibilities of cgroup are process control, limiting the usage of CPU
and isolating containers and processes. LXC has the unprivileged option to cre-
ate User space containers. It may seem advantageous in some aspects but in other
aspects it may create some security issues. Container portability allows the same
image to run in different distributions and hardware configurations without much
changes. In this regard, LXC provides only partial portability because it will work
across only Ubuntu distributions [13]. LXC allows multiple applications in a con-
tainer.

• • Docker Docker is one of the leading container life cycle management tools. Docker
allows to run and manage applications side-by-side in isolated containers. Similar to
LXC, Docker also make use of the features of the Linux kernel such as cgroups and
kernel namespaces [14].

•	 namespace: Docker uses namespace for creating isolation among containers. Fol-
lowing are the types of namespace used by Docker.

pid: pid namespace ensures that process in one container does not affect pro-
cess in a different container.
uts: used for kernel version isolation.

• 	 mnt namespace: provides view of own file system and mount point.
ipc namespace: provides isolation for interprocess communication.
net : network isolation is provided through this namespace.

• 	 Union file system: union file system allows to stack different layers and present it
as a single file system. The writeable layer exists only at the top.

•	 Control group: resource management or efficient sharing of hardware among
containers is allowed.

 The lightweight nature of the Docker container allows several containers to run
in a single server or virtual machine simultaneously [15]. The major limitation of
Docker is its security issues, that is, an attacker can easily get superuser privileges.
Lack of interoperability is the another limitation of the Docker technology [16].

• • Rkt Core OS Rkt is a more secure, interoperable, and open source alternative to
Docker. It allows to run multiple isolated images sharing a common kernel space. Rkt

Page 6 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

provides more security compare to the Docker Containers in various aspects. For
example, while downloading an image docker does not ensure any kind of security
but rkt does a cross checking of the signature of the publisher of the image [9]. Rkt
has different stages.

•	 Stage 0
Interacts with the user.
Fetches the image and verifies it.
Handles image store operations.
Image rendering.

• 	 Stage1
Pod isolation from others.
Relevant networking established.
Initialise file systems.

• 	 Stage 2
Execution of the user application.

 Coreos, host, fly and kvm are the different modes of execution supported by Rkt in
Stage0. Coreos and host uses Linux namespaces for isolation such as pid, network
and so on. Fly mode is the lighter security mode-this does not have any isolation for
network, CPU and memory. SELinux is also not enabled in this mode. KVM mode
is the most secure mode, in which the Rkt container will behave like a lightweight
virtual machine itself. Sharing of kernels is not permitted in this mode. Several
researchers explored the area of virtualization from the past decades onwards, and
majority of the works were about virtual machines. Morabito et al. [17] made a com-
parison between hypervisor based virtualization and lightweight virtualization. They
considered KVM as an example of hypervisor-based virtualization and Docker, LXC
as the representatives of Lightweight virtualization. Xavier et al. [18] made a simi-
lar comparison between virtual machine and different containers. They considered
Xen as the VM technology and LXC, Vserver and OpenVZ are the containers. They
found that among those containers LXC is the suitable one for HPC environment.
Chung et al. [19] made a detailed evaluation about the suitability of Docker in HPC
environments and found that Docker is more suitable for data intensive applica-
tions. Kozhirbayev et al. [20] made a comparison among the container technologies
to find out which performs better in Cloud environments. They made a comparison
between Docker and Flockport with reference to the native performance and they
found that only I/O intensive operations suffer the impact of a higher overhead for
containers. Docker and Flockport doesnt suffer the overheads in terms of memory
and processor. They claim that containers reduces the difference between the Infra-
structure as service and baremetal systems by providing near native performance.
Varma et al. [21] performed an analysis of network overheads when Docker contain-
ers are used in Big Data environments. The Hadoop benchmarks were executed in
different experimental setups, by varying the number of containers against the num-
ber of virtual machines. The networking and latency aspects were considered. The
throughput of the network was observed to be inversely proportional to the number
of nodes in a virtual machine. The Docker containers were found to offer fair sup-

Page 7 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

port for big data applications. Chung et al. [22] evaluated the performance of virtual
machines and Docker HPC environments where the infrastructure is connected by
Infiniband and found that the overall performance of containers is better than the
virtual machines. C. de Alfonso et al. explored the practical feasibility of running
scientific workloads with high throughput requirements on containers [16]. Clusters
of machines running applications in containers were used to provide the require-
ments of the scientific applications. A middleware receives the user requests and
spawns the appropriate number of virtual nodes. The CLUES manager is employed
to provide the required elasticity. Distributed computing paradigms such as the
Cloud, is the basis of the IT era. Docker containers offer an efficient option to run
applications in the Cloud [23]. The Docker containers may be executed on single
host or on multiple hosts. When large number of Docker containers are run on mul-
tiple hosts, the management of the system becomes tedious, which can be tackled
by developing infrastructure solutions enabling the administrators to automate the
tasks of management of the system. Several open-source software solutions have
been developed for the Docker ecosystem. There is relatively less work focused in
the Rkt container in HPC environment, so, we decided to explore the feasibility and
performance impacts of this most secure container in HPC environment and to
check whether Rkt can meet the challenges of an HPC environment.

Experimental setup and benchmarking tools
Our experiments were performed on an HP EliteDesk 800G1 Tower system with two
Intel 4th Generation Core i7 Processors for a total of 16 cores. We used Ubuntu 16.04.2
LTS (Xenial Xerus) 64 bit with Linux kernel 4.4.0-62-generic, Docker container 1.3.0,
LXC 2.0.7, and Rkt container 1.24.0. For consistency, we used the same Ubuntu base
image on these different platforms.

CPU throttling was disabled in all the experiments because of the usage of BLAS
(Basic Linear Algebra Subprogram) specification in the ATLAS library. The ATLAS
library requires disabling of CPU Throttling for its proper execution.

High performance computing applications can be either Computation Intensive
or Data Intensive. We evaluated the performance of Rkt container in both scenarios.
HPL benchmarking tool (computing intensive application) and Graph500 (data inten-
sive applications) are used for analysing the suitability of respective container platform
and for measuring the performance in high performance computing applications. For
analysis, the Linpack 2.1 CPU-intensive benchmark and Graph 500 2.1.4 Data-intensive
benchmarks were executed and results were collected.

Computing intensive applications

Linpack is the benchmarking tool which we used for analysing computing intensive
applications. It has two implementations. One is optimized only for Intel machines and
the other one is supported by all machines. HPL is the portable implementation of Lin-
pack, is written in C and requires an MPI implementation, BLAS interface implementa-
tion ATLAS library. HPL tests the performance of a system by generating and solving a
system of equations using LU decompositions [24].

Page 8 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

HPL generates and solves dense system of linear equations with LU factorization and
partial pivoting. It mainly involves multiplication of a scalar value with vector and add-
ing the results in to a vector, all these operations are carried out with values with double
precision floating point. HPL measures rate of floating point execution for solving these
linear equations and gives us the performance results. Mathlibrary, HPL package and
Message Passing Interface are required for running this in a distributed environment.
The two major steps involved in the problem are:

• • Lower upper factorization of a random matrix.
• • Lower upper factorization used to solve the linear system consisting of the random

matrix and a scalar.

The performance results from HPL are measured in Gflops (Billions of floating point
operations per second):

• 	 Gflops = ops/(cpu ∗ 100000000)

Following are the test cases considered while analysing the performance of various con-
tainer platform.

• • Varying the problem size (N).
• • Varying block size (NB).
• • Varying the rfact and panel fact.

The input given for the various tests can be summarized as shown in Table 1.
With these input parameter configurations around 120 tests were performed in all the

different container runtimes and the averaged experiment results on several runs were
used for the purpose of analyzing the performance.

Data intensive applications

We measured the performance impacts on data intensive applications in the container
environment using Graph500 benchmarking tool [25]. Graphs are a core part of analytic

Table 1  Values of the input parameters

Parameter # of values Values

Problems size (N) 5 10000 11000 12000 13000 15000

Block size (NBs) 4 100 92 104 98

Process grids (P × Q) 1 P = 4, Q = 8

Threshold 1 16

Panel fact 3 Right left crout

Recursive stopping criterium (NBMin) 1 4

Recursive panel fact (RFACTs) 2 Right left

Panels in recursion (NDIVs) 1 2

Swapping threshold 1 64

Page 9 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

workloads. Graph500 is a data intensive super computing application which uses a large
scale graph to evaluate the performance. The execution of Graph500 involves two steps:

• • Data generation
•	 generates edge list.
•	 construction of graph from the generated edge list.

• • BFS (Breadth First Search) on the constructed graph
•	 randomly selects 64 unique search keys whose degree is greater than or equivalent

to one.
•	 parent array of each key is computed and check whether it is a valid BFS search

tree.

There exists different problem classes based on the size of the problem. They are
toy (17 GB) called as level 10, mini (140 GB)-level 11, small (1 TB)-level 12, medium
(17 TB)-level 13, large (140 TB)-level 14, huge (1.1 PB)-level 15.

The input parameters to be given to Graph500 is SCALE and Edgefactor and this
determines the size of the graph. Number of vertices of the graph is calculated based on
the input parameter SCALE. Let N be the number of vertices in the graph.

Number of edges M in the graph can calculated as

Results and discussions
We explore the performance of CoreOS Rkt container in HPC environment and com-
pare it with existing popular container runtimes such as Docker and Linux LXC. HPC
environment mainly comprises of applications which are data intensive or computation
intensive in nature. We considered both of these important scenarios for our experimen-
tal analysis. The tests were carried out in single node environment and later in a cluster
environment. We have tuned the HPL benchmark and tests were carried out.

Exploring computing intensive applications

The behavior of a processor varies with the increase in the problem size (N) of the HPL
benchmark, based on that the behavior can fall into one of three different zones:

• • Rising zone The low problem size wont invoke memory and processor to their maxi-
mum performance.

• • Flat zone Problem invokes only processor to its maximum performance.
• • Decaying zone Problem size is too large and cache memory is not large enough to

keep all the necessary data, because processor is running in top speed.

The performance results of HPL in the CoreOs Rkt environment is in given in Fig. 3a.
The GFlops on the Y axis gives the rate of execution of floating point operations on a
scale of billion. We have examined different problem sizes and varying block sizes. The
results show that Rkt container performs well in computing intensive applications. We

N = 2
SCALE

M = N ∗ Edge factor

Page 10 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

can see a significant increase in execution rate with the increase in problem size (N val-
ues). Rkt runs in its rising zone of HPL. Figure 3b shows the results of HPL in Linux
LXC, Fig. 3c shows the results obtained when HPL is run on Docker containers and
Fig. 3d is the baseline performance obtained when running HPL on the native system.
The rate of execution in billions is increasing almost linearly with increase in problem
size. Comparing with Rkt for larger problem sizes it does not perform well. The results
of Docker in this environment gives better performance for smaller problem sizes and
there is a drastic degradation in the performance with an increase in the problem size.
When we compare these results with the results of a native system Rkt container gives
near native performance for larger problem sizes whereas for smaller problem sizes
Docker outperforms Rkt and gives near native results, as can be observed in Fig. 4.

The Rkt container runtime runs for a longer time in the flat zone implying that the
load experienced by the containers are less challenging. Even when the Docker con-
tainer subsides to the decaying zone, the Rkt container continues in the flat zone. This
is supporting the intuition that Rkt container engines provide better HPC support. This
can be attributed to the absence of a daemon process in the Rkt runtime stack. The Rkt
containers are started based on command clients. This also resolves compatibility issues
with init systems (which are existing in Docker Runtime). The absence of such a daemon

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

a

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

b

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

c

 25

 26

 27

 28

 29

 30

 31

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

d
Fig. 3  HPL on containers a Rkt, b LXC container, c Docker container, d native

Page 11 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

increases the startup time slightly, but greatly lowers the overhead experienced by the
containers. This is the major reason why the Rkt containers fare better in the high per-
formance scenarios.

Many of the high performance applications are executed in cluster environments, so
for better understanding the performance in such an environment, cluster of containers
was created and performance was measured. The CoreOS Rkt cluster performance is
compared with other platforms. The results show that the clustered environment shows
almost same characteristics as that of the single node environment. The obtained results
are illustrated in Fig. 5a–c and a better understanding may be obtained from Fig. 6. The
Rkt container gives better performance results for larger problem sizes. In the case of
Docker containers, by default they use a time sharing algorithm such that each container
gets the CPU only for 100 ms and after that the CPU switches to the next container.
This creates an overhead as it is required to save the process state information before
switching to the next process. The computing intensive applications which takes long
time for execution will be affected by this overhead and will cause a degradation in its
performance.

Exploring data intensive applications

Graph500 represents a data intensive application benchmark. This benchmark attempts
to obtain the BFS of a large graph and the performance is evaluated. Data traceability is
the criteria which is used for evaluation, it is the ability to keep track of data and access-
ing on a system. We examined the performance of Graph500 with varying Edge fac-
tors. We took edge factors varying from 16 to 36. Results are measured in TEPS which
is the Traversed Edges Per Second. We explored the simple graph problem size in the
Graph500 benchmark. The results given in Fig. 7a–d show that LXC, Docker and Rkt
containers give near native performance because they are not emulating an entire sys-
tem like the host and they are virtualized only at the level of operating system. Contain-
ers are sharing the same kernel of the host system where it is running and this enables
them to access data in a very fast manner. Compared to virtual machines, containers fare
better in data intensive applications and Rkt container gives similar performance results
along with other containers such as Docker and LXC.

From the results shown in Fig. 8, it can be deduced that the Rkt container performs
well in data intensive applications, but, the performance is lower when compared to the

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000

G
F

LO
P

s

value of N

Rkt Container
LXC Container

Docker Container

NB=98NB=104NB=92NB=100

Fig. 4  Comparison among containers-single node setup

Page 12 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

other container environments. The LXC container has the performance closest to the
native performance in data-intensive applications.

The results shows that Rkt container performs well in both computation intensive and
data intensive high performance application environments. However, the Rkt contain-
ers are better suited for computation-intensive applications. The improved support for
computation-intensive applications coupled with advanced security features connotes

 28

 29

 30

 31

 32

 33

 34

 35

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

a

 18

 19

 20

 21

 22

 23

 24

 25

 26

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

b

 8

 10

 12

 14

 16

 18

 20

 22

 24

10000 11000 12000 13000 15000

G
F

L
O

P
s

value of N

NB=100
NB=92

NB=104
NB=98

c
Fig. 5  Performance analysis on container clusters a Rkt, b LXC, c Docker

 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000 10000 11000 12000 13000 15000

G
F

LO
P

s

value of N

Rkt Container
LXC Container

Docker Container

NB=98NB=104NB=92NB=100

Fig. 6  Comparison among container clusters

Page 13 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

Edge factor
6323926261

m
a

x-
T

E
P

S

×107

0

2

4

6

8

10

12

a
Edge factor

6323926261

m
a

x-
T

E
P

S

×107

0

2

4

6

8

10

12

b

Edge factor
6323926261

m
a

x-
T

E
P

S

×107

0

2

4

6

8

10

12

c
Edge factor

6323926261

m
a

x-
T

E
P

S

×107

0

2

4

6

8

10

12

d
Fig. 7  Data intensive performance analysis on containers a Rkt, b LXC, c Docker, d Native

Edge factor
16 18 20 22 24 26 28 30 32 34 36

m
ax

-T
E

P
S

×108

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Rkt
Native
LXC
Docker

Fig. 8  Data intensive computing performance comparison among containers

Page 14 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

that the Rkt containers offer a viable option for HPC. There are more challenges to be
resolved to deliver the Rkt environment as the best option for HPC applications. Being
a successor of Docker, the Rkt containers are better in some aspects, on the other hand,
being an emerging technology still in its evolving stage, there remains more scope for
improvement.

Conclusion
Container technology is becoming a widespread platform used in Cloud computing.
High performance computing centers are now using containers for their complex appli-
cations because of the flexibility and gain in productivity. Adopting containers is not an
easy task. In this work, we explore the feasibility of CoreOS Rkt container in the HPC
world. We performed evaluations in two scenarios related to HPC. One is the data inten-
sive application environment and the other is the computation intensive environment.
We explored the widely used containers such as Docker and LXC in the same scenarios
and provided a comparison of the results.

The results of the experiments show that the CoreOS Rkt container gives near native
performance in computational intensive and data intensive high performance appli-
cation environment. The results are promising and indicate that Rkt is well suited to
run HPC applications as well, especially for computation-intensive workloads. Future
research can experiment various HPC applications, measure the communication per-
formance and tune the algorithms accordingly. The enhanced security features, inter-
operability and better performance will lead Rkt to a prominent position in HPC
environments in the near future.

Authors’ contributions
JPM conducted the experiments, analysed the results and drafted the manuscript. AK and KC provided valuable sugges-
tions on improving the standards of the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Kar-
nataka, India. 2 Department of Computer Science and Engineering, National Institute of Technology Karnataka, Surathkal,
Karnataka, India.

Acknowledgements
The authors thank the reviewers for their suggestions which helped in improving the quality of the paper.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 13 July 2017 Accepted: 20 December 2017

Page 15 of 15Martin et al. Hum. Cent. Comput. Inf. Sci. (2018) 8:1

References
	1.	 Moon Y, Yu H, Gil J-M, Lim J (2017) A slave ants based ant colony optimization algorithm for task scheduling in cloud

computing environments. Hum-centric Comput Inf Sci 7(1):28
	2.	 Zhu W, Lee C (2016) A security protection framework for cloud computing. J Inf Process Syst 12(3):538–547
	3.	 Kar J, Mishra MR (2016) Mitigate threats and security metrics in cloud computing. J Inf Process Syst 12(2):226–233
	4.	 Huh J-H, Seo K (2016) Design and test bed experiments of server operation system using virtualization technology.

Hum-centric Comput Inf Sci 6(1):1
	5.	 Yu H-E, Huang W (2015) Building a virtual hpc cluster with auto scaling by the docker. arXiv preprint

arXiv:1509.08231
	6.	 Louati T, Abbes H, Cérin C, Jemni M (2018) Lxcloud-cr: towards linux containers distributed hash table based

checkpoint-restart. J Parallel Distrib Comput 111:187–205
	7.	 Ciuffoletti A (2015) Automated deployment of a microservice-based monitoring infrastructure. Procedia Comput Sci

68:163–172
	8.	 Babu A, Hareesh M, Martin JP, Cherian S, Sastri Y (2014) System performance evaluation of para virtualization, con-

tainer virtualization, and full virtualization using xen, openvz, and xenserver. In: 2014 fourth international conference
on advances in computing and communications (ICACC). IEEE, New York, pp 247–250

	9.	 CoreOS. https://coreos.com/rkt. Accessed 23 June 2017
	10.	 Julian S, Shuey M, Cook S (2016) Containers in research: initial experiences with lightweight infrastructure. In: Pro-

ceedings of the XSEDE16 conference on diversity, big data, and science at scale. ACM, New York, p 25
	11.	 Jacobsen DM, Canon RS (2015) Contain this, unleashing docker for hpc. In: Proceedings of the Cray User Group
	12.	 Felter W, Ferreira A, Rajamony R, Rubio J (2015) An updated performance comparison of virtual machines and linux

containers. In: 2015 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE,
New York, pp 171–172

	13.	 Linux LXC. https://linuxcontainers.org/lxc/. Accessed 23 June 2017
	14.	 Docker Hub. https://hub.docker.com/. Accessed 23 June 2017
	15.	 Kniep C (2014) Containerization of high performance compute workloads using docker. doc.qnib.org
	16.	 de Alfonso C, Calatrava A, Moltó G (2017) Container-based virtual elastic clusters. J Syst Softw 127:1–11
	17.	 Morabito R, Kjällman J, Komu M (2015) Hypervisors vs. lightweight virtualization: a performance comparison. In:

2015 IEEE international conference on cloud engineering (IC2E). IEEE, New York, pp 386–393
	18.	 Xavier MG, Neves MV, Rossi FD, Ferreto TC, Lange T, De Rose CA (2013) Performance evaluation of container-based

virtualization for high performance computing environments. In: 2013 21st euromicro international conference on
parallel, distributed and network-based processing (PDP). IEEE, New York, pp 233–240

	19.	 Chung MT, Quang-Hung N, Nguyen M-T, Thoai N (2016) Using docker in high performance computing applications.
In: 2016 IEEE sixth international conference on communications and electronics (ICCE). IEEE, New York, pp 52–57

	20.	 Kozhirbayev Z, Sinnott RO (2017) A performance comparison of container-based technologies for the cloud. Fut
Gener Comput Syst 68:175–182

	21.	 Varma PCV, Kumari VV, Raju SV et al (2016) Analysis of a network io bottleneck in big data environments based on
docker containers. Big Data Res 3:24–28

	22.	 Chung MT, Le A, Quang-Hung N, Nguyen D-D, Thoai N (2016) Provision of docker and infiniband in high perfor-
mance computing. In: 2016 international conference on advanced computing and applications (ACOMP). IEEE, New
York, pp 127–134

	23.	 Peinl R, Holzschuher F, Pfitzer F (2016) Docker cluster management for the cloud-survey results and own solution. J
Grid Comput 14(2):265–282

	24.	 HPL—a portable implementation of the high-performance Linpack benchmark for distributed-memory computers.
http://www.netlib.org/benchmark/hpl/. Accessed 4 July 2017

	25.	 Top 10 (2016) http://www.graph500.org/. Accessed 4 July 2017

http://arxiv.org/abs/1509.08231
https://coreos.com/rkt
https://linuxcontainers.org/lxc/
https://hub.docker.com/
http://www.netlib.org/benchmark/hpl/
http://www.graph500.org/

	Exploring the support for high performance applications in the container runtime environment
	Abstract
	Introduction
	Background and related work
	Experimental setup and benchmarking tools
	Computing intensive applications
	Data intensive applications

	Results and discussions
	Exploring computing intensive applications
	Exploring data intensive applications

	Conclusion
	Authors’ contributions
	References

