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1 Introduction
Let X be a real Banach space with dual space X*. Let A : D(A) C X — X be a map, where
D(A) denotes the domain of A. The map A is called accretive if, for each u,v € D(A), there
exists j(u — v) € J(u — v) such that

(Au —Av,j(u - v)) >0,

where J : X — 2X is the normalized duality map defined, for each u € X, by

J(u) = {u* ex* :(u,u*) = |lu|| ||u*

|,

u | = ul}.

The map A is called strongly accretive if there exists k > 0 such that, for each u,v € D(A),
there exists j(u — v) € J(u — v) such that

(Au —Av,j(u - v)) > kllu—v|%
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The map A is called strongly-®-accretive if, for each u,v € D(A), there exist j(u — v) €
J(u —v) and a strictly increasing function @ : [0, 00) — [0, 00) with @(0) = 0 such that

(Au—Av,j(u - v)) > Q§(||u— V||)||M .

The map A is called generalized-®-strongly accretive if, for each u,v € D(A), there exist
j(u—v) € J(u—v) and a strictly increasing function @ : [0, 00) — [0, c0) with @(0) = 0 such
that

(Au - Av,j( - v)) = @ (u-vll).

The accretive map A is called m-accretive if R(I + AA) = X for all A > 0 (see, e.g., Guan
and Kartsatos [35], Reich [47], and the references therein). It is known that the class of
generalized- @ -strongly accretive maps properly contains the class of @-strongly accre-
tive maps which, in turn, contains the class of strongly accretive maps. In Hilbert spaces,
accretive maps are called monotone maps. The accretive maps were introduced indepen-
dently in 1967 by Browder [11] and Kato [38]. Interest in such maps stems mainly from
their firm connection with evolution equations (see, e.g., Berinde [4], Chidume [17], Re-
ich [48], and the references contained in them). A fundamental problem in the study of

accretive maps in Banach spaces is the following:
Find # € X such that Au = 0. (1.1)

Several existence theorems have been established for equation (1.1) (see, e.g., Browder [8—
11], Martin [40, 41]). It is well known that the class of generalized-®-strongly accretive
maps is the largest class of accretive-type maps for which, if a solution of equation (1.1)
exists, it is always unique. Iterative algorithms for approximating solutions of equation
(1.1) have been studied extensively by numerous authors. The first iterative method for
approximating solutions of equation (1.1) in real Banach spaces more general than Hilbert
spaces, as far as we know, was that by Chidume [16]. He proved that if X = L,,,p > 2, and
T :K — K isa Lipschitz strongly pseudo-contractive map, then the Mann iteration process
converges strongly to u* € F(T), where K is a nonempty closed convex and bounded subset
of X and F(T) := {x € K : Tx = x}. This result signalled the return to extensive research on
iterative methods for approximating solutions of equation (1.1) in more general Banach
spaces. This theorem of Chidume has been generalized in various directions by numerous
authors. It has been extended to more general real Banach spaces and more general classes
of nonlinear operators. The literature on this abounds, and most of these extensions and
their applications can be found in any of the following monographs and journal papers:
Berinde [4], Chidume [17], Goebel and Reich [34, 49]. Let A : D(A) C X — X* be a map,
where D(A) denotes the domain of A. The map A is called monotone if

(u—v,Au—Av) >0, VYu,ve D(A). (1.2)
The map A is called strongly monotone if there exists k > 0 such that

(u—v,Au—Av) > kllu—v||>, Vu,ve D(A). (1.3)
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The map A is called @-strongly monotone if there exists a strictly increasing function @ :
[0, 00) — [0, 00) with @(0) = 0 such that

(u—v,Au— Av) > <D(||u - V||) lue—v|l, Vu,ve D). (1.4)

The map A is called generalized--strongly monotone if there exists a strictly increasing
function @ : [0, 00) — [0, 00) with @(0) = 0 such that

(u—v,Au— Av) > <D(||u—v||), Yu,v € D(A). (1.5)

It is easy to see that the class of generalized-® -strongly monotone maps contains the class
of @-strongly monotone maps and the class of strongly monotone maps.

Remark 1 The class of generalized-®-strongly monotone maps is the largest class of

monotone maps for which, if a solution of equation (1.1) exists, it is always unique.

Interest in monotone maps stems mainly from their usefulness in numerous applica-
tions. Consider, for example, the following: Let f : X — R U {oo} be a proper lower semi-
continuous and convex function. The subdifferential of f, 3f : X — 2" is defined, for each
u e X, by

af (u) = {u* eX*:f(v)—f(u) > <v—u,u*),VveX}.

It is easy to see that the df is a monotone map on X and that 0 € 9f (u) if and only if u is a
minimizer of f. Setting df = A, then solving the equation Au = 0 is equivalent to solving
for a minimizer of f. Several existence theorems have been established for the equation
Au = 0 when the map A is of monotone type (see, e.g., Deimling [32]; Pascali and Shurian
[46], and the references contained in them). Iterative methods for approximating solutions
of Au =0, where A : X — X* is of monotone type, have been studied by various authors.
Unfortunately, not much has been achieved. Part of the problem is that in real Banach
spaces more general than Hilbert spaces, since the map A maps X to X*, the recursion
formulas containing u, and Au, used for accretive-type maps may not be well defined in
this setting. Several attempts have been made to overcome this difficulty in the recursion
formulas for approximating zeros of monotone-type maps (see, e.g., Chidume et al. [26],
Kamimura and Takahashi [37], Reich and Sabach [51], Reich [48], Chidume et al. 28], and
the references contained in them). In 2015, Diop et al. [33] studied an iterative scheme of
Mann type to approximate the zero of a strongly monotone bounded map in a 2-uniformly
convex real Banach space with a uniformly Gateaux differentiable norm. They proved the
following theorem.

Theorem 1.1 (Diop et al. [33]) Let X be a 2-uniformly convex real Banach space with
uniformly Gdateaux differentiable norm and X* be its dual space. Let A : X — X* be a
bounded and k-strongly monotone map such that A~(0) # @. For arbitrary u; € X, let {u,}
be the sequence defined iteratively by

-1
Un+l =] (]un - OlnALtn), n>1,
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where ] is the normalized duality map on X and {o,} C (0,1) is a real sequence satisfying
the following conditions: (i) Y a, = 00, (ii) Y_ a2 < 0o. Then there exists yo > 0 such that
ay, < Yo, the sequence {u,} converges strongly to the solution of the equation Au = 0.

It is our purpose in this paper to first prove a strong convergence theorem for a
generalized- @ -strongly monotone map using a Mann-type iterative algorithm and with-
out imposing the restriction that the operator be bounded. Then, the convergence theorem
proved is applied to approximate the solution of a convex minimization problem, a Ham-
merstein integral equation, and a variational inequality problem over the set of common
fixed points of a finite family of quasi-® -nonexpansive maps. Our theorems are improve-
ments of the results of Diop et al. [33], Chidume and Bello [20], Chidume [18], Chidume
et al. [24, 26], and a host of other results in the literature (see Remark 5 below). Finally, we
construct examples of generalized-® -strongly monotone maps and also give numerical
experiments to illustrate the convergence of the sequence generated by our algorithm.

2 Preliminaries

Let X be a smooth real Banach space with dual space X*. The map v : X x X — R, defined
by ¥ (u,v) = ||ul|®> = 2{u, Jv) + ||v||?,Yu,v € X, will play a central role in what follows. The
map v was introduced by Alber [1] and has been studied by Alber [1], Kamimura and
Takahashi [37], Reich [51], Chidume [17], Berinde [4], Chidume and Monday [23], and a
host of other authors. It is easy to see from the definition of the map ¢ that

(||M|| - ||V||)2 <¢(u,v) < (||M|| + ||V||)2, Vu,ve X. (2.1)
Let V: X x X* — R be a map defined by V (i, u*) = ||u|? — 2(u, u*) + ||u*||%,Yu € X, u* €
X. Observe that V(u,u*) = ¢(u,J 1 (u*)),Vu € X,u* € X*. The following lemmas will be

needed in the sequel.

Lemma 2.1 (Alber [1]) Let X be a reflexive strictly convex and smooth Banach space with
X* as its dual. Then

V(u, u*) + 2(]_1u* —u, v*) < V(u, ut+ v*) forallu € X and u*,v* € X*.
Lemma 2.2 (Chidume [18]) Let X be a uniformly convex real Banach space. For arbitrary
r>0,let B,(0):={u € X: |u| <r}. Then, for arbitrary u,v € B,(0), the following inequality
holds:

2 2
Y, v) < llu—v[”+ lull”.

Lemma 2.3 (Tan and Xu [55]) Let {a,} and {o} be sequences of nonnegative real numbers.
For some N, € N, the following relation holds:

apns1 <danp+0o,, n=0.

(@) If )" 0, < 00, then lima,, exists. (b) If, in addition, the sequence {a,} has a subsequence

that converges to 0, then {a,} converges to 0.
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Lemma 2.4 (Kamimura and Takahashi [37]) Let X be a uniformly convex and uniformly
smooth real Banach space and {u,},{v,} be sequences in X such that either {u,}or{v,} is

bounded. If lim ¥ (u,,v,) =0, then lim |ju, —v,|| = 0.
n— 00 n—0o0

Remark 2 It is easy to see that the converse of Lemma 2.4 is also true whenever

{u,}and{v,} are bounded.

Lemma 2.5 (Alber and Ryazantseva [2]) Let X be a uniformly convex Banach space with
dual space X*. Then, for any R > 0 and for any u,v € X* such that |u| <R, ||v| <R, the
following inequality holds:

177 % =T 1v| < a8 (4RLI|u —v)),
where c; = 2max{1,R},1 <L < 1.7.

Lemma 2.6 (Alber and Ryazantseva [2]) Let X be a uniformly convex Banach space with
dual space X*. Then, for any R > 0 and for any u,v € X such that |u|| <R, ||v|| <R, the
following inequality holds:

Joe = JvI| < cadx: (4RL|u - v|)),
where ¢y = 2max{1,R},1 <L < 1.7.

Lemma 2.7 (Rockafellar [52], see also Pascali and Sburlin [46]) A monotone map
A: X — X* is locally bounded at the interior points of its domain.

Definition 2.8 A map A : X — X* is quasi-bounded if, for every p > 0, there exists y >0
such that whenever (v, Av) < u||v| and ||v|| < u, then ||Av]| < y.

The following lemma has been proved. However, for completeness, we present the proof
here (see, e.g., Pascali and Sburlan [46], chapter III, Lemma 3.6).

Lemma 2.9 Let X be a real normed space with dual space X*. Every monotone map A :
D(A) C X — X* with 0 € Int D(A) is quasi-bounded.

Proof By Lemma 2.7, A is locally bounded at 0, i.e., there exists r > 0 such that
|Au|| < u, Vu € B,(0),for some p > 0.

Now, using this p > 0, suppose (v,Av) < u||v|| and ||v|| < . Then, by the monotonicity of
A, we have that

(v, Av) > (u, Av) + (v —u,Au), Vu € B,(0).
Observe that

(v—u, Au) < |Aull(IV] + llull) < (VI + 7).
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Thus,

(u, Av) < (v, Av) + (u — v, Au)

< plvll + (vl +7) = w(2lvll +7),  Yu e B,(0).
This implies that
[(w, Av)| < n(2llvll +7), Vue B, (0).
Thus,

sup |(u, Av)| < n(2lIvll + 7).

llull<r
Therefore,
"
lAv|| < 7(2IIV|I +7).
Hence, A is quasi-bounded. O

3 Main result

In Theorem 3.1 below, the sequence {8,} C (0,1) is assumed to satisfy the following condi-
tions: (C1) Y_ B, = 00,lim B, = 0; (C3) 23" 85  (B.M)M < o0; (C3) 285 (B,M) < yo for some
M >0, yo >0, where 8x is the modulus of convexity (see, e.g., Chidume [17], pp. 5, 6).

Theorem 3.1 Let X be a uniformly convex and uniformly smooth real Banach space with
dual space X*. Let A : D(A) = X — X* be a generalized-® -strongly monotone map, where
D(A) is the domain of A and A~*(0) # @. For arbitrary v, € X, let {v,} be a sequence gener-
ated iteratively by

Vurt =] s — BuAvy), n>1, (3.1)

where ] is the normalized duality map on X, and the sequence {B,} C (0, 1) satisfies condi-
tions Cy, Cy, and Cs. Then the sequence {v,} converges strongly to v* € A~1(0).

Proof First, we observe that if the equation Au = 0 has a solution, it is necessarily unique.
If y* is a solution of the equation Au = 0, then, from inequality (1.5), we have that

fo-y"Ax) = @(|x-y7]), vaex. (3.2)

Suppose that u* # y* is another solution of the equation Au = 0, substituting #* in inequal-
ity (3.2), we have

0> @(”u*—y*

),

which implies, by the properties of @, that u* = y*. This contradiction yields the unique-
ness of the solution. The remainder of the proof is now in two steps.
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Step 1. We show that the sequence {v,,} is bounded. Let v* € A71(0). Let 1« > 0 be arbitrary
but fixed. Then there exists r > 0 such that

2,1#(1/*,1/1)}. (3.3)

r> max{élu2 + H v*

Define B:= {v € X : ¥/ (v*,v) < r}. It suffices to show that {y (v*,v,,)} is bounded for each n €
N. We proceed by induction. For # = 1, by construction, we have that 1 (v*,v;) < r. Assume
that ¥ (v*,v,) < r for some n > 1. Using inequality (2.1), we have that [|v,| < ||[v¥| + /T
Now, we show that ¥ (v*,v,,1) < r. Suppose by contradiction that ¥ (v*,v,,1) < r does not
hold. Then ¥ (v*,v,41) > r. Since A : X — X* is locally bounded at v € X, there exist r, > 0
and m > 0 such that

lAx|| <m, VxeB, ().
In particular, ||Av| < m.
Therefore, (v,Av) <m|v|.

Define My := max{m, |[v*|| + /r}. Then (v,Av) < Mp||v|| and ||v|| < My. By Lemma 2.9,

there exists M > 0 such that ||Av|| < M, Vv € B. Define y; := min{1, %"), 471 Using Lemma

2.1, we compute as follows:
W(V*’ Vn+l) = V(V*;]Vn - ;BnAVn)
V(v vn) = 2Bul] v — Budvy) — v*, Av,, — Av¥)

= 1/f(V*, Vn) - 2ﬁn<Vn -V, Av, _AV*> = 2B (Va1 — Vi, Avyy). (3.4)

IA

Using the fact that A is a generalized- @ -strongly monotone map and Lemma 2.5, it follows
from inequality (3.4) that

V(v V) SV (5 vn) = 280D (v = V¥ [|) + 28485 (4RLB, 1AV ) [ Avi |
<Y (v vn) = 2B4@ (||ve = v*||) + 28485 (BuM)M. (3.5)

But from recursion formula (3.1), we have that

Vis1 = Jvall = BullAvall = BuM. (3.6)
Applying Lemma 2.5 and inequality (3.6), we have that

Vi1 = Vall = [T Uvinar) =T Ov) || < 285 (BaM). (3.7)
Thus, from inequality (3.7), we obtain that

[V =v*| = vuer = v*]| - 285" (BaM). (3.8)
From Lemma 2.2, we have that

r <y (v, vpe) < [ vie —v* ||2 + | v* H2 (3.9)
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Using inequality (3.3), we have that

a2+ = <=1 < v =
Hence,

2u < v = v¥|. (3.10)
From inequalities (3.7), (3.8), and the definition of yo, we have that

v =v*|| = 20 = 285" (BuM) > 210 — 1 = . (3.11)
Since @ is strictly increasing, we have that

D (|va—v*||) = ®(w). (3.12)
From inequality (3.5) and the definition of y;, we have that

r< ¥ (V' vnn) S U (V' va) = 28,P (1) + 28,85 (BuM)M (3.13)
<r=28,2(n) + B ®(n) <r. (3.14)
This is a contradiction. Hence, {/(v*,v,)} is bounded. Consequently, {v,} is bounded.

Step 2. We show that the sequence {v,} converges strongly to a point v* € A~1(0). Using
inequality (3.5), we have that

(V') = 2Ba @ ([[ v = v'[|) + 2885 (BudDM

W(V*’ Vn+l) S W V*’V
<Y (V5 vn) +2Bu8% (BuMM. (3.15)

By Lemma 2.3, we get that {y (v*,v,)} is convergent. Furthermore, we have that
2ﬁn¢(” Vn — v ”) = 1/f(V*, Vn) - 1#(1/*, Vn+1) + Zﬁns)}l(ﬂnM)M (316)

Claim. liminf @ (||v, — v*||) = 0.
Suppose by contradiction that liminf @ (||v,,—v*||) = 0 does not hold. Then liminf @ (||v,, —
v*|) = s > 0. Hence, there exists N; € N such that

@(an —V*||) > % for all # > Nj. (3.17)

Using inequality (3.17), conditions C; and Cs, we have that

SZ Bn < Z(l// (V' vn) =¥ (V' via1)) +2 ZS)}I(/SHM)M < 00. (3.18)
n=1

n=1 n=1

This is a contradiction. Hence, liminf @ (||v,, — v*||) = 0. Thus, there exists a subsequence
{vi} of {v,,} such that

lim @ (||v,, —v*|)) =0. (3.19)

k—o00
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Using the property of @, it follows that klim [V, — v*Il = 0. By Remark 2, we have that
—00

kli)nolow(v*, Vi) =0. (3.20)
Consequently, by Lemma 2.3, we have that lim ¥ (v*,v,) = 0. Hence, by Lemma 2.4, we
n—00
have that lim ||v, — v*|| = 0.
n—00

This completes the proof. d

4 Application to convex optimization problem

In this section, we apply Theorem 3.1 in solving the problem of finding minimizers of
convex functions defined on real Banach spaces. First, we begin with the following known
results.

Lemma 4.1 (See, e.g., Diop et al. [33]) Let X be a real Banach space and g : X — R be a
convex and differentiable function. Let dg : X — X* denote the differential map associated
with g. Then v € X is a minimizer of g if and only if dg(v) = 0.

Lemma 4.2 (Xu [56], see also Chidume [17], p. 43) Let X be a uniformly convex real Ba-
nach space. For arbitrary r > 0, let B,(0) := {v € X : |v| < r}. Then there exists a contin-
uous strictly increasing convex function @ : [0,00) — [0,00), ®(0) = 0 such that, for every
u,v € B,(0), the following inequality holds:

(bl - V,]I/l _]V> > @(”M - V”);
where ] is the single-valued normalized duality map on X.
Lemma 4.3 (Chidume et al. [26]) Let X be a uniformly convex and uniformly smooth real
Banach space. Let g : X — R be a differentiable convex function. Then the differential map
dg : X — X* satisfies the following inequality:

(u —v,dg(u) - dg(v)) >(u-v,Ju-Jv), Vuvel,
where ] is the single-valued normalized duality map on X.
Remark 3 If for any R > 0 and for any u,v € X such that |u|| < R,||v|| < R, then the map
dg : X — X* is generalized- @ -strongly monotone. This can easily be seen from Lemmas
4.2 and 4.3.

We now prove the following theorem.

Theorem 4.4 Let X be a uniformly convex and uniformly smooth real Banach space with

dual space X*. Let g : X — R U {oo} be a differentiable, convex, proper, and coercive func-
tion such that (dg)™1(0) # @. For arbitrary v, € X, let the sequence {v,} be generated by

Vil =]71 (]Vn - ,Bn dg(Vn)); n=> 1;



Chidume et al. Fixed Point Theory and Applications (2019) 2019:11 Page 10 of 19

where ] is the normalized duality map on X. Assume that {B,} C (0,1) satisfies conditions
C1, Cy, and Cs of Theorem 3.1. Then g has a unique minimizer v* € X and the sequence
{v,.} converges strongly to v*.

Proof Since g is a lower semi-continuous, convex, proper, and coercive function, then g
has a minimizer v* € X. Furthermore, dg : X — X* is generalized-® -strongly monotone.
Hence, the conclusion follows from Theorem 3.1. O

5 Application to Hammerstein integral equation
Let £2 C R” be Lebesgue measurable. Let k: £2 x 2 — Rand f: £2 x R — R be measur-
able real-valued functions. An integral equation of Hammerstein type has the form

u(x) + /Q k(x,y)f(y, u(y)) dy = w(x), (5.1)

where the unknown function # and inhomogeneous function w lie in a Banach space X of
measurable real-valued functions. Define a linear map K by

Kv(x) = /Q k(x, y)v(y) dy (5.2)

on §2 and denote by F the superposition or Nemitskyi operator corresponding to f, i.e.,
Fu(y) = f(y,u(y)). Then equation (5.1) can be put in the form

u+ KFu =0, (5.3)

where, without loss of generality, we have taken w = 0. Interest in Hammerstein integral
equations stems mainly from the fact that several problems that arise in differential equa-
tions, for instance, elliptic boundary value problems whose linear parts possess Green’s
function can, as a rule, be put in the form (5.1) (see, e.g., Pascali and Sburian [46], chap-
ter p. 164). Several existence and uniqueness theorems have been proved for equations of
Hammerstein type (see, e.g., Brezis and Browder [5, 6], Chepanovich [15], Browder and
Gupta [12], De Figueiredo and Gupta [31], and the references contained in them). In gen-
eral, equations of Hammerstein type are nonlinear and there is no known method to find
closed form solutions for them. Consequently, methods for approximating solutions of
such equations are of interest. For earlier and more recent works on approximation of so-
lutions of equations of Hammerstein type, the reader may consult any of the following:
Brezis and Browder [5, 6], Chidume and Shehu [27], Chidume and Ofoedu [25], Chidume
and Zegeye [29], Chidume and Djitte [22], Ofoedu and Onyi [45], Ofoedu and Malonza
[44], Zegeye and Malonza [58], Chidume and Bello [20], Minjibir and Mohammed [42],
and the references contained in them. We now apply Theorem 3.1 to approximate a solu-
tion of equation (5.3). The following lemma would be needed in the proof of Theorem 5.2
below.

Lemma 5.1 Let X be a uniformly convex and uniformly smooth real Banach space with
dual space X* and E =X x X*.Let F : X — X* and K : X* — X be generalized-® -strongly
monotone and generalized-D,-strongly monotone maps, respectively. Let A : E — E* be
defined by A([u,v]) = [Fu —v,Kv + u]. Then A is a generalized-P -strongly monotone map.
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Proof Let [uy, 1], [u,v2] € E. Then

([w1,v1] = (12, va), A([u1,v1]) — A([12,v2]))
= ([ul —u,v1 — Vol, [Fuy — Fuy + vo — v, Kvy — Kvy + uy — u2]>
=(uy — Uy, Fuy — Fus) + (v1 — vo, Kvy — Kv5)

> @1 (Jlur — uall) + Da(llve = vall). O

Remark 4 For A defined in Lemma 5.1, [u*,v*] is a zero of A if and only if u#* solves (5.3),
where v* = Fu.

In Theorem 5.2 below, the sequence {8,} C (0,1) is assumed to satisfy the following
conditions:

(C1) X By = o0; lim B, = 0.

(C2) 2 (85 (BuM1)M; + 851 (BuM2) M) < 00.

(Cs) 2max{83' (B.M1)Mi, 833 (BuMa)Ms} < o for some My >0, My, yo > 0.
Pp) @

" o0 ﬁ";}, 8x is the modulus of convexity (see, e.g., Chidume [17], pp. 5,

6). We now prove the following theorem.

(C4) yo =min{l

Theorem 5.2 Let X be a uniformly convex and uniformly smooth real Banach space with
dual space X*. Let F : D(F) = X — X* and K : D(K) = X* — X be generalized-®,-strongly
monotone and generalized-®,-strongly monotone maps, respectively, where D(F) and D(K)
denote the domains of F and K, respectively, and such that equation (5.3) has a solution.
For arbitrary (u1,v1) € X x X*, define the sequences {u,} and {v,} by

Up+1 :]_1 (]Lt,, - ﬁn(Fun - Vn))r n 2 1; Vil :]*_1 (]*Vn - ﬁn(1<vn + un)): n Z 1.

Assume that the sequence {B,} C (0,1) satisfies conditions Cy, Cy, and Cs of Theorem 3.1.
Then the sequences {u,} and {v,} converge strongly to u* and v*, respectively, where u* is a
solution of the equations u + KFu = 0 and v* = Fu™.

Proof Set E=X x X* and A: E — E* by A([u,v]) = [Fu — v,Kv + u]. Then by Lemma 5.1,
A is a generalized-® -strongly monotone map. Hence, by Theorem 3.1 and Remark 4, the
result is immediate. O

6 Application to variational inequality problems
Let X be a real normed space with dual space X*. Let A : C C X — X™* be a nonlinear map.

The classical variational inequality problem is the following:
find u € C such that (# —v,Au) > 0,Vv e C. (6.1)

The set of solutions of problem (6.1) is denoted by VI(A, C). Variational inequality prob-
lems were first introduced and studied by Stampacchia [54] in 1964 and have been found
to have numerous applications in the study of nonlinear analysis (see, e.g., Shi [53], Noor
[43], Yao [57], Stampacchia [54], and the references contained in them). Several existence

results for problem (6.1) have been proved when A is a monotone-type map defined on
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certain Banach spaces (see, e.g., Hartman and Stampacchia [36], Browder [7], Barbu and
Precupanu [3], and the references contained in them). Iterative approximation of solutions
of problem (6.1), assuming existence, has been studied extensively. For earlier and recent
works on variational inequality problems, the reader may consult any of the following:
Stampacchia [54], Korpelevich [39], Censor et al. [13], Chidume et al. [19, 21], and the
references contained in them. We now prove the following theorem.

Theorem 6.1 Let X be a uniformly convex and uniformly smooth real Banach space with
dual space X*, and let C be a nonempty closed and convex subset of X. Let A : D(A) =
X — X* be a generalized-®-strongly monotone map, where D(A) is the domain of A. Let
T,:C— X,i=1,2,...,N, be a finite family of quasi-¢-nonexpansive maps such that P :=
ﬂf\il F(T;) # 9. For arbitrary v, € X, define the sequence {v,} generated by

Vil :]‘I(J(T[,,]vy,) - ﬁ,,A(T[,,]v,,)), n > 1, where Tj,) := T, modN. (6.2)

Assume that VI(A, P) # 9, and the sequence {B,,} C (0,1) satisfies conditions Cy, Cy, and Cs
of Theorem 3.1. Then the sequence {v,} converges strongly to v* € VI(A, P).

Proof The proof is in two steps.
Step 1. We show that the sequence {v,,} is bounded.
Let v* € G™1(0). Let 1 > 0 be arbitrary but fixed. Then there exists r > 0 such that

Ly (v} (6.3)

r> max{4u2 + Hv*

Define B = {v € X : ¢ (v*,v) < r}. It suffices to show that {y/(v*,v,)} is bounded for each
n € N. We proceed by induction. For #n = 1, by construction, ¥ (v*,v1) < r. Assume that
Y (v*,v,) < r for some n > 1. Applying the definition of the map ¥, we have that ||v,| <
Iv¥]l + /7. Now, we show that ¥ (v*,v,.,1) < r. Suppose not, i.e., suppose ¥ (vV*,v,,1) > 7.
By Lemma 2.9, A is quasi -bounded. Thus, there exists M > 0 such that ||Av|| < M, Vv € B.
Define y; := min{1, q) , M} Using Lemma 2.1, we compute as follows:

Y (v, vm) = V(ST (Tva) = BrA(Tpnva)
< V(I (Tmva) = 2BuI U (Tpgva) = BuA(Tigva)) = v A(Timva))
=Y (V' Togvn) = 2B Tonvn — v AT Vi) = 2B (Vi1 = TV AT (V)
<Y (v vn) = 2Bu{ T vn — v AT v — AVF) = 2B, Tive — v, AVY)

= 2Bu(Vas1 = TV A(Timvin))
< W(V*,v,,) - 2,3,,<T[,,]v,, — vV, ATV —Av*)
- 2ﬂn<Vr1+1 - T[n] anA(T[n]Vn»' (64)

Using the fact that A is a generalized-® -strongly monotone map and Lemma 2.5, it follows
from inequality (6.4) that

W(V*; Vn+1) = 10(1/*, Vn) - Z,Bn(p(” Timvn - v* ”) + 2/3;13)_(1 (4‘RL/3n ”AT[n]Vn”) AT vall
<Y (v vn) = 2B5@ (| v = v¥||) + 28485 (BuM)M. (6.5)
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But from recursion formula (6.2), we have that

Vi1 =JTimVull = BullAvall < BuM. (6.6)
Applying Lemma 2.5 and inequality (6.6), we have that

1Vt = Timvall = [T Ovi) =T UTpmva) | < 285" (BaM). (6.7)
Thus, from inequality (6.7), we obtain that

[ Town =7 = s = v*]| - 25518 69
From Lemma 2.2, we have that

r< w(v*,vml) < “le —v* ||2 + ||v* “2 (6.9)
Using inequality (6.3), we have that

T Il P ey v
Hence,

20 < v = v (6.10)
From inequalities (6.8), (6.10), and the definition of y,, we have that

| Timvn = v¥|| = 21 = 285 (BuM) = 214 — 1 = pa. (6.11)
Since @ is strictly increasing, we have that

& (| Tpavu - v])) = (W) (6.12)
From inequality (6.5) and the definition of y,, we have that

r <Y (VS vm) S V(v va) = 2B,P (1) + 28,85 (BuM)M (6.13)

<r=28,2(n) + PP (1) <r. (6.14)

This is a contradiction. Hence, {{ (v*,v,)} is bounded. Consequently, {v,} is bounded. The

remaining part of the proof follows from the proof of Theorem 3.1. d

7 Examples
Example1 Let X =1),1<p<2,andletA:[, — [; be a map defined by

Au=Ju, Vuely,u=(u,uus,...),
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where ] is the normalized duality map on X. Then

(u—v,Au—Av) = (u—v,Ju—Jv)

>@-Dlu-v|®, YuveX.

Hence, A is generalized-®-strongly monotone map with ®@(¢) = (p — 1)£* (see, e.g.,
Chidume [17], p. 55).

Example2 Let X =1,2 < p <o0,andlet A:l, — [ be a map defined by

1
Au = Elpu, Yu e by, u=(uy,us,us3,...).
Then

(u—v,Au—Av) = (u—-v,J,u—J,v)

zp_lcpllu—vllp, Yu,veX,c,>0.

Hence, A is a generalized-®-strongly monotone map with @(¢) = p~'c,t” (see, e.g.,
Chidume [17], p. 54).

8 Numerical illustration
In this section, we present numerical examples to illustrate the convergence of the se-
quence generated by our algorithm.

Example 3 In Theorem 3.1, set X = R? so that X* = R?,

6 2)0)

3 6 Vo

Then it is easy to see that A is a generalized-®-strongly monotone map and the vector
v* = (0,0) is the unique solution of the equation Av = 0. Take 8, = ﬁ,n =1,2,...,as our
parameter in Theorem 3.1. With this, we now give the following algorithm which is a
specialized version of Theorem 3.1.

Algorithm.

Step 0: Choose any v; € R? and set a tolerance € > 0. Let k = 1 and set the maximum
number of iterations, 7.

Step 1: If ||vi|| < € or k > n, STOP. Otherwise, set 8, = k—}rl
Step 2: Compute

Vil = Vi — BrAvk.

Step 3: Set k =k + 1 and go to Step 1.

Table 1 gives our test results using 10~° tolerance.

The numerical result for the initial point (1,%) is sketched below where the y-axis rep-
resents the values of ||v,,; — 0| while the x-axis represents the number of iterations # (see
Fig. 1).
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Table 1 Numerical illustration for the zero of a generalized-¢-strongly monotone map

Initial points Num. of iter Approx. solution
(1,0 88 9.6598 x 10

©,1) 95 9.3690 x 107/
2,1 103 9.9756 x 10~/
(1,4 120 9.5080 x 107/
.5 86 93020 x 107/
(1,3 92 9.6662 x 107/

’

Figure 1 Convergence of the sequence {v,} with
initial point (1, 3)

— Algorithm 3.1

40

60 80 100

Table 2 Numerical illustration for the solution of Hammerstein integral equation

Initial points Num. of iter Approx. sol. ([|up+11l)
(1,0), (0,1) 45 9.7064 x 107~/
(1,1),23) 49 94440 x 1077
(2,3),(1,1) 49 99188 x 10~/
GG 36 96055 x 1077
(5.1, (3,2 38 94539 x 1077
3,5, @21 55 9.7373 x 107/

Example 4 In Theorem 5.2, set X = R? so that X* = R?,

-1 2
Fu- (> “) = .
1 8)\u -2 5/ \n
Then it is easy to see that F and K are generalized- @ -strongly monotone maps and the

vector u* = (0,0) is the unique solution of the equation u + KFu = 0. Take 8, = A=

i+l
1,2,..., as our parameters in Theorem 5.2. With this, we now give the following algor)lthm
which is a specialized version of Theorem 5.2.

Algorithm.

Step 0: Choose any u;,v; € R? and set a tolerance €; > 0. Let k = 1 and set the maximum
number of iterations, 7.

Step 1: If | ux|| < €p or k > n, STOP. Otherwise, set B; = (k11)

Step 2: Compute

U1 = g — Br(Fug — vio),

Viel = Vi — Br(Kvg + ).

Step 3: Set k = k + 1 and go to Step 1.
Table 2 gives our test results using 10~ tolerance.

Page 15 0f 19
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Figure 2 Convergence of the sequence {up} with 20 . . . - -
initial point (3,5), (2, 1)

15+

I wof
5
)
0 10 20 30 40 50 60
n

Table 3 Numerical illustration for the solution of variational inequality problem

Initial points Num. of iter Approx. solution
(1,0 24 82377 x 107/
(a1 24 96812 x 107/
2,3) 25 96103 x 107/
=2,1) 25 9.3095 x 10~/
3.5 22 7.1434 x 107
5.1 92 96662 x 107
(5,8) 27 83144 x 107/

The numerical result for the initial point (3,5), (2,1) is sketched below where the y-axis
represents the values of ||u,,,; — 0], while the x-axis represents the number of iterations #
(see Fig. 2).

Example 5 In Theorem 6.1, set X = R? so that X* = R?,

5 -5 -1
Av = & , Tv=| 2
3 6 V2 3

Then it is easy to see that A is a generalized-®-strongly monotone map, T is quasi-®-

NI D=

nonexpansive, and the vector v* = (0,0) is the common solution. We take 8, = n%l,n =
1,2,..., as our parameter in Theorem 6.1. With this, we now give the following algorithm
which is a specialized version of Theorem 6.1.

Algorithm.

Step 0: Choose any v; € R? and set a tolerance €y > 0. Let k = 1 and set the maximum
number of iterations, #.

Step 1: If ||v|| < &g or k > n, STOP. Otherwise, set 8, =
Step 2: Compute

1
k+1°

Vi1 = Tiiqvk — BrA(Tiqve).

Step 3: Set k =k + 1 and go to Step 1.

Table 3 gives our test results using 10~ tolerance.

The numerical result for the initial point (5, 8) is sketched below where the y-axis repre-
sents the values of ||v,;; — 0]|, while the x-axis represents the number of iterations # (see
Fig. 3).
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Figure 3 Convergence of the sequence {v,} with 16 . . . . -
initial point (5,8) 18l d
12
10 f
HE
|
al
2L
0
[ 5 10 15 20 25 30
n

Remark 5 Our theorem is a significant improvement of the results of Diop et al. [33],
Chidume and Bello [20], Chidume [18], Chidume et al. [26], and Chidume et al. [24] in
the following sense:

(1) Theorems 3.1 and 5.2 are proved in a more general real Banach space which
contains the space of 2-uniformly convex space and Lp spaces, 1 < p < 00.

(2) The class of strongly monotone maps studied in Diop et al. [33], Chidume and Bello
[20] is extended to the more general class of generalized-®-strongly monotone maps
in Theorems 3.1 and 5.2, respectively.

(3) The requirement that the maps A, K, and F be bounded, which is assumed in
Theorems 1.1 and 3.1 of Diop et al. [33], Chidume and Bello [20], respectively, and
in the theorem of Chidume et al. [24, 26] and Chidume [18], is dispensed with in
our theorems.

9 Conclusion

In this paper, a Mann-type iterative algorithm that approximates the zero of a generalized-
@ -strongly monotone map is presented. A strong convergence theorem of the sequence
generated by the algorithm is proved. Furthermore, the theorem proved is applied to ap-
proximate solutions of a convex minimization problem, a Hammerstein integral equation,
and a variational inequality problem. The theorem proved generalizes, extends, and im-
proves the results of Diop et al. [33], Chidume and Bello [20], Chidume [18], Chidume et
al. [26], Chidume et al. [24], and other recent important related results in the literature. Fi-
nally, examples of generalized- @ -strongly monotone maps are constructed and numerical
experiments which illustrate the convergence of the sequence generated by our algorithm,
are presented.
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