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1 Introduction
Let �∞ be the Banach space of bounded sequences with supremum norm and let (�∞)∗ be
the dual space of �∞. Let μ be an element of (�∞)∗. We denote by μ(f ) the value of μ at
f = {xn} ∈ �∞. Sometimes, we denote by μn(xn) the value μ(f ). A linear functional μ on
�∞ is called a mean if μ(e) = ‖μ‖ = , where e = {, , , . . . }. Hasegawa et al. [] obtained
the following unique fixed point theorem on a complete metric space.

Theorem . ([]) Let (X, d) be a complete metric space and let S be a mapping of X into
itself. Let �∞ be the Banach space of bounded sequences with the supremum norm. Suppose
that there exist a real number r with  ≤ r <  and an element x ∈ X such that {Snx} is
bounded and

μnd
(
Snx, Sy

) ≤ rμnd
(
Snx, y

)
, ∀y ∈ X

for some mean μ on l∞. Then the following hold:
() S has a unique fixed point u ∈ X ;
() for every z ∈ X , the sequence {Snz} converges to u.

By using the idea of Caristi’s fixed point theorem [], Chuang et al. [] proved a unique
fixed point theorem for single-valued mappings which generalizes Theorem .. Further-
more, they obtained an existence theorem for set-valued mappings in a complete metric
space. Using these results, Chuang et al. [] obtained new and well-known existence the-
orems in a complete metric space.
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On the other hand, in , Kada et al. [] introduced the concept of w-distances on a
metric space.

Let (X, d) be a metric space. A function p : X × X → [,∞) is said to be a w-distance []
on X if the following are satisfied:

() p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X ;
() for any x ∈ X , p(x, ·) : X → [,∞) is lower semicontinuous;
() for any ε > , there exists δ >  such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ε.
Using the concept of w-distances, they improved important results in complete metric

spaces. For example, they improved Caristi’s fixed point theorem [], Ekeland’s variational
principle [] and the nonconvex minimization theorem according to Takahashi []. Mo-
tivated by Chuang et al. [], Takahashi et al. [] improved their unique fixed point theo-
rem for single-valued mappings by using the concept of w-distances. Furthermore, they
extended Chuang et al.’s existence theorem [] for set-valued mappings to w-distances.
However, Takahashi et al. [] assumed that w-distances are symmetric.

In this paper, without assuming that w-distances are symmetric, we prove Takahashi
et al.’s unique fixed point theorems for single-valued mappings and their existence theo-
rem for set-valued mappings in a complete metric space. Using these results, we obtained
new and well-known existence theorems in a complete metric space. In particular, us-
ing this unique fixed point theorem for single-valued mappings, we obtain a unique fixed
point theorem of Caristi’s type [] with lower semicontinuous functions and w-distances.
It seems that the proofs are technical and useful.

2 Preliminaries
Throughout this paper, we denote by N and R the sets of positive integers and real num-
bers, respectively. Let X be a metric space with metric d. Then we denote by W (X) the
set of all w-distances on X. A w-distance p on X is called symmetric if p(x, y) = p(y, x) for
all x, y ∈ X. We denote by W(X) the set of all symmetric w-distances on X. Note that the
metric d is an element of W(X). We also know that there are many important examples
of w-distances on X; see [, ].

The following lemma was proved by Kada et al. []; see also Shioji et al. [].

Lemma . ([]) Let (X, d) be a complete metric space and let p be a w-distance on X. Let
{xn} and {yn} be sequences in X. Let {sn} and {tn} be sequences in [,∞) converging to ,
and let x, y, z ∈ X. Then the following hold:

() If p(xn, y) ≤ sn and p(xn, z) ≤ tn for all n ∈N, then y = z. In particular, if p(x, y) = 
and p(x, z) = , then y = z;

() if p(xn, yn) ≤ sn and p(xn, z) ≤ tn for all n ∈N, then the sequence {yn} converges to z;
() if p(xn, xm) ≤ sn for all n, m ∈N with m > n, then the sequence {xn} is a Cauchy

sequence;
() if p(y, xn) ≤ sn for all n ∈N, then {xn} is a Cauchy sequence.

Let (X, d) be a metric space and let g be a function of X into (–∞,∞] = R∪ {∞}. Then
g is proper if there exists x ∈ X such that g(x) < ∞. A function g is lower semicontinuous
if for any t ∈ R, the set {x ∈ X : g(x) ≤ t} is closed. A function g is bounded below if there
exists K ∈ R such that

K ≤ g(x), ∀x ∈ X.
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Kada et al. [] improved Caristi’s fixed point theorem [] as follows; see also [], Theo-
rem ...

Theorem . ([]) Let (X, d) be a complete metric space, p ∈ W (X), and let φ : X →
(∞,∞] be a proper, bounded below, and lower semicontinuous function. Let T : X → X
be a mapping such that for each x ∈ X,

p(x, Tx) + φ(Tx) ≤ φ(x).

Then there exists z ∈ X such that Tz = z and p(z, z) = .

A mean μ is called a Banach limit on �∞ if μn(xn+) = μn(xn) for all {xn} ∈ �∞. We know
that there exists a Banach limit on �∞. If μ is a Banach limit on �∞, then for f = {xn} ∈ �∞,

lim inf
n→∞ xn ≤ μn(xn) ≤ lim sup

n→∞
xn.

In particular, if f = {xn} ∈ �∞ and xn → a ∈ R, then we have μ(f ) = μn(xn) = a. For the
proof of existence of a Banach limit and its other elementary properties, see [].

3 Existence theorems for single-valued mappings
In this section, using means and w-distances, we first prove an existence theorem for map-
pings in metric spaces which generalizes Takahashi et al. [].

Theorem . Let (X, d) be a complete metric space, let p ∈ W (X) and let {xn} be a sequence
in X such that {p(xn, w)} and {p(w, xn)} are bounded for some w ∈ X. Let μ be a mean on �∞

and let φ : X → (–∞,∞] be a proper, bounded below, and lower semicontinuous function.
Let S : X → X be a mapping. Suppose that there exist l, m ∈N∪ {} such that

μnp
(
xn, Sly

)
+ μnp

(
Smy, xn

)
+ φ(Sy) ≤ φ(y) (.)

for all y ∈ X. Then there exists x ∈ X such that
() x is a unique fixed point of S in {x ∈ X : φ(x) < ∞};
() x = limk→∞ Sky for all y ∈ X with φ(y) < ∞;
() φ(x) = infv∈X φ(v).

Proof Since {p(xn, w)} is bounded for some w ∈ X, we have, for any y ∈ X, {p(xn, y)} is
bounded. In fact, we have, for any n ∈N,

p(xn, y) ≤ p(xn, w) + p(w, y) ≤ sup
k∈N

p(xk , w) + p(w, y).

Furthermore, since {p(w, xn)} is bounded, we see that {p(z, xn)} is bounded for all z ∈ X. In
fact, we have, for any n ∈N,

p(z, xn) ≤ p(z, w) + p(w, xn) ≤ p(z, w) + sup
k∈N

p(w, xk).
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We have from (.)

μnp
(
xn, Sly

)
+ φ(Sy) ≤ φ(y) and μnp

(
Smy, xn

)
+ φ(Sy) ≤ φ(y) (.)

for all y ∈ X. For y ∈ X with φ(y) < ∞, we have from (.) φ(Sky) < ∞ for all k ∈ N ∪ {}
and hence

μnp
(
xn, SlSky

) ≤ φ
(
Sky

)
– φ

(
Sk+y

)
(.)

and

μnp
(
SmSky, xn

) ≤ φ
(
Sky

)
– φ

(
Sk+y

)
. (.)

Then we see that {φ(Sky)} is a decreasing sequence which is bounded below. Hence
limk→∞ φ(Sky) exists. Put s = limk→∞ φ(Sky). Since

μnp
(
xn, Sl+ky

) ≤ φ
(
Sky

)
– φ

(
Sk+y

) ≤ φ
(
Sky

)
– s

and

μnp
(
Sm+ky, xn

) ≤ φ
(
Sky

)
– φ

(
Sk+y

) ≤ φ
(
Sky

)
– s

for all k ∈N, we have

lim sup
k→∞

μnp
(
xn, Sl+ky

) ≤  and lim sup
k→∞

μnp
(
Sm+ky, xn

) ≤ .

Then we have

lim
k→∞

μnp
(
xn, Sl+ky

)
=  and lim

k→∞
μnp

(
Sm+ky, xn

)
= . (.)

We have, for any k, n ∈N,

p
(
Sl+m+ky, Sl+m+k+y

) ≤ p
(
Sl+m+ky, xn

)
+ p

(
xn, Sl+m+k+y

)
.

Since μ is a mean on �∞, we have from (.) and (.), for any k ∈N,

p
(
Sl+m+ky, Sl+m+k+y

) ≤ μnp
(
Sl+m+ky, xn

)
+ μnp

(
xn, Sl+m+k+y

)

≤ φ
(
Sl+ky

)
– φ

(
Sl+k+y

)
+ φ

(
Sm+k+y

)
– φ

(
Sm+k+y

)
. (.)

We have from (.), for any h, k ∈N with k > h,

p
(
Sl+m+hy, Sl+m+ky

) ≤ p
(
Sl+m+hy, Sl+m+h+y

)

+ p
(
Sl+m+h+y, Sl+m+h+y

)
+ · · · + p

(
Sl+m+k–y, Sl+m+ky

)

≤ φ
(
Sl+hy

)
– φ

(
Sl+h+y

)
+ φ

(
Sm+h+y

)
– φ

(
Sm+h+y

)
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+ φ
(
Sl+h+y

)
– φ

(
Sl+h+y

)
+ φ

(
Sm+h+y

)
– φ

(
Sm+h+y

)
+ · · ·

+ φ
(
Sl+k–y

)
– φ

(
Sl+ky

)
+ φ

(
Sm+ky

)
– φ

(
Sm+k+y

)

= φ
(
Sl+hy

)
– φ

(
Sl+ky

)
+ φ

(
Sm+h+y

)
– φ

(
Sm+k+y

)

≤ φ
(
Sl+hy

)
– s + φ

(
Sm+h+y

)
– s

≤ φ
(
Sl+hy

)
– s + φ

(
Sm+hy

)
– s

= αh – s + βh – s, (.)

where αh = φ(Sl+hy) and βh = φ(Sm+hy). Since αh – s + βh – s →  as h → ∞, we see from
Lemma . that {Sl+m+ky} is a Cauchy sequence in X. Since X is complete, there exists
y ∈ X such that limk→∞ Sl+m+ky = y. We know from the definition of p that, for any n ∈N,
y 
→ p(xn, y) is lower semicontinuous. Using this and following the technique of [], we
have, for any n ∈N,

p(xn, y) ≤ lim inf
k→∞

p
(
xn, Sl+m+ky

)

and hence

μnp(xn, y) ≤ μn

(
lim inf

k→∞
p
(
xn, Sl+m+ky

))
. (.)

On the other hand, we have from (.), for any h, k, n ∈N with k > h,

p
(
xn, Sl+m+ky

) ≤ p
(
xn, Sl+m+hy

)
+ p

(
Sl+m+hy, Sl+m+ky

) ≤ p
(
xn, Sl+m+hy

)
+ αh – s + βh – s

and hence

lim sup
k→∞

p
(
xn, Sl+m+ky

) ≤ p
(
xn, Sl+m+hy

)
+ αh – s + βh – s.

Applying μ to both sides of the inequality, we have

μn

(
lim sup

k→∞
p
(
xn, Sl+m+ky

)) ≤ μnp
(
xn, Sl+m+hy

)
+ αh – s + βh – s.

Letting h → ∞, we get from (.) that

μn

(
lim sup

k→∞
p
(
xn, Sl+m+ky

)) ≤ lim inf
h→∞

μnp
(
xn, Sl+m+hy

)
+ 

= lim
h→∞

μnp
(
xn, Sl+m+hy

)

= . (.)

Then we have from (.) and (.)

μnp(xn, y) ≤ μn

(
lim inf

k→∞
p
(
xn, Sl+m+ky

))

≤ μn

(
lim sup

k→∞
p
(
xn, Sl+m+ky

))
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≤ lim
k→∞

μnp
(
xn, Sl+m+ky

)

= . (.)

This implies that

μnp(xn, y) = .

Similarly, for another u ∈ X with φ(u) < ∞, there exists u ∈ X such that limk→∞ Sl+m+ku =
u and μnp(xn, u) = . We also have, for k, n ∈ N,

p
(
Sl+m+ky, y

) ≤ p
(
Sl+m+ky, xn

)
+ p(xn, y)

and hence

p
(
Sl+m+ky, y

) ≤ μnp
(
Sl+m+ky, xn

)
+ μnp(xn, y)

= μnp
(
Sl+m+ky, xn

)
+ 

= μnp
(
Sl+m+ky, xn

)
. (.)

Furthermore, we have, for k, n ∈N,

p
(
Sl+m+ky, u

) ≤ p
(
Sl+m+ky, xn

)
+ p(xn, u)

and hence

p
(
Sl+m+ky, u

) ≤ μnp
(
Sl+m+ky, xn

)
+ μnp(xn, u)

= μnp
(
Sl+m+ky, xn

)
+ 

= μnp
(
Sl+m+ky, xn

)
. (.)

We know that μnp(Sl+m+ky, xn) →  as k → ∞. Thus, we have from (.), (.), and
Lemma . y = u. Therefore we have x = limk→∞ Skz for all z ∈ X with φ(z) < ∞. Since
φ is lower semicontinuous and limk→∞ Skz = x for all z ∈ X with φ(z) < ∞, we have

φ(x) ≤ lim inf
k→∞

φ
(
Skz

)
= lim

k→∞
φ
(
Skz

)
= inf

k∈N∪{}
φ
(
Skz

) ≤ φ(z).

This implies that

φ(x) = inf
y∈X

φ(y). (.)

We finally prove that x is a unique fixed point of S in {x ∈ X : φ(x) < ∞}. Since, from
(.),

 ≤ μnp
(
xn, Slx

) ≤ φ(x) – φ(Sx) ≤ ,
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we have μnp(xn, Slx) = . We also know μnp(xn, x) = . For k, n ∈N, we have

p
(
SkSmy, Slx

) ≤ p
(
SkSmy, xn

)
+ p

(
xn, Slx

)

and

p
(
SkSmy, x

) ≤ p
(
SkSmy, xn

)
+ p(xn, x).

Then, as in the above argument, we have

p
(
SkSmy, Slx

) ≤ μnp
(
SkSmy, xn

)
+ μnp

(
xn, Slx

)

= μnp
(
SkSmy, xn

)
(.)

and

p
(
SkSmy, x

) ≤ μnp
(
SkSmy, xn

)
+ μnp(xn, x)

= μnp
(
SkSmy, xn

)
. (.)

We also know from (.) that μnp(Sm+ky, xn) →  as k → ∞. Therefore, from (.), (.),
and Lemma . Slx = x. Using Slx = x, we have from (.)

 ≤ μnp(xn, Sx) = μnp
(
xn, Sl+x

)

≤ φ(Sx) – φ
(
Sx

)

≤ φ(x) – φ
(
Sx

) ≤ 

and hence μnp(xn, Sx) = . Since, for k, n ∈N,

p
(
SkSmy, Sx

) ≤ p
(
SkSmy, xn

)
+ p(xn, Sx),

we have

p
(
SkSmy, Sx

) ≤ μnp
(
SkSmy, xn

)
+ μnp(xn, Sx)

= μnp
(
SkSmy, xn

)
. (.)

We have from (.), (.), and Lemma . Sx = x. We show that x is a unique fixed
point of S in {x ∈ X : φ(x) < ∞}. Indeed, if z is a fixed point of S with φ(z) < ∞, then

 ≤ μnp(xn, z) = μnp
(
xn, Slz

) ≤ φ(z) – φ(Sz) = φ(z) – φ(z) = 

and hence μnp(xn, z) = . Since, for k, n ∈N,

p
(
SkSmy, z

) ≤ p
(
SkSmy, xn

)
+ p(xn, z),

we have

p
(
SkSmy, z

) ≤ μnp
(
SkSmy, xn

)
+ μnp(xn, z) = μnp

(
SkSmy, xn

)
. (.)
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Since μnp(Sm+ky, xn) →  as k → ∞, from (.), (.), and Lemma ., we have z = x.
Therefore x is a unique fixed point of S in {y ∈ X : φ(y) < ∞}. This completes the proof.

�

Using Theorem ., we can obtain the following result proved by Takahashi et al. [].

Theorem . ([]) Let (X, d) be a complete metric space, let p ∈ W(X) and let {xn} be a
sequence in X such that {p(xn, x)} is bounded for some x ∈ X. Let μ be a mean on �∞ and
let ψ : X → (–∞,∞] be a proper, bounded below, and lower semicontinuous function. Let
T : X → X be a mapping. Suppose that there exists m ∈N∪ {} such that

μnp
(
xn, Tmy

)
+ ψ(Ty) ≤ ψ(y), ∀y ∈ X. (.)

Then there exists x̄ ∈ X such that
(a) x̄ = limk→∞ Tky for all y ∈ X with ψ(y) < ∞;
(b) ψ(x̄) = infu∈X ψ(u);
(c) x̄ is a unique fixed point of T in {x ∈ X : ψ(x) < ∞}.

Proof Since {xn} is a bounded sequence in X such that {p(xn, x)} is bounded for some
x ∈ X, we see from p ∈ W(X) that {p(x, xn)} is bounded. Putting S = T , l = m, and φ = ψ

in Theorem ., we have

μnp
(
Tmy, xn

)
+ ψ(Ty) ≤ ψ(y), ∀y ∈ X

and hence

μnp
(
Tmy, xn

)
+ ψ(Ty) ≤ ψ(y), ∀y ∈ X.

Thus we have the desired result from Theorem .. �

Using Theorem . and the generalized Caristi’s fixed point theorem (Theorem .), we
also have a unique fixed point theorem of Caristi’s type [] with lower semicontinuous
functions and w-distances.

Theorem . Let (X, d) be a complete metric space and let p ∈ W (X) such that p(x, x) = 
for all x ∈ X. Let φ : X → (–∞,∞] be a proper, bounded below, and lower semicontinuous
function. Let S : X → X be a mapping. Suppose that there exists α ∈R such that

α
(
p(Sx, y) + p(y, Sx)

)
+ ( – α)

(
p(x, y) + p(y, x)

)
+ φ(Sy) ≤ φ(y), ∀x, y ∈ X. (.)

Then there exists x ∈ X such that
() x is a unique fixed point of S in {x ∈ X : φ(x) < ∞};
() x = limk→∞ Sky for all y ∈ X with φ(y) < ∞;
() φ(x) = infv∈X φ(v).

Proof Let us first consider α > . Putting y = x in (.), we have from p(x, x) = 

α
(
p(Sx, x) + p(x, Sx)

)
+ φ(Sx) ≤ φ(x), ∀x ∈ X
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and hence

αp(x, Sx) + φ(Sx) ≤ φ(x), ∀x ∈ X.

By Theorem ., there exists u ∈ X such that Su = u. Putting x = u in (.) again, we
have, for any y ∈ X,

α
(
p(Su, y) + p(y, Su)

)
+ ( – α)

(
p(u, y) + p(y, u)

)
+ φ(Sy) ≤ φ(y).

Since Su = u, we have, for any y ∈ X,

p(u, y) + p(y, u) + φ(Sy) ≤ φ(y).

By Theorem ., we see that x is a unique fixed point of S in {x ∈ X : φ(x) < ∞} such that
φ(x) = infu∈X φ(u) and x = limk→∞ Skz for all z ∈ X with φ(z) < ∞.

Next let us consider the case of α = . Then we have

p(x, y) + p(y, x) + φ(Sy) ≤ φ(y), ∀x, y ∈ X. (.)

Replacing x and y by Sx and x in (.), respectively, we have

p(Sx, x) + p(x, Sx) + φ(Sx) ≤ φ(x), ∀x ∈ X

and hence

p(x, Sx) + φ(Sx) ≤ φ(x), ∀x ∈ X.

We also see from Theorem . that there exists u ∈ X such that Su = u. Putting x = u

in (.), we have also

p(u, y) + p(y, u) + φ(Sy) ≤ φ(y), ∀y ∈ X.

By Theorem ., we see that x is a unique fixed point of S in {x ∈ X : φ(x) < ∞} such that
φ(x) = infu∈X φ(u) and x = limk→∞ Skz for all z ∈ X with φ(z) < ∞.

In the case of α < , we have  – α > . Furthermore, replacing y by Sx in (.), we have
from p(Sx, Sx) = 

( – α)
(
p(x, Sx) + p(Sx, x)

)
+ φ

(
Sx

) ≤ φ(Sx), ∀x ∈ X (.)

and hence

( – α)p(x, Sx) + φ
(
Sx

) ≤ φ(Sx), ∀x ∈ X.

Take x ∈ X with φ(x) < ∞. Then we have, for any n ∈ N,

( – α)p(x, Sx) + φ
(
Sx

) ≤ φ(Sx),
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( – α)p
(
Sx, Sx

)
+ φ

(
Sx

) ≤ φ
(
Sx

)
,

...

( – α)p
(
Sn–x, Snx

)
+ φ

(
Sn+x

) ≤ φ
(
Snx

)
.

Adding these inequalities, we have

( – α)
{

p(x, Sx) + p
(
Sx, Sx

)
+ · · · + p

(
Sn–x, Snx

)} ≤ φ(Sx) – φ
(
Sn+x

)
.

Since {φ(Snx)} is a decreasing sequence and bounded below, we see that there exists s =
limn→∞ φ(Snx). Thus we have, for any n ∈N,

( – α)p
(
x, Snx

) ≤ ( – α)
{

p(x, Sx) + p
(
Sx, Sx

)
+ · · · + p

(
Sn–x, Snx

)}

≤ φ(Sx) – φ
(
Sn+x

)

≤ φ(Sx) – s < ∞.

Then {p(x, Snx)} is bounded. Furthermore, from (.) we have

( – α)p(Sx, x) + φ
(
Sx

) ≤ φ(Sx), ∀x ∈ X.

As in the above argument, we have, for any n ∈N,

( – α)p
(
Snx, x

) ≤ φ(Sx) – s < ∞.

Then {p(Snx, x)} is bounded. Replacing x by Snx in (.), we have, for any n ∈N,

α
(
p
(
Sn+x, y

)
+ p

(
y, Sn+x

))

+ ( – α)
(
p
(
Snx, y

)
+ p

(
y, Snx

))
+ φ(Sy) ≤ φ(y), ∀y ∈ X.

Applying a Banach limit μ to the both sides of this inequality, we have

α
(
μnp

(
Sn+x, y

)
+ μnp

(
y, Sn+x

))

+ ( – α)
(
μnp

(
Snx, y

)
+ μnp

(
y, Snx

))
+ φ(Sy) ≤ φ(y), ∀y ∈ X.

Since μnp(Sn+x, y) + μnp(y, Sn+x) = μnp(Snx, y) + μnp(y, Snx), we get

μn
(
p
(
Snx, y

)
+ p

(
y, Snx

))
+ φ(Sy) ≤ φ(y), ∀y ∈ X. (.)

By Theorem ., S has a unique fixed point x in {x ∈ X : φ(x) < ∞} such that φ(x) =
infu∈X φ(u) and x = limk→∞ Skz for all z ∈ X with φ(z) < ∞. �

4 Existence theorems for set-valued mappings
Using w-distances, we have the following existence theorem for set-valued mappings in a
complete metric space. Let (X, d) be a metric space and let P(X) be the class of all nonempty
subsets of X. A mapping of X into P(X) is called a set-valued mapping, or a multi-valued
mapping.
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Theorem . Let (X, d) be a complete metric space, let p ∈ W (X), and let {xn} be a se-
quence in X such that {p(xn, w)} and {p(w, xn)} are bounded for some w ∈ X. Let μ be a
mean on �∞ and let φ : X → (–∞,∞] be a proper, bounded below, and lower semicontin-
uous function. Let S : X → P(X) be a set-valued mapping such that for each x ∈ X, there
exists y ∈ Sx satisfying

μnp(xn, x) + μnp(x, xn) + φ(y) ≤ φ(x). (.)

Then there exists x ∈ X such that
() x ∈ Sx;
() φ(x) = infy∈X φ(y);
() for any z ∈ X with φ(z) < ∞, there exists a sequence {zm} ⊂ X such that zm+ ∈ Szm,

m ∈N∪ {} and zm → x as m → ∞.

Proof For each z = z ∈ X with φ(z) < ∞, there exists z ∈ Sz such that

μnp(xn, z) + μnp(z, xn) ≤ φ(z) – φ(z).

Repeating this process, we get a sequence {zm} in X such that zm+ ∈ Szm and

μnp(xn, zm) + μnp(zm, xn) ≤ φ(zm) – φ(zm+) (.)

for each m ∈ N. Clearly, {φ(zm)} is a decreasing sequence which is bounded below. Hence
limm→∞ φ(zm) exists. Put s = limm→∞ φ(zm). We have from (.)

lim
m→∞μnp(xn, zm) =  and lim

m→∞μnp(zm, xn) = . (.)

We have, for any m, n ∈N,

p(zm, zm+) ≤ p(zm, xn) + p(xn, zm+).

Since μ is a mean on �∞, we have, for any m ∈N,

p(zm, zm+) ≤ μnp(zm, xn) + μnp(xn, zm+)

≤ φ(zm) – φ(zm+) + φ(zm+) – φ(zm+)

= φ(zm) – φ(zm+). (.)

We have from (.), for any l, m ∈N with m > l,

p(zl, zm) ≤ p(zl, zl+) + p(zl+, zl+) + · · · + p(zm–, zm)

≤ φ(zl) – φ(zl+) + φ(zl+) – φ(zl+)

+ · · · + φ(zm–) – φ(zm+)

= φ(zl) + φ(zl+) – φ(zm) – φ(zm+)

≤ φ(zl) + φ(zl+) – s – s
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≤ φ(zl) + φ(zl) – s – s

= φ(zl) – s (.)

and φ(zl) – s →  as l → ∞. We see from Lemma . that {zm} is a Cauchy sequence
in X. Since X is complete, there exists a point x ∈ X such that limm→∞ zm = x. We know
from the definition of p that, for any n ∈ N, y 
→ p(xn, y) is lower semicontinuous. Using
this and following the technique of [], we have, for any n ∈N,

p(xn, x) ≤ lim inf
m→∞ p(xn, zm)

and hence

μnp(xn, x) ≤ μn

(
lim inf
m→∞ p(xn, zm)

)
. (.)

On the other hand, we have from (.), for any l, k, n ∈N with m > l,

p(xn, zm) ≤ p(xn, zl) + p(zl, zm)

≤ p(xn, zl) + φ(zl) – s

and hence

lim sup
m→∞

p(xn, zm) ≤ p(xn, zl) + φ(zl) – s.

Applying μ to both sides of the inequality, we have

μn

(
lim sup

m→∞
p(xn, zm)

)
≤ μnp(xn, zl) + φ(zl) – s.

Letting l → ∞, we get

μn

(
lim sup

m→∞
p(xn, zm)

)
≤ lim inf

l→∞
μnp(xn, zl). (.)

We have from (.), (.), and (.)

μnp(xn, x) ≤ μn

(
lim inf
m→∞ p(xn, zm)

)

≤ μn

(
lim sup

m→∞
p(xn, zm)

)

≤ lim inf
m→∞ μnp(xn, zm)

= lim
m→∞μnp(xn, zm) = . (.)

This implies that

μnp(xn, x) = .
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Doing the same argument as above for each y = y ∈ X with φ(y) < ∞, we can construct a
sequence {ym} in X such that {φ(ym)} is a decreasing sequence, limm→∞ ym = y for some
y ∈ X, and μnp(xn, y) = . We show that x = y. We have, for any m, n ∈N,

p(zm, x) ≤ p(zm, xn) + p(xn, x).

Then, we have

p(zm, x) ≤ μnp(zm, xn) + μnp(xn, x)

= μnp(zm, xn). (.)

Furthermore, we have, for any m, n ∈N,

p(zm, y) ≤ p(zm, xn) + p(xn, y)

and hence

p(zm, y) ≤ μnp(zm, xn) + μnp(xn, y)

= μnp(zm, xn). (.)

We know from (.) that μnp(zm, xn) →  as m → ∞. Therefore, from (.), (.), and
Lemma . x = y. Since φ is lower semicontinuous,

φ(x) = φ(y) ≤ lim inf
m→∞ φ(ym) = lim

m→∞φ(ym) = inf
m∈N

φ(ym) ≤ φ(y).

Since y is any point of X with φ(y) < ∞, we have

φ(x) = inf
y∈X

φ(y). (.)

Using (.), we have u ∈ X such that u ∈ Sx and

μnp(xn, x) + μnp(x, xn) ≤ φ(x) – φ(u). (.)

Furthermore, repeating this process, we have v ∈ X such that v ∈ Su and

μnp(xn, u) + μnp(u, xn) ≤ φ(u) – φ(v).

Using (.), we have

μnp(xn, u) + μnp(u, xn) ≤ φ(u) – φ(v) ≤ φ(u) – φ(x). (.)

Then we have from (.) and (.)

μnp(xn, u) + μnp(u, xn) + μnp(xn, u) + μnp(u, xn) ≤ .
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This implies that

μnp(xn, u) = .

Since p(zm, u) ≤ p(zm, xn) + p(xn, u) for m, n ∈N, we have

p(zm, u) ≤ μnp(zm, xn) + μnp(xn, u)

= μnp(zm, xn). (.)

We know from (.) that μnp(zm, xn) →  as m → ∞. Therefore, from (.), (.), and
Lemma . x = u. Since u ∈ Sx, we have x ∈ Sx. This completes the proof. �

Let (X, d) be a metric space. Then S : X → P(X) is called a multi-valued weakly Picard
operator [] if for each x ∈ X and each y ∈ Sx, there exists a sequence {xn} in X such that

() x = x, x = y;
() xn+ ∈ Sxn, n ∈N∪ {};
() {xn} is convergent and its limit is a fixed point of S.
Using Theorem ., we can get the following result proved by Takahashi et al. [].

Theorem . ([]) Let (X, d) be a complete metric space, let p ∈ W(X) and let {xn} be a
sequence in X such that {p(xn, x)} is bounded for some x ∈ X. Let μ be a mean on �∞ and
let ψ : X → (–∞,∞) be a bounded below and lower semicontinuous function. Let T : X →
P(X) be a set-valued mapping such that for each u ∈ X, there exists v ∈ Tu satisfying

μnp(xn, u) + ψ(v) ≤ ψ(u).

Then T is a multi-valued weakly Picard operator.

Proof Putting S = T and φ = ψ in Theorem ., we see that, for each x ∈ X, there exists
y ∈ Tx such that

μnp(xn, x) + ψ(y) ≤ ψ(x)

and hence

μnp(xn, x) + ψ(y) ≤ ψ(x).

For each x ∈ X and each y ∈ Tx, put u = x and u = y. Then we can take u ∈ Tu such that

μnp(xn, u) + ψ(u) ≤ ψ(u).

Repeating this process, we get a sequence {um} in X such that um+ ∈ Tum and

μnp(xn, um) ≤ ψ(um) – ψ(um+) (.)

for each m ∈N∪ {}. Thus we have the desired result from Theorem .. �
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