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Abstract
We introduce the notion of a C∗-algebra-valued b-metric space. We generalize the
Banach contraction principle in this new setting. As an application of our result, we
establish an existence result for an integral equation in a C∗-algebra-valued b-metric
space.

1 Introduction
The Banach contraction principle [], also known as the Banach fixed point theorem, is
one of the main pillars of the theory of metric fixed points. According to this principle,
if T is a contraction on a Banach space X, then T has a unique fixed point in X. Many
researchers investigated the Banach fixed point theorem in many directions and presented
generalizations, extensions, and applications of their findings. Among them, Bakhtin []
introduced a prominent generalization of the idea of a metric space, which is later used
by Czerwick [, ]. They introduced and used the concept of real-valued b-metric space
to establish certain fixed point results. The idea clearly is an extension of the metric space
as follows from the following definition.

Definition . ([]) Let X be a nonempty set, and b ∈R be such that b ≥ . A b-metric on
X is a real-valued mapping db : X × X → R that satisfies the following conditions for all
x, y, z ∈ X:

() db(x, y) ≥  and db(x, y) =  ⇔ x = y.
() db(y, x) = d(x, y) (symmetry).
() db(y, z) ≤ b[db(y, x) + db(x, z)].

By a b-metric space with coefficient b we mean the pair (X, db).

For recent development on b-metric spaces, we refer to [–].
Recently, Ma et al. [] presented their work on the extension of Banach contraction

principle for C∗-algebra-valued metric spaces. Later, Batul and Kamran [] introduced
the notion of a C∗-valued contractive type mapping and established a fixed point result in
this setting. Motivated by the ideas and results presented in [, ], in this paper, we will
introduce a new notion of C∗-algebra-valued b-metric space and establish a fixed point
result in such spaces.
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We now recollect some basic definitions, notation, and results. The details on C∗-
algebras are available in [, ].

An algebra A, together with a conjugate linear involution map a �→ a∗, is called a ∗-
algebra if (ab)∗ = b∗a∗ and (a∗)∗ = a for all a, b ∈ A. Moreover, the pair (A,∗) is called a
unital ∗-algebra if A contains the identity element A. By a Banach ∗-algebra we mean
a complete normed unital ∗-algebra (A,∗) such that the norm on A is submultiplicative
and satisfies ‖a∗‖ = ‖a‖ for all a ∈ A. Further, if for all a ∈ A, we have ‖a∗a‖ = ‖a‖ in
a Banach ∗-algebra (A,∗), then A is known as a C∗-algebra. A positive element of A is
an element a ∈ A such that a = a∗ and its spectrum σ (a) ⊂ R+, where σ (a) = {λ ∈ R :
λA-a is noninvertible}. The set of all positive elements will be denoted by A+. Such ele-
ments allow us to define a partial ordering ‘�’ on the elements of A. That is,

b � a if and only if b – a ∈A+.

If a ∈A is positive, then we write a � A, where A is the zero element of A. Each positive
element a of a C∗-algebra A has a unique positive square root. From now on, by A we
mean a unital C∗-algebra with identity element A. Further, A+ = {a ∈ A : a � A} and
(a∗a)/ = |a|. Using the concept of positive elements in A, a C∗-algebra-valued metric d
on a nonempty set X is defined in [] as a mapping d : X × X → A+ that satisfies, for
all x, x, x ∈ X, (i) d(x, x) = A ⇔ x = x, (ii) d(x, x) = d(x, x), and (iii) d(x, x) �
d(x, x) + d(x, x). The triplet (X,A, d) is then called a C∗-algebra-valued metric space.

2 Main results
In this section, we extend Definition . to introduce the notion b-metric space in the
setting of C∗-algebras as follows.

Definition . Let A be a C∗-algebra, and X be a nonempty set. Let b ∈ A be such that
‖b‖ ≥ . A mapping db : X × X → A+ is said to be a C∗-algebra-valued b-metric on X if
the following conditions hold for all x, x, x ∈A:

(BM) db(x, x) = A ⇔ x = x.
(BM) db is symmetric, that is, db(x, x) = db(x, x).
(BM) db(x, x) � b[db(x, x) + db(x, x)].

The triplet (X,A, db) is called a C∗-algebra-valued b-metric space with coefficient b.

Remark . Note that:
() If we take A = R, then the new notion of C∗-algebra-valued b-metric space becomes

equivalent to Definition . of the real b-metric space.
() If we take b = A in Definition ., then db becomes the usual C∗-algebra-valued

metric as defined in [].

Thus, the class of ordinary C∗-algebra-valued metric spaces is clearly smaller than the
class of C∗-algebra-valued b-metric spaces. In fact, there are C∗-algebra-valued b-metric
spaces that are not C∗-algebra-valued metric spaces, as illustrated by the following exam-
ple.
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Example . Let X = �p be the set of sequences {xn} in R such that
∑∞

n= |xn|p < ∞ and
 < p < . Let A = M(R). For x = xn, y = yn ∈ �p, define db : X × X →A as follows:

db(x, y) =

(
(
∑∞

n= |xn – yn|p)

p 

 (
∑∞

n= |xn – yn|p)

p

)

.

Then one can show that db is a C∗-algebra-valued b-metric space with coefficient b =
( 


p 

 

p

)
such that ‖b‖ = 


p . The claim follows from the following observation in []:

( ∞∑

n=

|xn – zn|p
) 

p

≤ 

p

[( ∞∑

n=

|xn – yn|p
) 

p

+

( ∞∑

n=

|yn – zn|p
) 

p
]

.

Note that here db is not a usual C∗-algebra-valued metric on X.

From now on, we call a C∗-algebra-valued b-metric space simply a C∗-valued b-metric,
and the triplet (X,A, db) is then called a C∗-valued b-metric space. Given (X,A, db), the
following are natural deductions from the corresponding notions in C∗-valued metric
spaces.

() A sequence {xn} in X is said to be convergent to a point x ∈ X with respect to the
algebra A if and only if for any ε > , there is an N ∈N such that ‖db(xn, x)‖ < ε for
all n > N . Symbolically, we then write limn→∞ xn = x.

() If for any ε > , there exists N ∈N such that ‖db(xn, xm)‖ < ε for all n, m > N , then
the sequence {xn} is called a Cauchy sequence with respect to A.

() If every Cauchy sequence in X is convergent with respect to A, then the triplet
(X,A, d) is called a complete C∗-valued b-metric space.

Definition . Let (X,A, db) be a C∗-valued b-metric space. A contraction on X is a map-
ping T : X → X if there exists an a ∈ A with ‖a‖ <  such that

db(Tx, Ty) � a∗db(x, y)a for all x, y ∈ X. ()

Example . Let A = R
 and X = [,∞). Let � be the partial order on A given by

(a, b) � (a, b) ⇔ a ≤ a and b ≤ b.

Define

db : X × X →A, db(x, y) =
(
(x – y), 

)
.

Then db is C∗-valued b-metric with coefficient (, ), and with this db, the triplet (X,A, db)
becomes a C∗-valued b-metric. Consider T : X → X given by Tx = x

 + ; then T is a con-
traction on X with a = ( 

 , ):

db(Tx, Ty) =
(
(Tx – Ty), 

)
=

((
x


–
y


)

, 
)

=
(




, 
)

db(x, y)
(




, 
)

.
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Theorem . Consider a complete C∗-valued b-metric space (X,A, db) with coefficient b.
Let T : X → X be a contraction with the contraction constant a such that ‖b‖‖a‖ < . Then
T has a unique fixed point in X.

Proof If A = {A}, then there is nothing to prove. Assume that A �= {A}.
Choose x ∈ X and define inductively a sequence {xn} by the iterative scheme as

xn+ = Txn.

Then it follows that xn = Tnx for n = , , , . . . . From the contraction condition () on T
it follows that

db(xn, xn+) = db(Txn–, Txn)

� a∗db(xn–, xn)a

= a∗db(Txn–, Txn–)a

� (
a∗)db(xn–, xn–)a

� (
a∗)db(xn–, xn–)a � (

a∗)ndb(x, x)an =
(
a∗)nDan,

where D = db(x, x).
Now suppose that m > n; then the triangle inequality (BM) for the b-metric db implies

db(xn, xm) � bd(xn, xn+) + bd(xn+, xn+) + · · · + bm–n–d(xm–, xm–)

+ bm–n–d(xm–, xm)

� b
(
a∗)nDan + b(a∗)n+Dan+ + · · · + bm–n–(a∗)m–Dam–

+ sm–n–(a∗)m–Dam–

= b
[(

a∗)nDan + b
(
a∗)n+Dan+ + · · · + bm–n–(a∗)m–Dam–]

+ bm–n–(a∗)m–Dam–

= b
m–∑

k=n

bk–n(a∗)kDak + bm–n–(a∗)m–Dam–

= b
m–∑

k=n

bk–n(a∗)kD

 D


 ak + bm–n–(a∗)m–D


 D


 am–

= b
m–∑

k=n

bk–n(D

 ak)∗(D


 ak) + bm–n–(D


 am–)∗(D


 am–)

= b
m–∑

k=n

bk–n∣∣D

 ak∣∣ + bm–n–∣∣D


 am–∣∣

�
∥
∥
∥
∥
∥

b
m–∑

k=n

bk–n∣∣D

 ak∣∣

∥
∥
∥
∥
∥

A +
∥
∥bm–n–∣∣D


 am–∣∣∥∥A

� ‖b‖
m–∑

k=n

∥
∥bk–n∥∥

∥
∥D



∥
∥∥∥ak∥∥A +

∥
∥bm–n–∥∥

∥
∥D



∥
∥∥∥am–∥∥A
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� ‖b‖
m–∑

k=n

‖b‖k–n∥∥D


∥
∥∥∥ak∥∥A + ‖b‖m–n–∥∥D



∥
∥∥∥am–∥∥A

� ‖b‖–n∥∥D


∥
∥

m–∑

k=n

‖b‖k∥∥a∥∥kA + ‖b‖–n‖b‖m–∥∥D


∥
∥∥∥am–∥∥A

� ‖b‖–n∥∥D


∥
∥

m–∑

k=n

(‖b‖∥∥a∥∥
)kA + ‖b‖–n∥∥D



∥
∥(‖b‖∥∥a∥∥

)m–A

−→ A as m, n → ∞,

which follows from the observation that the summation in the first term is a geometric
series, and ‖b‖‖a‖ <  implies that both (‖b‖‖a‖)m– →  and (‖b‖‖a‖)n– → . This
proves that {xn} is a Cauchy sequence in X with respect to A, and from the completeness
of (X,A, d) it follows that xn → x ∈ X, that is,

lim
n→∞ xn = lim

n→∞ Txn– = x.

We claim that x is a fixed point of T . In fact, from the triangle inequality (BM) and the
contraction condition () we have:

A � d(Tx, x)

� b
[
d(Tx, Txn) + d(Txn, x)

]

� ba∗d(x, xn)a + d(xn–, x) −→ A as n → ∞.

This shows that Tx = x.
To prove that x is the unique fixed point, we suppose that y ∈ X is another fixed point

of T . Then again from the contraction condition () we have

A � d(x, y) = d(Tx, Ty) � a∗d(x, y)a.

Using the norm of A, we have

 ≤ ∥
∥d(x, y)

∥
∥ ≤ ∥

∥a∗d(x, y)a
∥
∥ ≤ ∥

∥a∗∥∥∥
∥d(x, y)

∥
∥‖a‖ = ‖a‖∥∥d(x, y)

∥
∥.

The above inequality holds only when d(x, y) = A. Hence, x = y. �

Example . The mapping T of Example . satisfies the hypothesis of Theorem ., and
T has unique fixed point x = . in X.

Remark . Theorem . generalizes the following results.
() By taking A = R, the C∗-valued b-metric becomes simply the b-metric, and we

immediately get the Banach contraction principle in b-metric spaces from
Theorem ..

() Taking b = , [], Theorem ., becomes a special case of Theorem ..
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3 Application
As an application of the fixed point theorem for contractions on a C∗-valued complete
b-metric space, we provide an existence result for a class of integral equations.

Example . Let E be a Lebesgue-measurable set and X = L∞(E). Consider the Hilbert
space L(E). Let the set of all bounded linear operators on L(E) be denoted by BL(L(E)).
Note that BL(L(E)) is a C∗-algebra with usual operator norm. For S, T ∈ X, define

db : X × X → BL
(
L(E)

)
, db(T , S) = π(T–S) ,

where πh : L(E) → L(E) is the product operator given by

πh(f ) = h · f for f ∈ L(E).

Working in the same lines as in [], Example ., we can show that (X, BL(L(E)), db) is a
complete C∗-valued b-metric space. With these settings, suppose that there exist a contin-
uous function f : E × E →R and a constant  < α <  such that for all x, y ∈ X and u, v ∈ E,
we have

∣
∣K

(
u, v, x(v)

)
– K

(
u, v, y(v)

)∣
∣ ≤ α

∣
∣f (u, v)

(
x(v) – y(v)

)∣
∣, ()

where K is a function from E × E ×R to R, and supt∈E
∫

E |f (u, v)|dv ≤ . Then the integral
equation

x(u) =
∫

E
K

(
u, v, x(v)

)
dv, u ∈ E

has a unique solution.

Proof Here (X, BL(L(E)), db) is a C∗-valued complete b-metric space with respect to
BL(L(E)).

Let

T : X → X, Tx(u) =
∫

E
K

(
u, v, x(v)

)
dv, u ∈ E.

Then

∥
∥d(Tx, Ty)

∥
∥ = ‖π(Tx–Ty)‖

= sup
‖g‖=

〈π(Tx–Ty) g, g〉 for every g ∈ L(E)

= sup
‖g‖=

∫

E
(Tx – Ty)g(u)g(u) dv

= sup
‖g‖=

∫

E

[∫

E

(
K

(
u, v, x(v)

)
– K

(
u, v, y(v)

))
dv

]

g(u)g(u) du

≤ sup
‖g‖=

∫

E

[∫

E

(
K

(
u, v, x(v)

)
– K

(
u, v, y(v)

))
dv

]∣
∣g(u)

∣
∣ du
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≤ sup
‖g‖=

∫

E
α

[∫

E

(
f (u, v)

(
x(v) – y(v)

))
dv

]∣
∣g(u)

∣
∣ du

≤ α sup
‖g‖=

∫

E

[∫

E

∣
∣f (u, v)

∣
∣dv

]∣
∣g(u)

∣
∣ du · ∥∥(x – y)∥∥∞

≤ α sup
t∈E

∫

E

∣
∣f (u, v)

∣
∣ dv · sup

‖g‖=

∫

E

∣
∣g(u)

∣
∣ du · ∥∥(x – y)∥∥∞

≤ α∥∥(x – y)∥∥∞

= ‖a‖∥∥d(x, y)
∥
∥.

Setting a = αI, we have a ∈ BL(L(E))+ and ‖a‖ = α < . Thus, all the conditions of
Theorem . hold, and hence the conclusion. �
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