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Abstract
This paper provides a fixed point theorem and iterative construction of a common
fixed point for a general class of nonlinear mappings in the setup of uniformly convex
hyperbolic spaces. We translate a multi-step iteration, essentially due to Chidume and
Ofoedu (J. Math. Anal. Appl. 333:128-141, 2007) in such a setting for the
approximation of common fixed points of a finite family of total asymptotically
nonexpansive mappings. As a consequence, we establish strong and �-convergence
results which extend and generalize various corresponding results established in the
current literature.
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1 Introduction
Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). A geodesic from x to y in X is a
mapping θ : [, l] → X such that

θ () = x, θ (l) = y and d
(
θ (s), θ (t)

)
= |s – t| for all s, t ∈ [, l].

The above characteristics is referred to as a constant speed of θ , the parametrization of θ

with respect to the arc length or distance preservation of θ . The points x = θ () and y = θ (l)
are called the end points or the extreme (maximal or minimal) points of the segment. The
metric space (X, d) is called a geodesic space if for every pair of points x, y ∈ X, there is a
geodesic segment from x to y. Moreover, (X, d) is uniquely geodesic if for all x, y ∈ X there
is exactly one geodesic from x to y.

The class of hyperbolic spaces introduced by Kohlenbach [] is an important example
of a uniquely geodesic space. It is worth to mention that this class is prominent among
various other notions of hyperbolic spaces in the current literature, for convenience of the
reader; see [–]. The study of hyperbolic spaces has been largely motivated and domi-
nated by questions about hyperbolic groups, one of the main objects of study in geometric
group theory. We remark that the non-positively curved spaces, such as hyperbolic spaces,
play a significant role in many branches of applied mathematics.
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Throughout this paper, we work in the setting of hyperbolic spaces introduced by
Kohlenbach [].

A hyperbolic space [] is a metric space (X, d) together with a mapping W : X × [, ] →
X satisfying

(W) d
(
u, W (x, y,α)

) ≤ αd(u, x) + ( – α)d(u, y),

(W) d
(
W (x, y,α), W (x, y,β)

)
= |α – β|d(x, y),

(W) W (x, y,α) = W
(
y, x, ( – α)

)
,

(W) d
(
W (x, z,α), W (y, w,α)

) ≤ αd(x, y) + ( – α)d(z, w)

for all x, y, z, w ∈ X and α,β ∈ [, ].
The class of hyperbolic spaces in the sense of Kohlenbach [] contains all normed linear

spaces and convex subsets thereof as well as Hadamard manifolds and CAT() spaces in
the sense of Gromov. An important example of a hyperbolic space due to Goebel and Reich
[] is stated as follows.

Let BH be the open unit ball in a general complex Hilbert space (H , 〈·, ·〉) and let kBH be
a metric on BH (also known as Kobayashi distance) defined as

kBH (x, y) := tanh–( – σ (x, y)
) 

 ,

where

σ (x, y) =
( – ‖x‖)( – ‖y‖)

| – 〈x, y〉| for all x, y ∈ BH .

The open unit ball BH together with the metric kBH is coined as a Hilbert ball. Since
(BH , kBH ) is a unique geodesic space, one can define a convexity mapping W for the cor-
responding hyperbolic space (BH , kBH , W ). This space is of significant importance for
the fixed point theory of holomorphic mappings as the said class of mappings is kBH -
nonexpansive in (BH , kBH , W ). A metric space (X, d) satisfying only (W) is a convex met-
ric space introduced by Takahashi []. A subset K of a hyperbolic space X is convex if
W (x, y,α) ∈ K for all x, y ∈ K and α ∈ [, ]. For more on hyperbolic spaces and a compar-
ison between different notions of hyperbolic spaces in the current literature, we refer to
[], p..

It is worth to mention that the fixed point theory of nonexpansive mappings (i.e.,
d(Tx, Ty) ≤ d(x, y)for x, y ∈ K ) and its various generalizations majorly depends on the ge-
ometrical characteristics of the underlying space. The class of nonexpansive mappings
enjoys the fixed point property (FPP) and the approximate fixed point property (AFPP)
in various settings of spaces, see for example [] for the later property for the class of
nonexpansive mappings. Moreover, it is natural to extend such powerful results to gener-
alized nonexpansive mappings as a mean of testing the limit of the theory of nonexpansive
mappings. It is remarked that the FPP and even AFPP, in a nonlinear domain, of various
generalizations of nonexpansive mappings are still developing. The class of hyperbolic
spaces is endowed with rich geometric structures for different results with applications in
topology, graph theory, multivalued analysis and metric fixed point theory. An important
ingredient for metric fixed point theory of nonexpansive mappings is uniform convexity.
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A hyperbolic space (X, d, W ) is uniformly convex [] if for all u, x, y ∈ X, r > , and ε ∈
(, ], there exists δ ∈ (, ] such that

d
(

W
(

x, y,



)
, u

)
≤ ( – δ)r

whenever d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ rε.
A mapping η : (,∞) × (, ] → (, ] providing such δ = η(r, ε) for given r >  and ε ∈

(, ] is called modulus of uniform convexity. We call η monotone if it decreases with r
(for a fixed ε), i.e., ∀ε > , ∀r ≥ r >  (η(r, ε) ≤ η(r, ε)). The CAT() spaces are uniformly
convex hyperbolic spaces with modulus of uniform convexity η(r, ε) = ε

 []. Therefore,
the class of uniformly convex hyperbolic spaces includes CAT() spaces as a special case.

Metric fixed point theory of nonlinear mappings in a general setup of hyperbolic spaces
is a fascinating field of research in nonlinear functional analysis. Moreover, iteration
schemas are the only main tool to study fixed point problems of nonexpansive mappings
and its various generalizations in spaces of non-positive sectional curvature. In ,
Alber et al. [] introduced a unified and generalized notion of a class of nonlinear map-
pings in Banach spaces, which can be introduced in the general setup of hyperbolic spaces
as follows.

A self-mapping T : K → K is called () an asymptotically nonexpansive mapping if there
exists a nonnegative real sequence {kn} with kn →  such that

d
(
Tnx, Tny

) ≤ d(x, y) + knd(x, y) for all x, y ∈ K , n ≥ 

and () total asymptotically nonexpansive mapping if there exists nonnegative real se-
quences {kn} and {ϕn} with kn →  and ϕn →  as n → ∞ and a strictly increasing con-
tinuous function ξ : R+ →R

+ with ξ () =  such that

d
(
Tnx, Tny

) ≤ d(x, y) + knξ
(
d(x, y)

)
+ ϕn for all x, y ∈ K , n ≥ .

Example .
(i) Let X = R, K = [,∞) and T : K → K be defined by Tx = sin x. Then T is a total

asymptotically nonexpansive.
(ii) Let X = R, K = [– 

π
, 

π
] and T : K → K be defined by Tx = kx sin 

x , where k ∈ (, ).
Then T is a total asymptotically nonexpansive.

(iii) Let K = {x := (x, x, . . . , xn, . . .) | x ≤ , xi ∈R, i ≥ } be a nonempty subset of X = l

with the norm ‖ · ‖ defined as

‖x‖ =

√√√√
∞∑

i=

x
i .

If T : K → K is defined by

T(x) = (, x, , , , . . .),

then T is an asymptotically nonexpansive.
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(iv) Let X = R and K = [, ]. Let T : K → K be a mapping defined by

T(x) =

{
, x ∈ [, ],

√


√
 – x, x ∈ [, ].

Then T is a total asymptotically nonexpansive mapping with F(T) = {}. However, T is not
a Lipschitzian and hence it is not an asymptotically nonexpansive mapping.

The class of total asymptotically nonexpansive mappings and asymptotically nonexpan-
sive mappings have been studied extensively in the literature [–] and the references
cited therein. It is worth mentioning that the results established for total asymptotically
nonexpansive mappings are applicable to the mappings associated with the class of asymp-
totically nonexpansive mappings and which are extensions of nonexpansive mappings.

It is remarked that the iterative construction of common fixed points of a finite family
of asymptotically quasi-nonexpansive mappings in a Banach space through higher arity of
an iteration is essentially due to Khan et al. [] (see also [] for the case of nonexpansive
mappings). This iteration was further generalized by Khan and Ahmad [] and Khan et
al. [] to the setup of convex metric spaces and CAT() spaces, respectively. Moreover,
Chidume and Ofoedu [] introduced a general iteration scheme for a finite family of total
asymptotically nonexpansive mappings in Banach spaces, which we adopt in the setting
of hyperbolic spaces as follows:

x ∈ K ,

xn+ = W
(
xn, Tn

 xn,αn
)

if m = , n ≥ ,

x ∈ K ,

xn+ = W
(
xn, Tn

 yn,αn
)
,

yn = W
(
xn, Tn

 yn,αn
)
,

yn = W
(
xn, Tn

 yn,αn
)
,

. . . ,

y(m–)n = W
(
xn, Tn

m–y(m–)n,αn
)
,

y(m–)n = W
(
xn, Tn

mxn,αn
)

if m ≥ , n ≥ ,

(.)

where {αn}∞n= is a sequence in [, ] bounded away from  and .
The purpose of this paper is to establish a fixed point result for a total asymptotically

nonexpansive mapping along with the iterative construction of common fixed point of
a finite family of these mappings in uniformly convex hyperbolic spaces. We therefore
establish results concerning strong convergence and �-convergence results of iteration
(.). Our convergence results can be viewed not only as an analog of various existing
results but also improve and generalize various results in the current literature.

2 Preliminaries and some auxiliary lemmas
We start this section with the notion of asymptotic center - essentially due to Edelstein
[] - of a sequence which is not only useful in proving a fixed point result but also plays
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a key role to define the concept of �-convergence in hyperbolic spaces. In , Lim []
introduced the concept of �-convergence in the general setting of metric spaces. In ,
Kirk and Panyanak [] further analyzed this concept in geodesic spaces. They showed
that many Banach space results involving weak convergence have a precise analog version
of �-convergence in geodesic spaces.

Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, define a continuous
functional r(·, {xn}) : X → [,∞) by

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius and asymptotic center of the bounded sequence {xn} with respect
to a subset K of X is defined and denoted thus:

rK
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ K

}

and

AK
({xn}

)
=

{
x ∈ K : r

(
x, {xn}

) ≤ r
(
y, {xn}

)
for all y ∈ K

}
,

respectively.
Recall that a sequence {xn} in X is said to �-converge to x ∈ X if x is the unique asymp-

totic center of {un} for every subsequence {un} of {xn}. In this case, we write �-limn xn = x
and call x the �-limit of {xn}.

A mapping T : K → K is semi-compact if every bounded sequence {xn} ⊂ K satisfying
limn→∞ d(xn, Txn) = , has a convergent subsequence.

We now list some useful lemmas as well as establish some auxiliary results required in
the sequel.

Lemma . ([]) Let (X, d, W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. Then every bounded sequence {xn} in X has
a unique asymptotic center with respect to any nonempty closed convex subset K of X .

Proposition . ([]) Let (X, d, W ) be a complete uniformly convex hyperbolic space with
monotone modulus of uniform convexity η. The intersection of any decreasing sequence of
nonempty bounded closed convex subsets of X is nonempty.

Lemma . ([]) Let {an}, {bn}, and {cn} be sequences of nonnegative real numbers such
that

∑∞
n= bn < ∞ and

∑∞
n= cn < ∞. If an+ ≤ ( + bn)an + cn, n ≥ , then limn→∞ an exists.

Lemma . ([]) Let (X, d, W ) be a uniformly convex hyperbolic space with mono-
tone modulus of uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for
some a, b ∈ (, ). If {xn} and {yn} are sequences in X such that lim supn→∞ d(xn, x) ≤ c,
lim supn→∞ d(yn, x) ≤ c and limn→∞ d(W (xn, yn,αn), x) = c for some c ≥ , then
limn→∞ d(xn, yn) = .

Lemma . ([]) Let K be a nonempty, closed, and convex subset of a uniformly con-
vex hyperbolic space X and {xn} a bounded sequence in K such that AK ({xn}) = {y} and
rK ({xn}) = ρ . If {ym} is another sequence in K such that limm→∞ r(ym, {xn}) = ρ , then
limm→∞ ym = y.
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Lemma . Let K be a nonempty, closed, and convex subset of a hyperbolic space X and
let {Ti}m

i= : K → K be a finite family of total asymptotically nonexpansive mappings with
sequences {kin} and {ϕin}, n ≥ , i = , , . . . , m such that F =

⋂m
i= F(Ti) �= φ. For i = , , . . . , m

if the following conditions are satisfied:
(C)

∑∞
n= kin < ∞ and

∑∞
n= ϕin < ∞;

(C) there exist constants Mi, M∗
i >  such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
i = , , , . . . , m,

then the sequence {xn} given by (.) is bounded and limn→∞ d(xn, p) exists for each p ∈ F .

Proof Let p ∈ F and m =  in (.), we have

d(xn+, p) = d
(
W

(
xn, Tn

 xn,αn
)
, p

)

≤ ( – αn)d(xn, p) + αnd
(
Tn

 xn, p
)

≤ ( – αn)d(xn, p) + αn
{

d(xn, p) + knξ
(
d(xn, p)

)
+ ϕn

}

≤ d(xn, p) + bknξ
(
d(xn, p)

)
+ bϕn, (.)

where αn ≤ b for some b > .
Since ξ is an increasing function, ξ (d(xn, p)) ≤ ξ (M) for d(xn, p) ≤ M. Moreover,

ξ (d(xn, p)) ≤ d(xn, p)M∗
 for d(xn, p) ≥ M (by (C)). In either case, we have

ξ
(
d(xn, p)

) ≤ ξ (M) + d(xn, p)M∗
 , (.)

where M, M∗
 > .

Utilizing (.) in (.), we have

d(xn+, p) ≤ d(xn, p) + bknξ(M) + bknM∗
 d(xn, p) + bϕn.

On setting a = max{b, bM∗
 , bξ(M)} > , the above inequality becomes

d(xn+, p) ≤ d(xn, p) + akn + aknd(xn, p) + aϕn

= ( + akn)d(xn, p) + akn + aϕn.

If m =  in (.), we have the following iteration scheme:

x ∈ K ,

xn+ = W
(
xn, Tn

 yn,αn
)
,

yn = W
(
xn, Tn

 xn,αn
)
.

In view of the above iteration scheme, we have the following estimates:

d(xn+, p) = d
(
W

(
xn, Tn

 yn,αn
)
, p

)

≤ ( – αn)d(xn, p) + αnd
(
Tn

 yn, p
)

≤ ( – αn)d(xn, p) + αn
{

d(yn, p) + knξ
(
d(yn, p)

)
+ ϕn

}
(.)
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and

d(yn, p) = d
(
W

(
xn, Tn

 xn,αn
)
, p

)

≤ ( – αn)d(xn, p) + αnd
(
Tn

 xn, p
)

≤ ( – αn)d(xn, p) + αn
{

d(xn, p) + knξ
(
d(xn, p)

)
+ ϕn

}
. (.)

Again, we follow the method of proof as discussed for m = .
In the light of (C) and the increasing functions ξi (i = , ), there exist Mi, M∗

i >  (i =
, ) such that

ξ
(
d(yn, p)

) ≤ ξ(M) + d(yn, p)M∗
 (.)

and

ξ
(
d(xn, p)

) ≤ ξ(M) + d(xn, p)M∗
. (.)

Substituting (.) in (.) and (.) in (.), we get

d(xn+, p) ≤ ( – αn)d(xn, p) + αn
{

d(yn, p) + knξ
(
d(yn, p)

)
+ ϕn

}

≤ ( – αn)d(xn, p) + αnd(yn, p) + αnknξ(M)

+ αnknd(yn, p)M∗
 + αnϕn

= ( – αn)d(xn, p) + αn
(
 + knM∗


)
d(yn, p) + αnknξ(M) + αnϕn (.)

and

d(yn, p) = d
(
W

(
xn, Tn

 xn,αn
)
, p

)

≤ ( – αn)d(xn, p) + αnd
(
Tn

 xn, p
)

≤ ( – αn)d(xn, p) + αn
{

d(xn, p) + kn
(
ξ

(
d(xn, p)

))
+ ϕn

}

≤ ( – αn)d(xn, p) + αn
{

d(xn, p) + kn
(
ξ(M) + d(xn, p)M∗


)

+ ϕn
}

= d(xn, p) + αnknξ(M) + αnknd(xn, p)M∗
 + αnϕn. (.)

Putting (.) in (.), we have

d(xn+, p) ≤ ( – αn)d(xn, p) + αn
(
 + knM∗


)[

d(xn, p) + αnknξ(M)

+ αnknd(xn, p)M∗
 + αnϕn

]
+ αnknξ(M) + αnϕn

=
(
 + αnknM∗

 + α
nknM∗

 + α
nknknM∗

 M∗

)
d(xn, p)

+ αn
(
 + knM∗


)[

αnknξ(M) + αnϕn
]

+ αnknξ(M) + αnϕn

≤ (
 + αnknM∗

 + αnknM∗
 + αnknknM∗

 M∗

)
d(xn, p)

+ αnknξ(M) + αnknknM∗
 ξ(M)

+ αnϕn + αnknϕnM∗
 + αnknξ(M) + αnϕn.
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Again αn ≤ b for all n ≥ . Further we can bound the convergent sequences {kn}, {kn},
and {ϕn} as kn ≤ c, kn ≤ c, and ϕn ≤ d for all n ≥ .

Utilizing these bounds, the above estimate becomes

d(xn+, p) ≤ [
 + bknM∗

 +
(
bM∗

 + bcM∗
 M∗


)
kn

]
d(xn, p)

+ bξ(M)kn + bcM∗
 ξ(M)kn

+ bϕn + bcM∗
 ϕn + bknξ(M) + bϕn

=
[
 + bM∗

 kn + b
(
M∗

 + cM∗
 M∗


)
kn

]
d(xn, p)

+ b
(
cM∗

 ξ(M) + ξ(M)
)
kn + bξ(M)kn

+ bϕn + b
(
 + cM∗


)
ϕn.

That is,

d(xn+, p) ≤ (
 + (kn + kn)a

)
d(xn, p) + (kn + kn + ϕn + ϕn)a,

where

a = max
{

b, bM∗
 , b( + c)M∗

 , b
(
M∗

 + cM∗
 M∗


)
, b

(
cM∗

 ξ(M) + ξ(M)
)
, bξ(M)

}

> .

That is,

d(xn+, p) ≤
(

 + a

∑

j=

kjn

)

d(xn, p) + a

∑

j=

(kjn + ϕjn).

Continuing in a similar fashion for any m ≥ , we have the following compact form of the
above estimate:

d(xn+, p) ≤
(

 + am

m∑

j=

kjn

)

d(xn, p) + am

m∑

j=

(kjn + ϕjn)

for some constant am > .
Appealing to Lemma ., the above inequality implies that limn→∞ d(xn, p) exists and

hence the sequence {xn} is bounded. �

Lemma . Let K be a nonempty, closed, and convex subset of a uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η and let {Ti}m

i= : K → K be a
finite family of uniformly continuous total asymptotically nonexpansive mappings with se-
quences {kin} and {ϕin}, n ≥ , i = , , . . . , m such that F :=

⋂m
i= F(Ti) �= φ. For i = , , . . . , m,

if the following conditions are satisfied:
(C)

∑∞
n= kin < ∞ and

∑∞
n= ϕin < ∞;

(C) there exist constants Mi, M∗
i >  such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
then for the sequence {xn} given by (.), we have limn→∞ d(xn, Tixn) = , i = , , . . . , m.
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Proof It follows from Lemma . that limn→∞ d(xn, p) exists. Without loss of generality,
we can assume that limn→∞ d(xn, p) = r > . We first distinguish two cases to show that
limn→∞ d(xn, Tn

i xn) = , i = , , . . . , m.
Case . For m = , we proceed as follows:

lim
n→∞ d

(
W

(
xn, Tn

 xn,αn
)
, p

)
= lim

n→∞ d(xn+, p) = r. (.)

It follows from the total asymptotically nonexpansiveness of T, that is,

d
(
Tn

 xn, p
)

= d
(
Tn

 xn, Tn
 p

) ≤ d(xn, p) + knξ
(
d(xn, p)

)
+ ϕn

≤ d(xn, p) + knM∗
 d(xn, p) + knξ(M) + ϕn

=
(
 + knM∗


)
d(xn, p) + knξ(M) + ϕn.

Taking lim sup on both sides of the above estimate and utilizing the fact that kn →  and
ϕn →  as n → ∞, we get

lim sup
n→∞

d
(
Tn

 xn, p
) ≤ r.

Moreover, lim supn→∞ d(xn, p) = r. Hence, the conclusion, i.e., limn→∞ d(Tn
 xn, xn) =  fol-

lows from Lemma ..
Case . For m = , the iteration (.) reduces to

xn+ = W
(
xn, Tn

 yn,αn
)
,

yn = W
(
xn, Tn

 xn,αn
)
.

As calculated in Lemma ., we have

d(yn, p) = d
(
W

(
xn, Tn

 xn,αn
)
, p

)

≤ (
 + knM∗


)
d(xn, p) + αnknξ(M) + αnϕn.

Taking lim sup on both sides in the above estimate, we have

lim sup
n→∞

d(yn, p) ≤ r. (.)

Now observe that

d
(
Tn

 yn, p
) ≤ (

 + knM∗

)
d(yn, p) + knξ(M) + ϕn.

Taking lim sup on both sides of the above estimate and utilizing (.), we get

lim sup
n→∞

d
(
Tn

 yn, p
) ≤ r. (.)

Since lim supn→∞ d(xn, p) ≤ r, it follows from (.) and Lemma . that

lim
n→∞ d

(
xn, Tn

 yn
)

= . (.)
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Observe that

d(xn, p) ≤ d
(
xn, Tn

 yn
)

+ d
(
Tn

 yn, p
)

≤ d
(
xn, Tn

 yn
)

+
(
 + knM∗


)
d(yn, p) + knξ(M) + ϕn.

Hence, we deduce from the above estimate that

r ≤ lim inf
n→∞ d(yn, p). (.)

The estimates (.) and (.) collectively imply that

lim
n→∞ d(yn, p) = d

(
W

(
xn, Tn

 xn,αn
)
, p

)
= r. (.)

Utilizing the total asymptotically nonexpansiveness of T and the fact that kn → , ϕn →
 as n → ∞, we have

lim sup
n→∞

d
(
Tn

 xn, p
) ≤ r. (.)

Now (.), (.), and Lemma ., imply that

lim
n→∞ d

(
Tn

 xn, xn
)

= . (.)

With the help of d(yn, xn) ≤ αnd(Tn
 xn, xn) ≤ bd(Tn

 xn, xn) and (.), we obtain

lim
n→∞ d(yn, xn) = . (.)

It follows from (.) and (.) that

lim
n→∞ d

(
yn, Tn

 yn
)

= . (.)

Moreover

d
(
Tn

 xn, xn
) ≤ d

(
Tn

 xn, Tn
 yn

)
+ d

(
Tn

 yn, xn
)
.

Since T is uniformly continuous, letting n → ∞ in the above estimate and utilizing (.)
and (.), we get

lim
n→∞ d

(
Tn

 xn, xn
)

= .

Hence

lim
n→∞ d

(
Tn

i xn, xn
)

=  for i = , .

Continuing in a similar way, we get

lim
n→∞ d

(
Tn

i xn, xn
)

=  for i = , , . . . , m.
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Now, utilizing the uniform continuity of Ti, the following estimate:

d(xn, Tixn) ≤ d
(
xn, Tn

i xn
)

+ d
(
Tn

i xn, Tixn
)

implies that

lim
n→∞ d(Tixn, xn) =  for i = , , . . . , m.

This completes the proof. �

3 Existence and convergence results
In this section, we first establish the existence of fixed point of total asymptotically nonex-
pansive mapping. Our proof closely follows Theorem . in [] for the existence of fixed
point of asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces.

Theorem . Let (X, d, W ) be a complete uniformly convex hyperbolic space having a
monotone modulus of uniform convexity η. Let K be a nonempty, bounded, closed, and
convex subset of X. Then a continuous and total asymptotically nonexpansive mapping
T : K → K has a fixed point.

Proof For any y ∈ K , define

Ky =
{
τ ∈R

+ : there exists x ∈ K , n ∈N such that d
(
Tiy, x

) ≤ τ for all i ≥ n
}

.

It is easy to see that Ky is nonempty as diam(K) ∈ Ky. Let αy := inf Ky then for any θ > ,
there exists τθ ∈ Ky such that τθ < αy + θ , so there exist x ∈ K and n ∈N such that

d
(
Tiy, x

) ≤ τθ < αy + θ for all i ≥ n. (.)

Obviously, αy ≥ . Here, we distinguish two cases.
Case . αy = . We show that the sequence {Tiy}∞i= is Cauchy. Let m, n ≥ n ∈ N and let

ε > , then applying (.) with θ = ε
 , we get

d
(
Tmy, Tny

) ≤ d
(
Tmy, x

)
+ d

(
Tny, x

)
<

ε


+

ε


= ε.

Hence {Tiy}∞i= is Cauchy and consequently converges to some z ∈ K . Using the definition
of T , choose n ∈N such that

{(
d
(
Tiz, Tix

)
– d(z, x) – kiξ

(
d(z, x)

)
– ϕi

)} ≤ ε


for all i ≥ n.

Since Tiy → z, this implies d(Tmy, z), d(Tm–iy, z) ≤ ε
 for all m > i. Thus, if i ≥ m then

d
(
z, Tiz

) ≤ d
(
z, Tmy

)
+ d

(
Tmy, Tiz

)

≤ d
(
z, Tmy

)
+

(
d
(
Tiz, Ti(Tm–iy

))
– kiξ

(
d
(
Tm–iy, z

))
– ϕi

)

+ kiξ
(
d
(
Tm–iy, z

))
+ ϕi
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≤ d
(
z, Tmy

)
+

(
d
(
Tiz, Ti(Tm–iy

))
– kiξ

(
d
(
Tm–iy, z

))
– ϕi

)

+ kiM∗d
(
Tm–iy, z

)
+ ϕi

≤ ε + kiM∗ ε


+ ϕi,

where M∗ >  such that ξ (λ) ≤ M∗λ.
Letting i → ∞ in the above estimate, we have Tiz → z. Hence the continuity of T implies

that z is a fixed point of T , i.e.,

d(Tz, z) = d
(

T
(

lim
i→∞ Tiz

)
, z

)
= lim

i→∞ d
(
T

(
Tiz

)
, z

)
= lim

i→∞ d
(
Ti+z, z

)
= .

So Tz = z.
Case . αy > . For any n ≥ , we define

Cn =
⋃

k≥

⋂

i≥k

U
(

Tiy,αy +

n

)
, Dn := Cn ∩ K .

By (.) with θ = 
n , there exist x ∈ K and k ≥  such that x ∈ ⋂

i≥k U(Tiy,αy + 
n ); hence

Dn is nonempty. Moreover, {Dn} is a decreasing sequence of nonempty-bounded closed
convex subsets of X, hence, we can apply Proposition . to derive that

D :=
⋂

n≥

Dn �= φ.

For any x ∈ D and θ > , take n∗ ∈N such that 
n∗ ≤ θ . Since x ∈ Cn∗ , there exists a sequence

{x(n∗)n} in Cn∗ such that limn→∞ x(n∗)n = x. Let n′ ≥  be such that d(x(n∗)n, x) ≤ 
n∗ for all

n ≥ n′ and s ≥  such that x(n∗)n′ ∈ ⋂
i≥s U(Tiy,αy + 

n∗ ). It follows that, for all i ≥ s,

d
(
Tiy, x

) ≤ d
(
Tiy, x(n∗)n′

)
+ d(x(n∗)n′ , x) ≤ αy +


n∗ +


n∗ ≤ αy + θ . (.)

In the sequel, we shall prove that any point of D is a fixed point of T . We assume toward
contradiction that Tx �= x for any x ∈ D. Then Tnx � x (by Case ), so there exist ε >  and
n̂ ∈N such that

d
(
Tnx, x

) ≥ ε for all n ≥ n̂. (.)

We can assume that ε ∈ (, ] so that ε
αy+ ∈ (, ]. Hence there exists θy ∈ (, ] such that

 – η

(
αy + ,

ε

αy + 

)
≤ αy – θy

αy + θy
.

Observe that limn→∞(( + knM∗)(αy + θy
 ) + ϕn) = αy + θy

 < αy + θy, so there exists ñ ∈ N

such that

(
 + knM∗)

(
αy +

θy



)
+ ϕn < αy + θy for all n ≥ ñ. (.)
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Applying (.) with θ = θy
 , there exists n∗∗ ∈N such that

d
(
Tiy, x

) ≤ αy +
θy


for all i ≥ n∗∗. (.)

By the definition of T , choose n′′ ∈ N such that

{(
d
(
Tmz, Tmx

)
– d(z, x) – knξ

(
d(z, x)

)
– ϕn

)} ≤ θy


for all m ≥ n′′.

Applying (.) with n̂ := ñ, we get

d
(
Tn∗

x, x
) ≥ ε ≥ ε

αy + 
(αy + θy) for all n∗ ≥ ñ. (.)

Let now m ∈N be such that m ≥ n∗ + n∗∗, then the estimate (.) implies that

d
(
Tmy, x

) ≤ αy +
θy


< αy + θy. (.)

Moreover, observe that

d
(
Tn∗

x, Tmy
)

= d
(
Tn∗

x, Tn∗(
Tm–n∗

y
))

≤ d
(
x, Tm–n∗

y
)

+ kn∗ξ
(
d
(
x, Tm–n∗

y
))

+ ϕn∗

≤ d
(
x, Tm–n∗

y
)

+ kn∗M∗d
(
x, Tm–n∗

y
)

+ ϕn∗

≤ (
 + kn∗M∗)

(
αy +

θy



)
+ ϕn∗ .

Utilizing (.) in the above estimate, we get

d
(
Tn∗

x, Tmy
)

< αy + θy. (.)

It follows from the estimates (.)-(.) and uniform convexity of X that

d
(

W
(

x, Tn∗
x,




)
, Tmy

)
≤

(
 – η

(
αy + θy,

ε

αy + 

))
(αy + θy)

≤
(

 – η

(
αy + ,

ε

αy + 

))
(αy + θy) (η is monotone)

≤
(

αy – θy

αy + θy

)
(αy + θy) = αy – θy.

Hence, there exist n̂ = n∗ + n∗∗ and z = W (x, Tn∗x, 
 ) ∈ K such that

d
(
z, Tmy

) ≤ αy – θy for all m ≥ n̂.

This implies that αy – θy ∈ Ky, which contradicts the fact that αy = inf Ky. Hence x is a fixed
point of T . This completes the proof. �

We now use the concept of asymptotic center of a bounded sequence to strengthen the
above existence result. The proof, in fact, follows closely the proof of Lemma . in [].
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Theorem . Let (X, d, W ) be a complete uniformly convex hyperbolic space having a
monotone modulus of uniform convexity η. Let K be a nonempty, closed, and convex subset
of X and let T : K → K be a continuous and total asymptotically nonexpansive mapping.
If {Tnx} is bounded for some x ∈ K and z ∈ AK ({Tnx}), then z is a fixed point of T .

Proof Let {Tnx} be bounded and z ∈ AK ({Tnx}). It follows from Lemma . that z is the
unique asymptotic center of {Tnx}. Assume yi = Tiz ∈ K . We show that yi → z as i → ∞.
Contrarily, we assume that yi � z, then there exist a subsequence {yij} of {yi} and α > 
such that

d(yij , z) ≥ α


for all j.

Let μ = rK ({Tnx}). For any ε ∈ (, ] there exists N ∈ N such that, for all n ≥ N , we have

d
(
y, Tnx

) ≤ μ + ε ≤ μ +  and d
(
yij , Tnx

) ≤ μ + ε ≤ μ + .

It follows from the uniform convexity that

d
(

W
(

y, yij ,



)
, Tnx

)
≤

(
 – η

(
μ + ε,

α

(μ + )

))
(μ + ε)

≤
(

 – η

(
μ + ,

α

(μ + )

))
(μ + ε).

Note that when n → ∞, then the above estimate implies that

r
(

W
(

y, yij ,



)
, Tnx

)
≤

(
 – η

(
μ + ,

α

(μ + )

))
(μ + ε).

Since ( – η(μ + , α
(μ+) ))(μ + ε) < μ when ε → , from the above estimate

r
(

W
(

y, yij ,



)
, Tnx

)
< μ.

A contradiction to the fact that μ is the asymptotic radius of {Tnx}. Now, Lemma .
implies that yi → z as i → ∞. The continuity of T implies that z is a fixed point of T . This
completes the proof. �

Remark . It is remarked that Theorems . and . can also be adopted to prove the
existence of a common fixed point for a total asymptotically nonexpansive semigroup.
A different approach to prove the existence of a common fixed point for such semigroups
can be found in a recent paper due to Suantai and Phuengrattana [].

The rest of the paper deals with the convergence analysis of iteration process (.) for
the approximation of common fixed points of a finite family of total asymptotically non-
expansive mappings.

Theorem . Let K be a nonempty, closed, and convex subset of a uniformly convex hyper-
bolic space X with monotone modulus of uniform convexity η and let {Ti}m

i= : K → K be a
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finite family of uniformly continuous total asymptotically nonexpansive mappings with se-
quences {kin} and {ϕin}, n ≥ , i = , , . . . , m, such that F :=

⋂m
i= F(Ti) �= φ. For i = , , . . . , m

if the following conditions are satisfied:
(C)

∑∞
n= kin < ∞ and

∑∞
n= ϕin < ∞;

(C) there exist constants Mi, M∗
i >  such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
then the sequence {xn} defined in (.) �-converges to a point in F .

Proof It follows from Lemma . that {xn} is bounded. Therefore by Lemma ., {xn} has a
unique asymptotic center, that is, AK ({xn}) = {x}. Let {un} be any subsequence of {xn} such
that AK ({un}) = {u} and

lim
n→∞ d(un, Tiun) =  for all i = , , . . . , m. (.)

Next, we show that u ∈ F . For each j ∈ {, , , . . . , m}, we define a sequence {zn} in K by
zi = Ti

j u. In the presence of the increasing function ξj and (C), we calculate

d(zi, un) ≤ d
(
Ti

j u, Ti
j un

)
+ d

(
Ti

j un, Ti–
j un

)
+ · · · + d(Tjun, un)

≤ d(u, un) + kjnξj
(
d(u, un)

)
+ ϕjn +

i–∑

r=

d
(
Tr

j un, Tr+
j un

)

≤ (
 + kjnM∗

j
)
d(u, un) + kjnξj(Mj) + ϕjn +

i–∑

r=

d
(
Tr

j un, Tr+
j un

)
.

Taking lim sup on both sides of the above estimate and utilizing (.) and the fact that each
Tj is uniformly continuous, we have

r
(
zi, {un}

)
= lim sup

n→∞
d(zi, un) ≤ lim sup

n→∞
d(u, un) = r

(
u, {un}

)
.

This implies that |r(zi, {un}) – r(u, {un})| →  as i → ∞. It follows from Lemma .
that limi→∞ Ti

j u = u. Again, utilizing the uniform continuity of Tj, we have Tj(u) =
Tj(limi→∞ Ti

j u) = limi→∞ Ti+
j u = u. From the arbitrariness of j, we conclude that u is the

common fixed point of {Tj}m
j=. It remains to show that x = u. In fact, uniqueness of the

asymptotic center implies that

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u).

This is a contradiction. Hence x = u. This implies that u is the unique asymptotic center
of {xn} for every subsequence {un} of {xn}. This completes the proof. �

The strong convergence of iteration process (.) can easily be established under the
compactness condition of K or T(K). As a consequence, we can get a generalized version
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of Theorem  in [] and Theorem . in [] to the general setup of uniformly convex
hyperbolic spaces, respectively. Next, we give a necessary and sufficient condition for the
strong convergence of iteration process (.).

Theorem . Let K be a nonempty, closed, and convex subset of a uniformly convex hy-
perbolic space X with monotone modulus of uniform convexity η and let {Ti}m

i= : K → K be
a finite family of uniformly continuous total asymptotically nonexpansive mappings with
sequences {kin} and {ϕin}, n ≥ , i = , , . . . , m. Suppose that F :=

⋂m
i= F(Ti) �= φ and the

following conditions are satisfied:
(C)

∑∞
n= kin < ∞ and

∑∞
n= ϕin < ∞;

(C) there exist constants Mi, M∗
i >  such that ξi(λi) ≤ M∗

i λi for all λi ≥ Mi,
then the sequence {xn} defined in (.) converges strongly to a point in F if and only if
lim infn→∞ d(xn, F) = .

Proof The necessity of the conditions is obvious. Thus, we only prove the sufficiency. It
follows from Lemma . that {d(xn, p)}∞n= converges. Moreover, lim infn→∞ d(xn, F) = 
implies that limn→∞ d(xn, F) = . This completes the proof. �

It is remarked that there are certain situations when the domain D(T) of a nonlinear
mapping T is a proper subset of the underlying space X. In such situations, the iterative
schema for the approximation of fixed points of T may fail to be well defined. It is therefore
natural to study the non-self behavior of the nonlinear mappings.

We recall that a non-self-mapping T : K → X is called a total asymptotically nonex-
pansive mapping if there exist nonnegative real sequences {kn} and {ϕn} with kn →  and
ϕn →  as n → ∞ and a strictly increasing continuous function ξ : R+ → R

+ with ξ () = ,
such that

d
(
T(PT)n–x, T(PT)n–y

) ≤ d(x, y) + knξ
(
d(x, y)

)
+ ϕn for all x, y ∈ K , n ≥ ,

where P : X → K is a nonexpansive retract.
Hence, one can establish the strong and �-convergence results - as in Theorems .

and . with a slight modification - for the following iteration schema involving a finite
family of totally asymptotically nonexpansive non-self-mappings:

x ∈ K ,

xn+ = P
(
W

(
xn, T(PT)n–xn,αn

))
if m = , n ≥ ,

x ∈ K ,

xn+ = P
(
W

(
xn, T(PT)n–yn,αn

))
,

yn = P
(
W

(
xn, T(PT)n–yn,αn

))
,

yn = P
(
W

(
xn, T(PT)n–yn,αn

))
,

. . . ,

y(m–)n = P
(
W

(
xn, Tm–(PTm–)n–y(m–)n,αn

))
,

y(m–)n = P
(
W

(
xn, Tm(PTm)n–xn,αn

))
if m ≥ , n ≥ .
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Remark .
(i) It is worth mentioning that Theorems . and . can easily be extended to the

class of mappings with bounded error terms as well as to approximate common
fixed points of total asymptotically nonexpansive semigroup;

(ii) Lemma . improves and generalizes Theorem  in [] and Lemma .(i) in [] to
the general setup of uniformly convex hyperbolic spaces, respectively;

(iii) Lemma . improves and generalizes Theorem  in [] and Lemma .(iii) in []
to the setting as mentioned in (ii);

(iv) Theorem . improves Theorem . in [] and Theorem . in [] for a finite
family of total asymptotically nonexpansive mappings to the setup of spaces as
mentioned in (ii);

(v) Theorem . sets an analog of Theorem . in [] in the setting as mentioned
in (ii);

(vi) Theorem . generalizes Theorem  in [] and Theorem . in [] to the setting as
defined in (ii).
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