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1 Introduction
The Hadamard fractional integration and differentiation are based on the nth integral of
the form [1, 2]

(
J n

a+,μu
)
(x) = x–μ

∫ x

a

dt1

t1

∫ t1

a

dt2

t2
· · ·

∫ tn–1

a
tμ
n u(tn)

dtn

tn

=
1

(n – 1)!

∫ x

a

(
t
x

)μ(
log

x
t

)n–1

u(t)
dt
t

and the corresponding derivative

(
D1

a+,μu
)
(x) =

(
(δ + μ)u

)
(x) = xu′(x) + μu(x), δ = x

d
dx

,

Dn
a+,μu = D1

a+,μ
(
Dn–1

a+,μu
)
, n = 2, 3, . . . ,

where log(·) = loge(·), 0 < a < x < b, and μ ∈ R.
The fractional version of the Hadamard-type integral and derivative are given by

(
J α

a+,μu
)
(x) =

1
�(α)
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(
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log
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, α > 0
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and

(
Dα

a+,μu
)
(x) = x–μδnxμ

(
J n–α

a+,μu
)
(x),

where n = [α] + 1, and [α] being integral part of α.
When 0 < α < 1, the fractional derivative turns out to be

(
Dα

a+,μu
)
(x) = x–μδxμ

(
J 1–α

a+,μu
)
(x)

=
1

�(1 – α)
x–μ+1 d

dx

∫ x

a
tμ–1

(
log

x
t

)–α

u(t) dt.

In particular, for α = 1,

(Ja+,μu)(x) =
(
J 1

a+,μu
)
(x) =

1
�(α)xμ

∫ x

a
tμ–1u(t) dt,

which leads to defining the space Xμ[a, b] of those Lebesgue measurable functions u on
[a, b] for which xμ–1u(x) is absolutely integrable [2]:

Xμ[a, b] =
{

u : [a, b] → C and ‖u‖Xμ =
∫ b

a
xμ–1∣∣u(x)

∣
∣dx < ∞

}
.

Let AC[a, b] be the set of absolutely continuous functions on [a, b]. Then it follows from
[3] that

u ∈ AC[a, b] if and only if u(x) = u(a) +
∫ x

a
v(t) dt, v(t) ∈ L[a, b].

Obviously,

AC[a, b] ⊂ Xμ[a, b].

The latter is a Banach space under its norm. We further define the space

AC0[a, b] =
{

u : u(x) ∈ AC[a, b] with u(a) = 0 and ‖u‖0 =
∫ b

a

∣∣u′(x)
∣∣dx < ∞

}
.

Clearly, ‖u‖0 is a norm in AC0[a, b]. Indeed, if ‖u‖0 = 0 then u(x) = u(a) = 0. To show
that AC0[a, b] is complete, we assume {un(x)} is a Cauchy sequence in AC0[a, b], then we
need to find a function u(x) such that u(x) is absolutely continuous and un → u under its
norm. Since {un(x)} is Cauchy in AC0[a, b], we claim that un(a) = 0 and {u′

n(x)} is Cauchy
in L[a, b]. Hence, there exists g ∈ L[a, b] such that u′

n → g in L[a, b]. Define

u(x) =
∫ x

a
g(τ ) dτ .

Then u(a) = 0 and u(x) is absolutely continuous on [a, b], and

‖un – u‖0 ≤
∫ b

a

∣
∣u′

n(x) – g(τ )
∣
∣dτ

converges to zero. Therefore, AC0[a, b] is a Banach space.
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Lemma 1.1 If α > 0, μ ∈ R, and 0 < a < b < ∞, then the operator J α
a+,μ is bounded in

AC0[a, b] and

∥
∥J α

a+,μu
∥
∥

0 ≤ Cμ

�(α + 1)

[
log

(
b
a

)]α

‖u‖0,

where Cμ is the maximum value of the function

w(t, x) =
(

t
x

)μ

on [a, b] × [a, b].

Proof Let u ∈ AC0[a, b]. Then

u(t) =
∫ t

a
v(s) ds =

∫ t

a
u′(s) ds, v(s) = u′(s) ∈ L[a, b],

and
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t

)α–1 dt
t

,

by changing the order of integration. Using

0 ≤
(

t
x

)μ

≤ Cμ,

we imply that

∣
∣∣
∣v(s)

∫ x

s

(
t
x

)μ(
log

x
t

)α–1 dt
t

∣
∣∣
∣ ≤ Cμ

α

∣∣v(s)
∣∣
[

log

(
b
a

)]α

∈ L[a, b], and

∥∥J α
a+,μu

∥∥
0 ≤ Cμ

�(α + 1)

[
log

(
b
a

)]α

‖u‖0.

This completes the proof of Lemma 1.1. �

Kilbas showed the following lemma in reference [2], which is soon to be used.

Lemma 1.2
(i) If α > 0, β > 0, μ ∈ R, and u ∈ Xμ[a, b], then the semigroup property holds

J α
a+,μJ β

a+,μu = J α+β
a+,μu.

(ii) If 0 < α < 1 and u ∈ AC[a, b], then

J α
a+,μDα

a+,μu = u.



Li Fixed Point Theory Algorithms Sci Eng          (2021) 2021:7 Page 4 of 15

Let u ∈ AC[a, b] and 0 < β < 1. It follows from Lemma 1.2 that

J α
a+,μDβ

a+,μu = J α–β
a+,μu

if α ≥ β .
Let 0 < α0 < α1 < · · · < αn < 1 and 0 ≤ βn+1 < · · · < βm ∈ R, where n = 0, 1, . . . and

m > n. In this paper, we show the uniqueness of solutions for the following new nonlinear
Hadamard-type integro-differential equation for all μ ∈ R in the space AC0[a, b]:

Dαn
a+,μu + an–1Dαn–1

a+,μu + · · · + a0Dα0
a+,μu + bn+1J βn+1

a+,μ u + · · · + bmJ βm
a+,μu

=
∫ x

a
f
(
τ , u′(τ )

)
dτ (1)

by Banach’s contraction principle and Babenko’s approach [4], with two applicable exam-
ples presented to illustrate the main results. It seems impossible to obtain these by any
existing integral transforms or analytic local model methods. Babenko’s approach treats
integral operators like variables in solving differential and integral equations. The method
itself is close to the Laplace transform method in the ordinary sense, but it can be used
in more cases [5, 6], such as dealing with integral or fractional differential equations with
distributions whose Laplace transforms do not exist in the classical sense. Furthermore, it
works well on certain differential or integral equations whose solutions cannot be achieved
by the local model. Clearly, it is always necessary to show convergence of the series ob-
tained as solutions. Recently, Li studied the generalized Abel’s integral equations of the
first [7] and second kind with variable coefficients by Babenko’s technique [8–10].

It is well known that fractional calculus [3, 11, 12] has been an emergent tool which uses
fractional differential and integral equations to develop more sophisticated mathemati-
cal models that can accurately describe complex systems. There are many definitions of
fractional derivatives available in the literature, such as the Riemann–Liouville derivative
which played an important role in the development of the theory of fractional analysis.
However, the commonly used is the Hadamard fractional derivative (with μ = 0) given
by Hadamard in [13]. Butzer et al. [14–16] studied various properties of the Hadamard-
type derivative which is more generalized than the Hadamard fractional derivative. In par-
ticular, Hadamard fractional differential equations with boundary value problems or ini-
tial conditions have been investigated by researchers using fixed point theories [17, 18].
In 2014, Thiramanus et al. [19] studied the existence and uniqueness of solutions for a
fractional boundary value problem involving Hadamard differential equations of order
q ∈ (1, 2] and nonlocal fractional integral boundary conditions by fixed point theories.
In 2018, Matar [20] obtained the solution of the linear equations with the initial condi-
tions (three terms on the left-hand side at most and a given function on the right) by the
parameter technique, and then investigated the existence problems of the corresponding
nonlinear types of Hadamard equations using fixed point theorems. Very recently, Ding
et al. [21] applied the fixed point index and nonnegative matrices to study the existence
of positive solutions for a system of Hadamard-type fractional differential equations with
semipositone nonlinearities. In 1967, Caputo [22] introduced another type of fractional
derivative which has an advantage over R-L derivative in differential equations since it
does not require to define fractional order initial conditions. Jarad et al. [23] defined the
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Caputo-type modification of the Hadamard fractional derivatives which preserve physi-
cally interpretable initial conditions similar to the ones in Caputo fractional derivatives.
Gambo et al. [24] further presented the generalization of the fundamental theorem of
fractional calculus (FTFC) in the Caputo–Hadamard setting with several new results. Ad-
jabi et al. [25] studied Cauchy problems for a differential equation with a left Caputo–
Hadamard fractional derivative in spaces of continuously differentiable functions.

There are new studies on fixed point theorems for different operators on metric spaces
[26–28], as well as their applications in differential and integral equations, existence and
uniqueness of solutions for equations [29–31]. Palve et al. [32] recently constructed the
existence and uniqueness of solutions for the fractional implicit differential equation with
boundary condition of the form

HDα,β
1+ u(x) = f

(
x, u(x), HDα,β

1+ u(x)
)
, 0 < α < 1, 0 ≤ β ≤ 1, x ∈ [1, b],

J 1–γ
1+,0 c1u(x) + c2u

(
b–)

= c3, α ≤ γ = α + β(1 – α),

where HDα,β
1+ is the Hilfer–Hadamard type fractional derivative of order α and type β given

by

HDα,β
1+ = J β(n–α)

1+,0 DnJ (1–β)(n–α)
1+,0 , n – 1 < α < n,

and c1, c2, c3 ∈ R with c1 + c2 
= 0 and c2 
= 0. Li [33] obtained uniqueness of solutions for
the coupled system of integral equations

⎧
⎨

⎩
an(J αn

a+,μu)(x) + · · · + a1(J α1
a+,μu)(x) + u(x) = g1(x, u(x), v(x)),

bn(J βn
a+,μv)(x) + · · · + b1(J β1

a+,μv)(x) + v(x) = g2(x, u(x), v(x)),

on the product space Xμ[a, b] × Xμ[a, b] (it is a Banach space), based on Babenko’s ap-
proach and Banach’s contraction principle.

2 Main results
Theorem 2.1 Assume that ai and bj for i = 0, 1, . . . , n – 1 and j = n + 1, . . . , m are arbitrary
complex numbers, and g ∈ AC0[a, b]. In addition, we let 0 < α0 < α1 < · · · < αn < 1 and
0 ≤ βn+1 < · · · < βm ∈ R, where n = 0, 1, . . . . Then equation

Dαn
a+,μu + an–1Dαn–1

a+,μu + · · · + a0Dα0
a+,μu + bn+1J βn+1

a+,μ u + · · · + bmJ βm
a+,μu = g(x), (2)

has a unique solution

u(x) =
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m J k1(αn–αn–1)+···+km(αn+βm)+αn

a+,μ g (3)

in the space AC0[a, b].

Proof Applying the operator J αn
a+,μ to both sides of equation (2), we get

J αn
a+,μDαn

a+,μu + an–1J αn
a+,μDαn–1

a+,μu + · · · + a0J αn
a+,μDα0

a+,μu

+ bn+1J αn
a+,μJ βn+1

a+,μ u + · · · + bmJ αn
a+,μJ βm

a+,μu = J αn
a+,μg.
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Using Lemma 1.2,

u + an–1J αn–αn–1
a+,μ u + · · · + a0J αn–α0

a+,μ u

+ bn+1J αn+βn+1
a+,μ u + · · · + bmJ αn+βm

a+,μ u = J αn
a+,μg

by noting that 0 < α0 < α1 < · · · < αn < 1. Hence,

(
1 + an–1J αn–αn–1

a+,μ + · · · + a0J αn–α0
a+,μ + bn+1J αn+βn+1

a+,μ + · · · + bmJ αn+βm
a+,μ

)
u

= J αn
a+,μg.

By Babenko’s method we come to

u(x) =
(
1 + an–1J αn–αn–1

a+,μ + · · · + bmJ αn+βm
a+,μ

)–1J αn
a+,μg

=
∞∑

k=0

(–1)k(an–1J αn–αn–1
a+,μ + · · · + bmJ αn+βm

a+,μ
)kJ αn

a+,μg

=
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
(
an–1J αn–αn–1

a+,μ
)k1 · · · (bmJ αn+βm

a+,μ
)kmJ αn

a+,μg

=
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1J k1(αn–αn–1)
a+,μ · · ·bkm

m J km(αn+βm)
a+,μ J αn

a+,μg

=
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m J k1(αn–αn–1)+···+km(αn+βm)+αn

a+,μ g,

using Lemma 1.2 and the multinomial theorem. Clearly, u(a) = 0 since αn > 0 and

(
J k1(αn–αn–1)+···+km(αn+βm)+αn

a+,μ g
)
(a) = 0.

It remains to show that the series converges in the space AC0[a, b] and is absolutely con-
tinuous on [a, b]. By Lemma 1.1,

∥∥J k1(αn–αn–1)+···+km(αn+βm)+αn
a+,μ g

∥∥
0 ≤ K‖g‖0,

where

K =
Cμ

�(k1(αn – αn–1) + · · · + km(αn + βm) + αn + 1)

·
(

log
b
a

)k1(αn–αn–1)+···+km(αn+βm)+αn

.
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Therefore,

‖u‖0 ≤ Cμ

∞∑

k=0

∑

k1+···+km=k

(
k

k1, k2, . . . , km

)

· (|an–1|(log b
a )αn–αn–1 )k1 · · · (|bm|(log b

a )αn+βm )km

�(k1(αn – αn–1) + · · · + km(αn + βm) + αn + 1)
‖g‖0

= CμE(αn–αn–1,...,αn+βm ,αn+1)

(
|an–1|

(
log

b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)
‖g‖0,

where

E(αn–αn–1,...,αn+βm ,αn+1)

(
|an–1|

(
log

b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)
< ∞

is the value at

z1 = |an–1|
(

log
b
a

)αn–αn–1

, . . . , zm = |bm|
(

log
b
a

)αn+βm

of the multivariate Mittag-Leffler function E(αn–αn–1,...,αn+βm ,αn+1)(z1, . . . , zm) given in [12].
Thus, the series on the right-hand side of equation (3) is convergent. To see u(x) is abso-
lutely continuous,

u(x) =
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

·J k1(αn–αn–1)+···+km(αn+βm)+αn
a+,μ

∫ t

a
g ′(s) ds

=
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

· 1
�(k1(αn – αn–1) + · · · + km(αn + βm) + αn)

∫ x

a
g ′(s) ds

·
∫ x

s

(
t
x

)μ(
log

x
t

)k1(αn–αn–1)+···+km(αn+βm)+αn–1 dt
t

=
∫ x

a

∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

· g ′(s)
�(k1(αn – αn–1) + · · · + km(αn + βm) + αn)

·
∫ x

s

(
t
x

)μ(
log

x
t

)k1(αn–αn–1)+···+km(αn+βm)+αn–1 dt
t

ds,
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as the function inside of the outer integral

∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

· g ′(s)
�(k1(αn – αn–1) + · · · + km(αn + βm) + αn)

·
∫ x

s

(
t
x

)μ(
log

x
t

)k1(αn–αn–1)+···+km(αn+βm)+αn–1 dt
t

uniformly converges with respect to t and belongs to L[a, b] from Lemma 1.1 and the
multivariate Mittag-Leffler function used above. Thus, u(x) is absolutely continuous on
[a, b]. To verify that the obtained series is a solution, we substitute it into the left-hand
side of equation (2):

Dαn
a+,μ

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

·J k1(αn–αn–1)+···+km(αn+βm)+αn
a+,μ g

)

+

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1+1

n–1 · · ·bkm
m

·J (k1+1)(αn–αn–1)+···+km(αn+βm)
a+,μ g

)

+ · · · +

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm+1
m

·J k1(αn–αn–1)+···+(km+1)(αn+βm)
a+,μ g

)

= Dαn
a+,μ

(

J αn
a+,μg +

∞∑

k=1

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

·J k1(αn–αn–1)+···+km(αn+βm)+αn
a+,μ g

)

+

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1+1

n–1 · · ·bkm
m

·J (k1+1)(αn–αn–1)+···+km(αn+βm)
a+,μ g

)

+ · · · +

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm+1
m

·J k1(αn–αn–1)+···+(km+1)(αn+βm)
a+,μ g

)
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= g +

( ∞∑

k=1

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

·J k1(αn–αn–1)+···+km(αn+βm)
a+,μ g

)

+

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1+1

n–1 · · ·bkm
m

·J (k1+1)(αn–αn–1)+···+km(αn+βm)
a+,μ g

)

+ · · · +

( ∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm+1
m

·J k1(αn–αn–1)+···+(km+1)(αn+βm)
a+,μ g

)

= g

by the cancelation. Note that all series are absolutely convergent and the term rearrange-
ments are feasible for the cancelation.

Indeed,

–
∑

k1+···+km=1

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m J k1(αn–αn–1)+···+km(αn+βm)

a+,μ g

+
∑

k1+···+km=0

(
k

k1, k2, . . . , km

)
ak1+1

n–1 · · ·bkm
m J (k1+1)(αn–αn–1)+···+km(αn+βm)

a+,μ g

+ · · · +
∑

k1+···+km=0

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm+1
m J k1(αn–αn–1)+···+(km+1)(αn+βm)

a+,μ g

= 0.

The rest terms cancel each other similarly.
Clearly, the uniqueness follows immediately from the fact that the integro-differential

equation

Dαn
a+,μu + an–1Dαn–1

a+,μu + · · · + a0Dα0
a+,μu + bn+1J βn+1

a+,μ u + · · · + bmJ βm
a+,μu = 0

only has solution zero by Babenko’s method. This completes the proof of Theorem 2.1. �

Remark 1
(i) It follows from Theorem 5.3 in [2] that for 0 < α < 1

(
Dα

a+,μu
)
(x) =

x–μ

�(1 – α)

[
u0(a)

(
log

x
a

)–α

+
∫ x

a

(
log

x
t

)–α

u′
0(t) dt

]
,

where u0(x) = xμu(x) ∈ AC[a, b]. Hence, for u ∈ AC0[a, b],

(
Dα

a+,μu
)
(x) =

x–μ

�(1 – α)

∫ x

a

(
log

x
t

)–α

u′
0(t) dt, and
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(
Dα

a+,μu
)
(a) = 0.

(ii) A solution of equation (2) in the space AC0[a, b] is said to be stable if ∀ε > 0 ∃δ > 0,
such that ‖u‖0 < ε if ‖g‖0 < δ. Using the inequality

‖u‖0 ≤ CμE(αn–αn–1,...,αn+βm ,αn+1)

·
(

|an–1|
(

log
b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)
‖g‖0, (4)

we imply that the solution u is stable.
(iii) The multivariate Mittag-Leffler function was initially introduced by Hadid and

Luchko [34], who used it for solving linear fractional differential equations with
constant coefficients by the operational method. Suthar et al. [35] studied some
properties of generalized multivariate Mittag-Leffler function and established two
theorems giving the image of this function under certain integral operators.
Haubold et al. [36] presented a good survey of the Mittag-Leffler function,
generalized Mittag-Leffler functions, Mittag-Leffler type functions, their
interesting and useful properties, and applications in certain areas of physical and
applied sciences. The Mittag-Leffler function plays an important role in the
investigations of the fractional generalization of the kinetic equation, random
walks, Lévy flights, superdiffusive transport and in the study of complex models.

Let ν > 0 and x ≥ 0. The incomplete gamma function is defined by

γ (ν, x) =
∫ x

0
tν–1e–t dt.

From the recurrence relation [37]

γ (ν + 1, x) = νγ (ν, x) – xνe–x,

we get

γ (ν, x) = xν�(ν)e–x
∞∑

j=0

xj

�(ν + j + 1)
. (5)

Example 1 Let 0 < a < x < b. Then the Hadamard-type integro-differential equation

(
D0.8

a+,–1u
)
(x) +

(
D0.7

a+,–1u
)
(x) +

(
D0.1

a+,–1u
)
(x) + 2

(
J 0.2

a+,–1u
)
(x) – (Ja+,–1u)(x) = x2,

has the solution

u(x) = ax
∞∑

k=0

(–1)k
∑

k1+k2+k3+k4=k

(
k

k1, k2, k3, k4

)
2k3 (–1)k4

·
∞∑

j=0

(log x/a)j+0.1k1+0.7k2+k3+1.8k4+0.8

�(0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8 + j + 1)
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in the space AC0[a, b]. Indeed, it follows from Lemma 2.4 in [2] that

(
J α

a+,μtw)
(x) =

γ (α, (μ + w) log(x/a))
�(α)

(μ + w)–αxw,

where μ + w > 0.
By Theorem 2.1,

u(x) =
∞∑

k=0

(–1)k
∑

k1+k2+k3+k4=k

(
k

k1, k2, k3, k4

)
2k3 (–1)k4

· (J 0.1k1+0.7k2+k3+1.8k4+0.8
a+,–1 t2)(x)

=
∞∑

k=0

(–1)k
∑

k1+k2+k3+k4=k

(
k

k1, k2, k3, k4

)
2k3 (–1)k4

· γ (0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8, log(x/a))
�(0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8)

x2.

Applying equation (5),

γ
(
0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8, log(x/a)

)

= (log x/a)0.1k1+0.7k2+k3+1.8k4+0.8�(0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8)

· a
x

∞∑

j=0

(log x/a)j

�(0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8 + j + 1)
.

Thus,

u(x) = ax
∞∑

k=0

(–1)k
∑

k1+k2+k3+k4=k

(
k

k1, k2, k3, k4

)
2k3 (–1)k4

·
∞∑

j=0

(log x/a)j+0.1k1+0.7k2+k3+1.8k4+0.8

�(0.1k1 + 0.7k2 + k3 + 1.8k4 + 0.8 + j + 1)

is the solution in the space AC0[a, b].

The following theorem shows the uniqueness of equation (1).

Theorem 2.2 Assume that f : [a, b] × R → R is a continuous function, and there exists a
constant C such that

∣∣f (x, y1) – f (x, y2)
∣∣ ≤ C|y1 – y2|

for all x ∈ [a, b] and y1, y2 ∈ R. Furthermore,

CμCE(αn–αn–1,...,αn+βm ,αn+1)

(
|an–1|

(
log

b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)
< 1.

Then equation (1) has a unique solution in the space AC0[a, b] for every μ ∈ R.
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Proof Let u ∈ AC0[a, b]. Then

∫ x

a
f
(
τ , u′(τ )

)
dτ ∈ AC0[a, b],

as u′(τ ) ∈ L[a, b] and f (τ , u′(τ )) ∈ L[a, b]. Clearly,

∥∥∥
∥

∫ x

a
f
(
τ , u′(τ )

)
dτ

∥∥∥
∥

0
=

∫ b

a

∣∣f
(
x, u′(x)

)∣∣dx

≤
∫ b

a

∣∣f
(
x, u′(x)

)
– f (x, 0)

∣∣dx +
∫ b

a

∣∣f (x, 0)
∣∣dx

≤ C
∫ b

a

∣
∣u′(x)

∣
∣dx +

∫ b

a

∣
∣f (x, 0)

∣
∣dx < ∞.

Define a mapping T on AC0[a, b] by

T(u) =
∞∑

k=0

(–1)k
∑

k1+···+km=k

(
k

k1, k2, . . . , km

)
ak1

n–1 · · ·bkm
m

·J k1(αn–αn–1)+···+km(αn+βm)+αn
a+,μ

∫ t

a
f
(
τ , u′(τ )

)
dτ .

Using inequality (4), we claim that

∥∥T(u)
∥∥

0 < ∞ and T(u)(a) = 0.

Furthermore, T(u) is absolutely continuous on [a, b] from the proof of Theorem 2.1.
Hence, T is a mapping from AC0[a, b] to AC0[a, b]. It remains to prove that T is con-
tractive. Indeed,

∥
∥T(u) – T(v)

∥
∥

0

≤ CμE(αn–αn–1,...,αn+βm ,αn+1)

(
|an–1|

(
log

b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)

·
∥
∥∥
∥

∫ t

a
f
(
τ , u′(τ )

)
dτ –

∫ t

a
f
(
τ , v′(τ )

)
dτ

∥
∥∥
∥

0
.

Since
∥
∥∥
∥

∫ t

a
f
(
τ , u′(τ )

)
dτ –

∫ t

a
f
(
τ , v′(τ )

)
dτ

∥
∥∥
∥

0
=

∫ b

a

∣∣f
(
t, u′(t)

)
– f

(
t, v′(t)

)∣∣dt

≤ C
∫ b

a

∣∣u′(t) – v′(t)
∣∣dt = C‖u – v‖0,

we derive

∥
∥T(u) – T(v)

∥
∥

0

≤ CμCE(αn–αn–1,...,αn+βm ,αn+1)

(
|an–1|

(
log

b
a

)αn–αn–1

, . . . , |bm|
(

log
b
a

)αn+βm)
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· ‖u – v‖0.

Therefore T is contractive. This completes the proof of Theorem 2.2. �

Example 2 Let a = 1, b = e and μ = 2. Then there is a unique solution for the following
nonlinear Hadamard-type integro-differential equation:

(
D0.5

1+,2u
)
(x) +

(
J 0.5

1+,2u
)
(x) –

(
J 1.5

1+,2u
)
(x) +

(
J 2.1

1+,2u
)
(x)

=
∫ x

a

(
t2

C(1 + t100)
sin u′(t) + cos(sin t) + et2

)
dt, (6)

where the constant C is to be determined.
Clearly, C2 = e2 is the maximum value of the function ( t

x )2 over the interval [1, e] × [1, e],
and the function

f (x, y) =
x2

C(1 + x100)
sin y + cos(sin x) + ex2

is a continuous function from [1, e] × R to R and satisfies

∣
∣f (x, y1) – f (x, y2)

∣
∣ ≤ x2

C(1 + x100)
| sin y1 – sin y2| ≤ x2

C(1 + x100)
|y1 – y2| ≤ 1

C
|y1 – y2|.

Obviously log b/a = 1. By Theorem 2.2, we need to calculate the value

∞∑

k=0

∑

k1+k2+k3=k

(
k

k1, k2, k3

)
1

�(k1 + 2k2 + 2.6k2 + 1.5)

=
∞∑

k=0

∑

k1+k2+k3=k

(
k

k1, k2, k3

)
1

�(k + 1.5 + k2 + 1.6k3)

=
1

�(1.5)
+

∞∑

k=1

∑

k1+k2+k3=k

(
k

k1, k2, k3

)
1

�(k + 1.5 + k2 + 1.6k3)
.

For k ≥ 1,

1
�(k + 1.5 + k2 + 1.6k3)

≤ 1
�(k + 1)

=
1
k!

, and
∑

k1+k2+k3=k

(
k

k1, k2, k3

)
= 3k .

Therefore,

∞∑

k=0

∑

k1+k2+k3=k

(
k

k1, k2, k3

)
1

�(k1 + 2k2 + 2.6k2 + 1.5)
≤ 1

�(1.5)
+

∞∑

k=1

3k

k!

<
1
2

+
∞∑

k=0

3k

k!
.

Then, choose a positive C such that

Ce2

(
1
2

+
∞∑

k=0

3k

k!

)

< 1.
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By Theorem 2.2, equation (6) has a unique solution. We note that the series
∑∞

k=0
3k

k! con-
verges.

3 Conclusions
Using Babenko’s approach and Banach’s contraction principle, we have derived the
uniqueness of solutions for the new nonlinear Hadamard-type integro-differential equa-
tion for all μ ∈ R:

Dαn
a+,μu + an–1Dαn–1

a+,μu + · · · + a0Dα0
a+,μu + bn+1J βn+1

a+,μ u + · · · + bmJ βm
a+,μu

=
∫ x

a
f
(
τ , u′(τ )

)
dτ

in the Banach space AC0[a, b], with two examples given to illustrate the main theorems.
The results obtained are fresh in the present studies, and they cannot be achieved via any
existing integral transforms or local model methods to the best knowledge of the author.
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