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Abstract
In this paper, we introduce a new class of generalized nonexpansive mappings which
is wider than the class of mappings satisfying (C) condition. Different properties and
some fixed point results for these mappings are obtained here. The convergence of
some iteration schemes to the fixed point is also discussed with suitable examples.
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1 Introduction and preliminaries
The generalization of nonexpansive mappings and the study of related fixed point the-
orems with different practical applications in nonlinear functional analysis have found
great importance during the recent decades [1–6, 8–10, 12, 14, 15, 19, 22–24, 26, 27, 32].
Several prominent authors [11, 13, 16, 20, 21, 25, 28, 29, 31] have contributed immensely
in this field, and different new classes of mappings with interesting properties have been
developed in this context.

In 2008, Suzuki defined a class of generalized nonexpansive mappings on a nonempty
subset C of a Banach space X. Such type of mappings was called the class of mappings
satisfying the condition (C) (see [17, 18, 30]). For a nonempty bounded and convex sub-
set C, every self-mapping T on C satisfying (C) condition has an almost fixed point se-
quence [15]. In 2011, Falset et al. [15] introduced two new classes of generalized non-
expansive mappings which are wider than those satisfying (C) condition, but preserving
their fixed point properties.

In this paper, we introduce a new class of mappings which is larger than the class satis-
fying the condition (C). We study the existence of fixed points for this type of mappings
with some examples.

First we present some basic concepts.

Definition 1.1 (see [30]) Let C be a nonempty subset of a Banach space X. A mapping
T : C −→ X is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.

Definition 1.2 (see [30]) For a nonempty subset C of a Banach space X, a mapping T :
C −→ X is called quasi nonexpansive if ‖Tx – z‖ ≤ ‖x – z‖ for all x ∈ C and z ∈ F(T) (where
F(T) denotes the set of all fixed points of T ).
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Definition 1.3 (see [30]) For a nonempty subset C of a Banach space X, a mapping T :
C −→ X is said to satisfy the condition (C) on C if 1

2‖x – Tx‖ ≤ ‖x – y‖ implies ‖Tx – Ty‖ ≤
‖x – y‖ for all x, y ∈ C.

Clearly, every nonexpansive mapping satisfies the condition (C) on C. But there are also
some noncontinuous mappings satisfying the condition (C) (see [15]).

Definition 1.4 (see [15]) For a nonempty subset C of a Banach space X and λ ∈ (0, 1),
a mapping T : C −→ X is said to satisfy (Cλ)-condition on C if λ‖x – Tx‖ ≤ ‖x – y‖ implies
‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C.

Definition 1.5 (see [15]) If C is a closed convex and bounded subset of X, and a self-
mapping T on C is nonexpansive, then there exists a sequence xn in C such that ‖xn –
Txn‖ −→ 0. Such a sequence is called almost fixed point sequence for T .

Definition 1.6 (see [15]) Let C be a nonempty subset of a Banach space X and {xn} be a
bounded sequence in X. For each x ∈ X,

(i) asymptotic radius of {xn} at x is defined by r(x, {xn}) = lim supn−→∞ ‖xn – x‖.
(ii) asymptotic radius of {xn} relative to C is defined by r(C, {xn}) = inf r(x, {xn}) : x ∈ C.

(iii) asymptotic center of {xn} relative to C is defined by
A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}. We note that A(C, {xn}) is nonempty.
Again, if X is uniformly convex, then A(C, {xn}) has exactly one point.

Definition 1.7 (see [30]) A Banach space X is said to satisfy the Opial property if, for
every sequence {xn} in X with xn −→ z(weakly), we have

lim
n−→∞ inf‖xn – z‖ < lim

n−→∞ inf‖xn – y‖

whenever y �= z.
For example, lp spaces (1 < p < ∞) satisfy this condition.

2 Methods
We apply both analytic as well as fixed point theoretical method to prove our results.
Different existing methods in the literature (refer to [15, 20, 30]) as well as some new ap-
proaches are also taken.

3 Results and discussion
We construct the following class of mappings.

Definition 3.1 Let C be a nonempty subset of a Banach space X. Let γ ∈ [0, 1] and μ ∈
[0, 1

2 ] such that 2μ ≤ γ . A mapping T : C −→ X is said to satisfy the condition Bγ ,μ on C
if, for all x, y in C,

γ ‖x – Tx‖ ≤ ‖x – y‖ + μ‖y – Ty‖

implies ‖Tx – Ty‖ ≤ (1 – γ )‖x – y‖ + μ(‖x – Ty‖ + ‖y – Tx‖).
Clearly, this class includes the class of nonexpansive mappings (for γ = μ = 0).
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Also, if a mapping satisfies the condition (C), then it will satisfy the condition Bγ ,μ for
γ = μ = 0.

As
1
2
‖x – Tx‖ ≤ ‖x – y‖ ⇒ ‖Tx – Ty‖ ≤ ‖x – y‖ for (C) condition,

so, clearly, ‖Tx – Ty‖ ≤ (1 – γ )‖x – y‖ + μ
(‖x – Ty‖ + ‖y – Tx‖) for γ = μ = 0.

But the converse is not true.

Example 3.2 Let T : [0, 2] −→R be defined by

T(x) =

⎧
⎨

⎩
0 if x �= 2,

1 if x = 2.

Now, for x = 1.2, y = 2, 1
2‖Tx – x‖ = 0.6 < 0.8 = ‖x – y‖. But‖Tx – Ty‖ = 1 ≮ 0.8 = ‖x – y‖.

So, the condition (C) is not satisfied.
For x �= 2, y �= 2, obviously T satisfies Bγ ,μ condition for γ = 1 and μ = 1

2 .
Again, let x �= 2, y = 2.
Then ‖Tx – Ty‖ = 1 and

(1 – γ )‖x – y‖ + μ(‖x – Ty‖ + ‖y – Tx‖

=
1
2
‖x – 1‖ + 1

(
for γ = 1,μ =

1
2

)

> 1 = ‖Tx – Ty‖.

For x = 2, y �= 2,

‖Tx – Ty‖ = 1 < (1 – γ )‖x – y‖ + μ
(‖x – Ty‖ + ‖y – Tx‖)

(
for γ = 1,μ =

1
2

)
as above.

For x = 2, y = 2, Bγ ,μ condition (for γ = 1,μ = 1
2 ) is obviously satisfied by T .

The following lemma shows that T satisfying Bγ ,μ condition is also quasi-nonexpansive.

Lemma 3.3 For a nonempty subset C of a Banach space X, let T : C −→ X be a mapping
satisfying Bγ ,μ condition. If z is a fixed point of T on C, then for all x ∈ C,

‖z – Tx‖ ≤ ‖z – x‖.

Proof We have

γ ‖z – Tz‖ = 0 ≤ ‖z – x‖ + μ‖x – Tx‖.

By Bγ ,μ condition,

‖Tz – Tx‖ ≤ (1 – γ )‖z – x‖ + μ
(‖x – Tz‖ + ‖z – Tx‖)



Patir et al. Fixed Point Theory and Applications  (2018) 2018:19 Page 4 of 18

= (1 – γ )‖z – x‖ + μ
(‖x – z‖ + ‖z – Tx‖)

⇒ ‖z – Tx‖ ≤
(

1 – γ + μ

1 – μ

)
‖z – x‖ ≤ ‖z – x‖ (as 2μ ≤ γ )

showing that T is quasi-nonexpansive. �

However, the converse of Lemma 3.3 does not hold in general.

Example 3.4 Let T be a mapping on [0, 4] defined by

T(x) =

⎧
⎨

⎩
0 if x �= 4,

3 if x = 4.

Clearly T has a fixed point at x = 0, and also ‖T(x)‖ ≤ ‖x‖ ∀x ∈ [0, 4].
Hence, T is quasi-nonexpansive.
We show that T does not satisfy the condition Bγ ,μ.
For x = 4, y = 3,

γ ‖x – Tx‖ = γ ≤ 1 + 3μ = ‖4 – 3‖ + μ
∥
∥3 – T(3)

∥
∥.

But

‖Tx – Ty‖ =
∥∥T(4) – T(3)

∥∥ = 3

and

(1 – γ )‖x – y‖ + μ
(‖x – Ty‖ + ‖y – Tx‖)

= 1 – γ + 4μ

≤ 1 – γ + 2γ (2μ ≤ γ )

< 3
(
as γ ∈ [0, 1]

)

= ‖Tx – Ty‖.

So, Bγ ,μ condition is not satisfied.

The following are some basic properties of mappings which satisfy the condition Bγ ,μ

on C.

Proposition 3.5 Let C be a nonempty subset of a Banach space X. Let T : C −→ C satisfy
the condition Bγ ,μ on C. Then, for all x, y ∈ C and for c ∈ [0, 1],

(i) ‖Tx – T2x‖ ≤ ‖x – Tx‖,
(ii) at least one of the following ((a) and (b)) holds:

(a) c
2‖x – Tx‖ ≤ ‖x – y‖

(b) c
2‖Tx – T2x‖ ≤ ‖Tx – y‖.

The condition (a) implies ‖Tx – Ty‖ ≤ (1 – c
2 )‖x – y‖ + μ(‖x – Ty‖ + ‖y – Tx‖) and

the condition (b) implies ‖T2x – Ty‖ ≤ (1 – c
2 )‖Tx – y‖ + μ(‖Tx – Ty‖ + ‖y – T2x‖).
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(iii) ‖x – Ty‖ ≤ (3 – c)‖x – Tx‖ + (1 – c
2 )‖x – y‖ + μ(2‖x – Tx‖ + ‖x – Ty‖ + ‖y – Tx‖ +

2‖Tx – T2x‖).

Proof (i) We have, for all x ∈ C,

γ ‖x – Tx‖ ≤ ‖x – Tx‖ + μ
∥
∥Tx – T2x

∥
∥.

So, by the condition Bγ ,μ (replacing y by Tx),

∥∥Tx – T2x
∥∥ ≤ (1 – γ )‖x – Tx‖ + μ

∥∥x – T2x
∥∥

≤ (1 – γ )‖x – Tx‖ + μ‖x – Tx‖ + μ
∥∥Tx – T2x

∥∥

⇒ ∥∥Tx – T2x
∥∥ ≤ 1 – γ + μ

1 – μ
‖x – Tx‖ ≤ ‖x – Tx‖.

(ii) We assume on the contrary that c
2‖x – Tx‖ > ‖x – y‖ and c

2‖Tx – T2x‖ > ‖Tx – y‖ for
some x, y ∈ C.

Now,

‖x – Tx‖ ≤ ‖x – y‖ + ‖y – Tx‖
<

c
2
‖x – Tx‖ +

c
2
∥∥Tx – T2x

∥∥

≤ c
2
‖x – Tx‖ +

c
2
‖x – Tx‖ (

by (i)
)

≤ ‖x – Tx‖ (since c ≤ 1),

i.e.,

‖x – Tx‖ < ‖x – Tx‖,

which is impossible.
So, at least one of (a) and (b) holds.
(iii) ‖x – Ty‖ ≤ ‖x – Tx‖ + ‖Tx – Ty‖
If (ii)(a) holds,

‖x – Ty‖ ≤ ‖x – Tx‖ +
(

1 –
c
2

)
‖x – y‖ + μ

(‖x – Ty‖ + ‖y – Tx‖)

≤ (3 – c)‖x – Tx‖ +
(

1 –
c
2

)
‖x – y‖

+ μ
(
2‖x – Tx‖ + ‖x – Ty‖ + ‖y – Tx‖ + 2

∥∥Tx – T2x
∥∥)

.

If (ii)(b) holds,

‖x – Ty‖ ≤ ‖x – Tx‖ +
∥
∥Tx – T2x

∥
∥ +

∥
∥T2x – Ty

∥
∥

≤ ‖x – Tx‖ +
(

1 –
c
2

)
‖Tx – x‖ + μ

(‖Tx – Tx‖ +
∥
∥x – T2x

∥
∥)
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+
(

1 –
c
2

)
‖Tx – y‖ + μ

(‖Tx – Ty‖ +
∥
∥y – T2x

∥
∥)

= (3 – c)‖x – Tx‖ +
(

1 –
c
2

)
‖x – y‖

+ μ
(∥∥x – T2x

∥
∥ + ‖Tx – Ty‖ +

∥
∥y – T2x

∥
∥)

≤ (3 – c)‖x – Tx‖ +
(

1 –
c
2

)
‖x – y‖ + μ

(‖x – Tx‖ +
∥
∥Tx – T2x

∥
∥

+ ‖x – Tx‖ + ‖x – Ty‖ + ‖y – Tx‖ +
∥∥Tx – T2x

∥∥)

= (3 – c)‖x – Tx‖ +
(

1 –
c
2

)
‖x – y‖

+ μ
(
2‖x – Tx‖ + ‖x – Ty‖ + ‖y – Tx‖ + 2

∥∥Tx – T2x
∥∥)

. �

Proposition 3.6 Let C be a nonempty convex and bounded subset of a Banach space X
and T be a self-mapping on C. We assume that T satisfies the condition Bγ ,μ on C. For
x0 ∈ C, let a sequence {xn} in C be defined by

xn+1 = λTxn + (1 – λ)xn, (3.1)

where λ ∈ [γ , 1) – {0}, n ∈N∪ {0}. Then ‖Txn – xn‖ −→ 0 as n −→ ∞.

Proof Since λ ≥ γ , we have

γ ‖xn – Txn‖ ≤ λ‖xn – Txn‖
= ‖xn – xn+1‖

(
by (3.1)

)

i.e.,

γ ‖xn – Txn‖ ≤ ‖xn – xn+1‖ + μ‖xn+1 – Txn+1‖.

So, by the condition Bγ ,μ (for y = xn+1),

‖Txn – Txn+1‖ ≤ (1 – γ )‖xn – xn+1‖ + μ
(‖xn – Txn+1‖ + ‖xn+1 – Txn‖

)

⇒
∥∥
∥∥Txn –

1
λ

(
xn+2 – (1 – λ)xn+1

)
∥∥
∥∥

≤ ‖xn – xn+1‖ + μ

(∥∥
∥∥xn –

1
λ

(
xn+2 – (1 – λ)xn+1

)
∥∥
∥∥ + ‖xn+1 – Txn‖

)
,

from which we get

(1 – μ) lim
n−→∞ ‖Txn – xn‖ ≤ 0

⇒ lim
n−→∞‖Txn – xn‖ = 0 (since μ �= 1). �

Corollary 3.7 Let C be a closed convex and bounded subset of a Banach space X. Let T be
a self-mapping on C satisfying the condition Bγ ,μ. Then the sequence {xn} as defined above
is an almost fixed point sequence.
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For a nonempty compact convex subset C of X, we have the following fixed point re-
sult.

Theorem 3.8 Let C be a compact and convex subset of a Banach space X. Let T be a
self-mapping on C satisfying the condition Bγ ,μ. For x0 ∈ C, let {xn} be a sequence in C as
defined in Proposition 3.6, where γ is sufficiently small. Then {xn} converges strongly to a
fixed point of T .

Proof Since C is compact, there exists a subsequence {xnj} of {xn} and z ∈ C such that {xnj}
converges to z (see [31]).

Now, by Proposition 3.5(ii), for γ = c
2 , c ∈ [0, 1]

γ ‖xnj – Txnj‖ ≤ ‖xnj – z‖
⇒ γ ‖xnj – Txnj‖ ≤ ‖xnj – z‖ + μ‖z – Tz‖.

So, by the condition Bγ ,μ,

‖Txnj – Tz‖ ≤ (1 – γ )‖xnj – z‖ + μ
(‖xnj – Tz‖ + ‖z – Txnj‖

)
. (3.2)

Again,

‖xnj – Tz‖
≤ ‖xnj – Txnj‖ + ‖Txnj – Tz‖
≤ ‖xnj – Txnj‖ + (1 – γ )‖xnj – z‖ + μ

(‖xnj – Tz‖ + ‖z – Txnj‖
) (

by (3.2)
)

≤ ‖xnj – Txnj‖ + (1 – γ )‖xnj – z‖ + μ
(‖xnj – Tz‖ + ‖z – xnj‖ + ‖xnj – Txnj‖

)
.

So, taking nj −→ ∞ and using Proposition 3.6, we get

(1 – μ)‖z – Tz‖ ≤ 0

⇒ Tz = z, (since μ �= 1)

showing that z is a fixed point for T . Now,

‖xn+1 – z‖ ≤ λ‖Txn – z‖ + (1 – λ)‖xn – z‖
≤ λ‖xn – z‖ + (1 – λ)‖xn – z‖ (by Lemma 3.3)

= ‖xn – z‖ for all n ∈N∪ {0}.

Thus, {‖xn – z‖} is a monotonically decreasing sequence of nonnegative real numbers and
will converge to some real, say u. Now,

‖xn – Tz‖ ≤ ‖xn – Txn‖ + (1 – γ )‖xn – z‖ + μ
(‖xn – Tz‖ + ‖z – xn‖ + ‖xn – Txn‖

)

⇒ ‖xn – z‖ ≤ ‖xn – Txn‖ + (1 – γ )‖xn – z‖ + μ
(
2‖xn – z‖ + ‖xn – Txn‖

)
.
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Taking limit as n −→ ∞, we get u ≤ (1 – γ )u + μ(2u) ⇒ (γ – 2μ)u ≤ 0, which is possible
only for u = 0, since 2μ ≤ γ . Hence, {xn} converges strongly to z. �

Example 3.9 On the subset C = [0, 4] of the Banach space R, define T by

T(x) =

⎧
⎨

⎩
0 if x �= 4,

2 if x = 4.

Then T satisfies the condition Bγ ,μ. Let {xn} be a sequence in C defined as in Proposi-
tion 3.6.

Suppose, x0 = 3. Then we have xn = 3(1 – λ)n, converging to 0 as n −→ ∞. Clearly, 0 is
the fixed point of T .

Theorem 3.10 Let C be a weakly compact and convex subset of a uniformly convex Banach
space X. Let T be a self-mapping on C satisfying the condition Bγ ,μ. Then T has a fixed
point.

Proof Consider the sequence {xn} in C as defined in Proposition 3.6. Then lim supn ‖Txn –
xn‖ = 0. As in [15], let g be a continuous convex function from C into [0,∞) defined by

g(x) = lim
n−→∞ sup‖xn – x‖

for all x ∈ C.
Again, since C is weakly compact and g is weakly lower semi-continuous, there is z ∈ C

such that

g(z) = min
{

g(x) : x ∈ C
}

.

Now, by Proposition 3.5(iii) (for γ = c
2 ),

‖xn – Tz‖ ≤ (3 – 2γ )‖xn – Txn‖ + (1 – γ )‖xn – z‖ + μ
(
2‖xn – Txn‖

+ ‖xn – Tz‖ + ‖xn – z‖ + ‖xn – Txn‖ + 2‖xn – Txn‖
)
.

So,

(1 – μ) lim
n−→∞ sup‖xn – Tz‖ ≤ (1 – γ + μ) lim

n−→∞ sup‖xn – z‖

⇒ lim
n−→∞ sup‖xn – Tz‖ ≤ (1 – γ + μ)

(1 – μ)
lim

n−→∞ sup‖xn – z‖

⇒ g(Tz) ≤ g(z).

Since g(z) is the minimum, g(Tz) = g(z).
Now, if Tz �= z, then as g is strictly quasi-convex, we have g(z) ≤ g(λTz + (1 – λ)z) <

max{g(z), g(Tz)} = g(z), which is a contradiction.
Hence, Tz = z. �

Next, we consider the Banach space X with the Opial property.
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Theorem 3.11 Let C be a nonempty subset of a Banach space X having the Opial property.
Let T be a self-mapping on C satisfying the condition Bγ ,μ. If {xn} is a sequence in X such
that

(i) {xn} converges weakly to z,
(ii) limn−→∞ ‖Txn – xn‖ = 0,

then Tz = z.

Proof By Proposition 3.5(ii), (for γ = c
2 , c ∈ [0, 1])

γ ‖xn – Txn‖ ≤ ‖xn – z‖ ≤ ‖xn – z‖ + μ‖z – Tz‖.

So, by the condition Bγ ,μ,

‖Txn – Tz‖ ≤ (1 – γ )‖xn – z‖ + μ
(‖xn – Tz‖ + ‖z – Txn‖

)
. (3.3)

Now,

‖xn – Tz‖ ≤ ‖xn – Txn‖ + ‖Txn – Tz‖
≤ ‖xn – Txn‖ + (1 – γ )‖xn – z‖

+ μ
(‖xn – Tz‖ + ‖z – xn‖ + ‖xn – Txn‖

) (
by (3.3)

)
.

So, taking limit as n −→ ∞ and using (ii), we get

‖xn – Tz‖ ≤ 1 – γ + μ

1 – μ
‖xn – z‖

≤ ‖xn – z‖.

So,

lim
n−→∞ inf‖xn – Tz‖ ≤ lim

n−→∞ inf‖xn – z‖. (3.4)

Let Tz �= z. Since xn −→ z (weakly), by the Opial property, we have

lim
n−→∞ inf‖xn – z‖ < lim

n−→∞ inf‖xn – Tz‖,

which is a contradiction to (3.4).
So, Tz = z. �

Example 3.12 We consider the set C(⊂ lp, 1 < p < ∞) where

C =
{
{xn} ∈ lp : |x1| ≤ 1

2
, xj = 0 ∀j �= 1

}
.

Let {an} be a sequence in C such that

a1 =
{

1
2

, 0, 0, 0 . . .
}

, a2 =
{

2
3

, 0, 0, . . .
}

· · · an+1 =
{

n
n + 1

, 0, 0 . . .
}

.

Then {an} converges to z = {1, 0, 0 . . .}.
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Let T : C −→ C be such that T({an}) = T({x1, 0, 0 . . .}) = {x2
1, 0, 0 . . .}.

Now, let X1 = {x1, 0, 0 . . .}, Y1 = {y1, 0, 0 . . .} ∈ C. Then

‖TX1 – TY1‖p

=
∥∥{

x2
1 – y2

1, 0, 0, . . .
}∥∥

p

=
∣∣x2

1 – y2
1
∣∣ ≤ (|x1| + |y1|

)|x1 – y1|
≤ |x1 – y1| = ‖X1 – Y1‖p.

So, T is nonexpansive and hence satisfies the condition Bγ ,μ.
Again,

lim
n−→∞ ‖TXn – Xn‖p

= lim
n−→∞

∥
∥∥
∥

{(
n

n + 1

)2

–
(

n
n + 1

)
, 0, 0 . . . . . .

}∥
∥∥
∥

p

= lim
n−→∞

∣
∣∣
∣

(
n

n + 1

)2

–
(

n
n + 1

)∣
∣∣
∣

= 0.

Thus, all the conditions of Theorem 3.11 are satisfied. Hence, Tz = z. (Clearly, z =
{1, 0, 0 . . .} is a fixed point of T .)

In the following result, we take C as a weakly compact and convex subset.

Theorem 3.13 Let C be a weakly compact convex subset of a Banach space X with the
Opial property, T be a self-mapping on C satisfying the condition Bγ ,μ, and the sequence
{xn} in C be as defined in Proposition 3.6. Then {xn} converges weakly to a fixed point of T .

Proof By Proposition 3.6, ‖Txn – xn‖ −→ 0 as n −→ ∞.
Since C is weakly compact, there exists a subsequence {xnj} of {xn} and z ∈ C such that

{xnj} converges weakly to z. Now, by Theorem 3.11, z is a fixed point of T .
We assume that {xn} does not converge weakly to z. Then there is a subsequence {xnk }

of {xn} and u ∈ C such that {xnk } converges weakly to u and u �= z. Again, Tu = u (by The-
orem 3.11).

Now,

lim
n−→∞ inf‖xn – z‖

= lim
nj−→∞ inf‖xnj – z‖

< lim
nj−→∞ inf‖xnj – u‖ (by Opial property)

= lim
nk−→∞ inf‖xnk – u‖

< lim
nk−→∞ inf‖xnk – z‖
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= lim
n−→∞ inf‖xn – z‖,

which is a contradiction.
So, {xn} converges weakly to z. �

Example 3.14 We consider the same set C and the self-mapping T as in Example 3.12. For
X0 = { 1

2 , 0, 0 . . .} ∈ C, let the sequence {Xn} in C be defined by

Xn+1 = λTXn + (1 – λ)Xn, n ∈N∪ {0},λ ∈ [γ , 1) – {0},

which converges weakly to a fixed point of T by Theorem 3.13.
Now

X1 =
{

λ

22 + (1 – λ)
1
2

, 0, 0, . . .
}

,

X2 =
{
λ

(
λ

22 + (1 – λ)
1
2

)2

+ (1 – λ)
(

λ

22 + (1 – λ)
1
2

)
, 0, 0, . . .

}
, etc.

Clearly, {Xn} converges to {0, 0, 0, . . .} which is a fixed point of T in C.
Similar result as in Theorem 3.13 can be obtained by taking C as a closed, convex, and

bounded subset of a Banach space X with the Opial property.
Next we discuss the convergence of some iteration schemes to the fixed point of T .
For a Banach space X, the Mann iteration scheme (see [29]) is defined by: x0 ∈ X, xn+1 =

(1 – αn)xn + αnTxn, n ∈N∪ {0}, 0 ≤ αn ≤ 1, for each n,
∑

αn = ∞.
Using Theorem 3.8, we can see the convergence of the above iteration scheme to the

fixed point of T .
Here, we discuss the convergence of the following type of extended Mann iteration

scheme:

x0 ∈ X,

yn = αnTxn + (1 – αn)xn,

xn+1 = βnTyn + (1 – βn)yn,

n ∈N∪ {0}, 0 ≤ αn,βn ≤ 1, for each n, and
∑

αn = ∞,
∑

βn = ∞.

(3.5)

Lemma 3.15 Let C be a nonempty closed and convex subset of a Banach space X. Let T be
a self-mapping on C satisfying the condition Bγ ,μ. For x0 ∈ C, let {xn} be the sequence in C
defined by the above iteration scheme (3.5). Then limn−→∞ ‖xn – z‖ exists for all z ∈ F(T).

Proof Let F(T) �= φ, and let z ∈ F(T).
By Lemma 3.3, ‖z – Txn‖ ≤ ‖z – xn‖ ∀n ∈N∪ {0}.
Now,

‖xn+1 – z‖ =
∥∥βnTyn + (1 – βn)yn – z

∥∥

≤ βn‖Tyn – z‖ + (1 – βn)‖yn – z‖
≤ βn‖yn – z‖ + (1 – βn)‖yn – z‖
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= ‖yn – z‖
=

∥
∥αnTxn + (1 – αn)xn – z

∥
∥

≤ αn‖xn – z‖ + (1 – αn)‖xn – z‖
= ‖xn – z‖,

i.e., {‖xn – z‖} is a nonincreasing and bounded sequence.
Thus limn−→∞ ‖xn – z‖ exists for all z ∈ F(T). �

Lemma 3.16 ([2]) Let X be a uniformly convex Banach space. Let {λn} be a sequence of
real numbers such that 0 < a ≤ λn ≤ b < 1 ∀n ∈ N, and let {xn} and {yn} be sequences in X
such that limn−→∞ sup‖xn‖ ≤ r, limn−→∞ sup‖yn‖ ≤ r, and limn−→∞ ‖λnxn + (1 – λn)yn‖ = r
for some r ≥ 0. Then limn−→∞ ‖xn – yn‖ = 0.

Theorem 3.17 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X. Let T be a self-mapping on C satisfying Bγ ,μ condition. Let {xn} be a sequence in
C defined by the iteration scheme (3.5) where αn,βn ∈ (0, 1). Then F(T) �= φ if and only if
{xn} is bounded and limn−→∞ ‖Txn – xn‖ = 0.

Proof Let F(T) �= φ and z ∈ F(T).
By Lemma 3.15, limn−→∞ ‖xn – z‖ exists and {xn} is bounded.

lim
n−→∞‖xn – z‖ = p (say). (3.6)

Now,

‖Tyn – z‖ ≤ ‖yn – z‖ (by Lemma 3.3)

≤ ‖xn – z‖.

So,

lim
n−→∞ sup‖Tyn – z‖ ≤ lim

n−→∞ sup‖yn – z‖ ≤ lim
n−→∞ sup‖xn – z‖ = p. (3.7)

Also,

lim
n−→∞

∥∥βn(Tyn – z) + (1 – βn)(yn – z)
∥∥

= lim
n−→∞ ‖xn+1 – z‖ = p.

So, by Lemma 3.16, limn−→∞ ‖Tyn – yn‖ = 0.
Again, by Lemma 3.3 we have

lim
n−→∞ sup‖Txn – z‖ ≤ lim

n−→∞ sup‖xn – z‖ = p. (3.8)

Now,

‖xn+1 – z‖ ≤ βn‖Tyn – z‖ + (1 – βn)‖yn – z‖
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≤ βn‖yn – z‖ + (1 – βn)‖yn – z‖
= ‖yn – z‖ ∀n ∈ N∪ {0}

⇒ p ≤ lim
n−→∞ inf‖yn – z‖

≤ lim
n−→∞ sup‖yn – z‖ ≤ p

(
using (3.7)

)

⇒ lim
n−→∞‖yn – z‖ = p.

So,

lim
n−→∞

∥∥αn(Txn – z) + (1 – αn)(xn – z)
∥∥ = lim

n−→∞‖yn – z‖ = p. (3.9)

Using (3.6), (3.8), and (3.9) with Lemma 3.16, we get

lim
n−→∞

∥∥(Txn – z) – (xn – z)
∥∥ = 0

⇒ lim
n−→∞‖Txn – xn‖ = 0.

Conversely, let {xn} be bounded and limn−→∞ ‖Txn – xn‖ = 0.
Let z ∈ A(C, {xn}). By Proposition 3.5(iii), for, γ = c

2 , c ∈ [0, 1],

‖xn – Tz‖ ≤ (3 – c)‖xn – Txn‖ +
(

1 –
c
2

)
‖xn – z‖ + μ

(
2‖xn – Txn‖

+ ‖xn – Tz‖ + ‖z – Txn‖ + 2
∥∥Txn – T2xn

∥∥)

≤ (3 – c)‖xn – Txn‖ +
(

1 –
c
2

)
‖xn – z‖ + μ

(
2‖xn – Txn‖

+ ‖xn – Tz‖ + ‖xn – z‖ + ‖xn – Txn‖ + 2‖xn – Txn‖
)

(
by Proposition 3.5(i)

)

⇒ (1 – μ) lim
n→∞ sup‖xn – Tz‖ ≤

(
1 –

c
2

+ μ

)
lim

n→∞ sup‖xn – z‖

⇒ lim
n→∞ sup‖xn – Tz‖ ≤ 1 – c

2 + μ

1 – μ
lim

n→∞ sup‖xn – z‖

≤ lim
n→∞ sup‖xn – z‖

(
as

1 – c
2 + μ

1 – μ
≤ 1, for 2μ ≤ γ =

c
2

)

⇒ r
(
Tz, {xn}

) ≤ r
(
z, {xn}

)
.

So, Tz ∈ A(C, {xn}).
Since X is uniformly convex, so Tz = z, i.e., z ∈ F(T).
So, F(T) �= φ. �
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Example 3.18 Let T : [0, 5] −→ [0, 5] be defined by

T(x) =

⎧
⎨

⎩
0 if x �= 5,

2 if x = 5.

Then T satisfies the condition Bγ ,μ.
For x0 = 2, we construct the sequence {xn} by iteration scheme (3.5), where αn = α ∈ (0, 1)

and βn = β ∈ (0, 1), n ∈N∪ {0}.
Then we get xn = 2(1 – α)n(1 – β)n, n ≥ 1. Clearly {xn} is bounded.

Now, lim
n−→∞‖Txn – xn‖ = lim

n−→∞
∥∥T

(
2(1 – α)n(1 – β)n) – 2(1 – α)n(1 – β)n∥∥

= lim
n−→∞

∣∣2(1 – α)(1 – β)
∣∣

= 0.

Thus, by Theorem 3.17, F(T) �= φ. Clearly, 0 ∈ F(T) in this case.
Next we consider the following type of extended Picard–Mann hybrid iteration scheme:

x0 ∈ X,

yn = (1 – bn)xn + bnTxn,

zn = (1 – an)xn + anTyn,

xn+1 = Tzn,

0 ≤ an, bn ≤ 1 for each n,
∑

n
an = ∞,

∑

n
bn = ∞.

(3.10)

Lemma 3.19 Let T be a self-mapping on a nonempty closed and convex subset C of a
Banach space X. Let T satisfy the condition Bγ ,μ on C. For x0 ∈ C, we define a sequence
{xn} in C by the iteration scheme (3.10), where 0 < an, bn < 1. Then limn−→∞ ‖xn – z‖ exists
for all z ∈ F(T).

Proof Similar as in Lemma 3.15. �

Theorem 3.20 Let T be a self-mapping on a nonempty closed and convex subset C of a
uniformly convex Banach space X. Let T satisfy the condition Bγ ,μ on C. Let {xn} be a
sequence in C defined by the iteration scheme (3.10), where 0 < an, bn < 1 and limn−→∞ an =
k (�= 0). Then F(T) �= φ if and only if {xn} is bounded and limn→∞ ‖Txn – xn‖ = 0.

Proof Let F(T) �= φ and z ∈ F(T). Then, by Lemma 3.19, limn−→∞ ‖xn – z‖ exists and {xn}
is bounded.

lim
n−→∞‖xn – z‖ = p (say). (3.11)

As in Theorem 3.17, we have

‖Tyn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖.
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So,

lim
n−→∞ sup‖Tyn – z‖ ≤ lim

n−→∞ sup‖yn – z‖ ≤ lim
n−→∞ sup‖xn – z‖ = p. (3.12)

Again,

‖xn+1 – z‖
= ‖Tzn – z‖ ≤ ‖zn – z‖
=

∥
∥(1 – an)xn + anTyn – z

∥
∥

≤ an‖Tyn – z‖ + (1 – an)‖xn – z‖
≤ an‖yn – z‖ + (1 – an)‖xn – z‖
= an

∥
∥(1 – bn)xn + bnTxn – z

∥
∥ + (1 – an)‖xn – z‖

≤ an
(
bn‖Txn – z‖ + (1 – bn)‖xn – z‖) + (1 – an)‖xn – z‖

≤ anbn‖xn – z‖ + an‖xn – z‖ – anbn‖xn – z‖ + ‖xn – z‖ – an‖xn – z‖
= ‖xn – z‖. (3.13)

Thus,

‖xn+1 – z‖ ≤ ‖xn – z‖. (3.14)

Again, by Lemma 3.3, we have

‖Txn – z‖ ≤ ‖xn – z‖ for all n ∈ N∪ {0}
⇒ lim

n−→∞ sup‖Txn – z‖ ≤ lim
n−→∞ sup‖xn – z‖ = p. (3.15)

Now, from equation (3.13), we have

‖xn+1 – z‖ ≤ an‖yn – z‖ + (1 – an)‖xn – z‖
⇒ ‖xn+1 – z‖ – (1 – an)‖xn – z‖ ≤ an‖yn – z‖
⇒ p – (1 – k)p ≤ k lim

n−→∞ inf‖yn – z‖

⇒ p ≤ lim
n−→∞ inf‖yn – z‖ lim

n−→∞ sup‖yn – z‖ ≤ p
(
by (3.12)

)

⇒ lim
n−→∞‖yn – z‖ = p.

Thus,

lim
n−→∞

∥
∥bn(Txn – z) + (1 – bn)(xn – z)

∥
∥ = lim

n−→∞‖yn – z‖ = p. (3.16)

By (3.11), (3.15), (3.16) and Lemma 3.16, we have limn−→∞ ‖Txn – xn‖ = 0.
For the converse part, let {xn} be bounded and limn−→∞ ‖Txn – xn‖ = 0.
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Let z ∈ A(C, {xn}). Then, using Proposition 3.5(iii) and following Theorem 3.17, for γ =
c
2 , c ∈ [0, 1], we have

lim
n→∞ sup‖xn – Tz‖ ≤ 1 – c

2 + μ

1 – μ
lim

n→∞ sup‖xn – z‖

≤ lim
n→∞ sup‖xn – z‖

(
as

1 – c
2 + μ

1 – μ
≤ 1, for 2μ ≤ γ =

c
2

)

⇒ r
(
Tz, {xn}

) ≤ r
(
z, {xn}

)
.

Hence, Tz ∈ A(C, {xn}).
X being uniformly convex, Tz = z, i.e., z ∈ F(T).
Hence, F(T) �= φ. �

Example 3.21 We consider the same set C with the self-mapping T as in Example 3.12.
For X0 = { 1

3 , 0, 0, 0 . . .} ∈ C, we construct the sequence {Xn} in C by the iteration
scheme (3.10).

Let an = a and bn = b ∀n ∈N∪ {0}. Then

Y0 = (1 – b)
{

1
3

, 0, 0, 0 . . .
}

+ b
{

1
32 , 0, 0, 0 . . .

}
,

Z0 = (1 – a)
{

1
3

, 0, 0, 0 . . .
}

+ a
{(

(1 – b)
1
3

+ b
1
32

)2

, 0, 0, 0 . . .
}

,

X1 =
{(

(1 – a)
1
3

+ a
(

(1 – b)
1
3

+ b
1
32

)2)2

, 0, 0, . . .
}

, and so on.

Thus, it can be seen that {Xn} is bounded and limn−→∞ ‖TXn – Xn‖ = 0. Hence, by Theo-
rem 3.20, F(T) �= φ (here, clearly, {0, 0, . . .} ∈ F(T)).

4 Conclusion
Throughout the paper, we have discussed some fixed point results for the class of map-
pings with Bγ ,μ condition. In 2010, Harandi and Emami (see [7]) studied some fixed point
theorems for contraction type mappings in partially ordered metric spaces with applica-
tions in solving ordinary differential equations. In this context, the study of fixed point
theory in partially ordered metric spaces for the class of mappings with Bγ ,μ condition
with different practical applications is a scope for future study.
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