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Abstract
In this paper, we prove the existence of fixed points for nonlinear and semilinear
operators on order intervals. The abstract results unified some methods in studying
the existence of positive solutions for boundary and initial value problems of
nonlinear difference and differential equations. Applications are shown by examples.
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1 Introduction
Fixed point theory has been an important tool in the study of differential and integral equa-
tions [, ], economics [], optimization and game theory [] among others. The simplest
theorem from elementary calculus considers the existence of positive roots for the equa-
tion: f (x) = x on R+ = [, +∞). Clearly, if there exist b > a >  such that f ∈ C[a, b] and
either f (a) ≤ a and f (b) ≥ b or f (a) ≥ a and f (b) ≤ b, then there exists a x� ∈ [a, b] such
that x� = f (x�), that is: the function f (x) has a fixed point x� ∈ [a, b]. Such result had been
expanded to an abstract operator equation to obtain the Guo-Krasnoselskĭı fixed point
theorem concerning cone expansion and compression of norm type as follows (see []
and []).

Lemma . Let X be a Banach space and P be a cone in X. Assume that � and � are open
subsets of X with  ∈ � and � ⊂ �. Let T : P ∩ (� \ �) → P be completely continuous
operator. If either ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂� and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂� or ‖Tu‖ ≤
‖u‖ for u ∈ P ∩ ∂� and ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂� holds, then T has a fixed point in
P ∩ (� \ �).

It is well-known that this abstract result can be applied to obtain an abundance of con-
crete results for some special problems [, –], for example, (a) Hammerstein integral
equations, (b) boundary value problems for semilinear ordinary differential equations,
(c) boundary value problems for semilinear elliptic differential equations, (d) initial-value
problems for semilinear parabolic differential equations, (e) discrete boundary value prob-
lems or the nonlinear algebraic equations systems, (f ) boundary value problems for semi-
linear fractional differential equations, (g) boundary value problems for semilinear time
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scale differential equations, (h) existence of periodic solutions for some functional differ-
ential equations, etc. Because these problems can be regarded as abstract operator equa-
tions.

Let X be an ordered Banach space with the cone X+. We found that many problems
depend on properly constructing subcones of X+. For example, the following well-known
subcones of X+ have been extensively applied. First, let P be defined as

P =
{

u ∈ C[, ] : u(t) ≥ c‖u‖}, (.)

where X = C[, ], X+ = {u ∈ X, u(t) ≥  for t ∈ [, ]} and

‖u‖ = ‖u‖∞ = max
≤t≤

∣∣u(t)
∣∣.

The cone P was first used in [] and then in [], followed by many authors in studying
boundary value problems, for instance, [, –]. Recently, in [], the authors proved
results on the existence of positive solutions for singular fractional differential equa-
tions with integral boundary conditions. P was applied with the constant c defined as
c = k(–M)

k
, where M, k and k are determined by the associated Green’s function.

Second, let P be defined as

P =
{

u ∈ C[, ] : u(t) ≥ b
a + b

‖c‖∞, u() ≥ b
a
∥∥u′∥∥∞, u′(t) ≥ c‖u‖∞ on [, ]

}
, (.)

where

‖u‖ = max
{‖u‖∞,

∥∥u′∥∥∞
}

,

a, b, c are positive constants used for the boundary conditions. The cone P was most
recently used in [] to prove the existence of positive solutions for second-order non-
local boundary value problems with singularities in space variables.

Third, let P be defined as

P =
{

u ∈ C[, ] : u(t) ≥ q(t)‖u‖, t ∈ [, ]
}

, (.)

where X = C[, ],  < α < , q(t) = tα–, ‖u‖ = ‖u‖∞. The cone P was applied in [] to
prove the existence of solutions for fractional boundary value problems.

Last, define P as

P =
{

x ∈R
n : xi ≥ γ |x|, i ∈ [, n]

}
, (.)

where X = R
n, |x| = max≤i≤n |xi|,  > γ > . The cone P was used in [, ] to prove the

existence of positive solutions for a class of nonlinear algebraic systems.
As a generalization to some subcones applied previously, we introduce the following

unified subcone Pu on the abstract ordered Banach space X. Letting u ∈ X+ with ‖u‖ ≤
, define

Pu =
{

x ∈ X+, x ≥ ‖x‖u
}

. (.)
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For a, b ≥  and x, y ∈ Pu , we have

ax + by ≥ (
a‖x‖ + b‖y‖)u ≥ ‖ax + by‖u.

It can be verified that Pu is a cone, which is a subcone of X+.
In this paper, we will consider the existence of solutions for the operator equation

T(x) = x, x ∈ Pu . (.)

When T = Kf , where K is a linear operator and f is nonlinear, we can obtain an abstract
Hammerstein equation:

x = Kf (x), x ∈ Pu . (.)

Pu is a new and general cone. When we choose different u, some known cones such
as (.)-(.) can be obtained. When the obtained abstract results are applied to concrete
cases (a)-(h), new results can be naturally obtained. Compared to the Guo-Krasnoselskĭı’s
result, our abstract results are established on order intervals rather than an annular region
of the cone. Therefore, no conditions for the operator T outside the interval are necessary.
This expands the recent idea in [].

2 Main results
Let X be an ordered Banach space defined with the cone X+. An ordered interval is defined
as

[x, y] = {z ∈ X : x ≤ z ≤ y}.

For any r > , we denote �r = {x ∈ X : ‖x‖ < r} and ∂�r = {x ∈ X : ‖x‖ = r}.

Theorem . Assume that X is an ordered Banach space with the order cone X+. Let  ≤
u ≤ ϕ be such that ‖u‖ ≤ , ‖ϕ‖ =  satisfying the condition:

if x ∈ X+,‖x‖ ≤ , then x ≤ ϕ.

If there exist positive numbers  < a < b such that T : Pu ∩ (�b \�a) → Pu is a completely
continuous operator and the conditions:

∥∥T(x)
∥∥

x∈[au,aϕ] ≤ a and
∥∥T(x)

∥∥
x∈[bu,bϕ] ≥ b (.)

or

∥∥T(x)
∥∥

x∈[au,aϕ] ≥ a and
∥∥T(x)

∥∥
x∈[bu,bϕ] ≤ b (.)

are satisfied, then T has a fixed point x ∈ [au, bϕ].
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Proof Assume that condition (.) is satisfied. For x ∈ Pu ∩ ∂�a, we have ‖x‖ = a and
x

‖x‖ ≤ ϕ, hence x ≤ ‖x‖ϕ = aϕ. Since x ∈ Pu , we have

x ≥ ‖x‖u = au.

Therefore x ∈ [au, aϕ]. Condition (.) ensures that ‖T(x)‖ ≤ a = ‖x‖.
On the other hand, for x ∈ Pu ∩∂�b, we have ‖x‖ = b and x

‖x‖ ≤ ϕ, hence x ≤ ‖x‖ϕ = bϕ.
Again, x ∈ Pu implies that

x ≥ ‖x‖u = bu.

Therefore x ∈ [bu, bϕ]. By condition (.), we obtain ‖T(x)‖ ≥ b = ‖x‖. Applying
Lemma ., we obtain that T has at least one fixed point x ∈ Pu ∩ (�b \ �a). Obvi-
ously, x ∈ �b implies x ≤ ‖x‖ϕ ≤ bϕ and x ∈ Pu ensures that x ≥ ‖x‖u ≥ au. So
x ∈ [au, bϕ].

The proof is similar if condition (.) holds. �

As a special case of Theorem ., let  < δ ≤  and u = δϕ, we have

Pu = Pδϕ =
{

x ∈ X+, x ≥ δ‖x‖ϕ}
.

Therefore, we obtain the following theorem by applying Theorem ..

Theorem . If there exist positive numbers a < b such that T : Pδϕ ∩ (�b \ �a) → Pδϕ is
a completely continuous operator and the conditions

∥∥T(x)
∥∥

x∈[δaϕ,aϕ] ≤ a and
∥∥T(x)

∥∥
x∈[δbϕ,bϕ] ≥ b (.)

or

∥∥T(x)
∥∥

x∈[δaϕ,aϕ] ≥ a and
∥∥T(x)

∥∥
x∈[δbϕ,bϕ] ≤ b (.)

are satisfied, then T has a fixed point x ∈ [δaϕ, bϕ].

In Theorem ., let δ = , we obtain the following corollary, which is a generalization of
the fixed point theorem in finite dimensional spaces recently obtained in [].

Corollary . If there exist positive numbers a < b such that T : Pϕ ∩ (�b \ �a) → Pϕ is
completely continuous and the conditions

∥∥T(aϕ)
∥∥ ≤ a and

∥∥T(bϕ)
∥∥ ≥ b (.)

or

∥∥T(aϕ)
∥∥ ≥ a and

∥∥T(bϕ)
∥∥ ≤ b (.)

are satisfied, then T has a fixed point x ∈ [aϕ, bϕ].
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Example  Consider the equation: x = x –  = f (x). Clearly, there exist the positive num-
bers  and  such that x –  ≥  for x ∈ [, ], f () =  ≤ , and f () =  ≥ . Thus, in view
of Corollary ., there exists ξ ∈ [, ] such that ξ = ξ  – . In fact, we have

ξ =
 +

√



≈ ..

However, f (x) ≤  for x ∈ [, ].

We now consider the semilinear operator equation (.).

Theorem . Let f : X+ → X be nonlinear and K : X → X be a linear operator. Assume
that u and ϕ are the same as in Theorem .. If there exist positive numbers m ≤ M and
a < b such that

m
∥∥f (x)

∥∥ ≤ ∥∥Kf (x)
∥∥ ≤ M

∥∥f (x)
∥∥ for x ∈ Pu ∩ (�b \ �a), (.)

where Kf : Pu ∩ (�b \�a) → Pu is completely continuous and, in addition, the conditions

∥∥f (x)
∥∥

x∈[au,aϕ] ≤ a
M

and
∥∥f (x)

∥∥
x∈[bu,bϕ] ≥ b

m
(.)

or

∥∥f (x)
∥∥

x∈[au,aϕ] ≥ a
m

and
∥∥f (x)

∥∥
x∈[bu,bϕ] ≤ b

M
(.)

are satisfied, then the operator equation (.) has a solution x ∈ [au, bϕ].

Proof As in the proof of Theorem ., it can be shown that condition (.) ensures the
following conditions:

x ∈ Pu ∩ ∂�a ⊂ [au, aϕ] and x ∈ Pu ∩ ∂�b ⊂ [bu, bϕ].

Therefore,

∥∥Kf (x)
∥∥ ≤ M

∥∥f (x)
∥∥ ≤ a for x ∈ Pu ∩ ∂�a

and

∥∥Kf (x)
∥∥ ≥ m

∥∥f (x)
∥∥ ≥ b for x ∈ Pu ∩ ∂�b.

The rest of the proof is similar to that of Theorem .. �

Remark . In Theorem ., let u = δϕ, we can obtain the parallel theorem of Theo-
rem . for the semilinear case.

Remark . Condition (.) is always true when K is bounded and invertible. For a
bounded linear operator, M = ‖K‖. If K is invertible, m = 

‖K–‖ .
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For a Banach space with a normal cone, the norm condition (.) can be reduced to an
order condition. The definition of a normal cone is given below [].

Definition . The order cone X+ is called normal iff there is a number c >  such that,
for all x, y ∈ X:

if  ≤ x ≤ y, then ‖x‖ ≤ c‖y‖.

The following result for a Banach space with a normal cone can be easily applied in many
cases.

Theorem . Let X be an ordered Banach space with the normal cone X+ and the normal
parameter c. Let f : X+ → X be nonlinear and K : X → X be a linear operator. Assume that
there exist positive numbers m ≤ M and a < b such that

m
∥∥f (x)

∥∥ϕ ≤ Kf (x) ≤ M
∥∥f (x)

∥∥ϕ for x ∈ Pδϕ ∩ (�b \ �a), (.)

Kf : Pδϕ ∩ (�b \ �a) → Pδϕ is a completely continuous operator, and that the conditions

∥∥f (x)
∥∥

x∈[δaϕ,aϕ] ≤ a
cM

and
∥∥f (x)

∥∥
x∈[δbϕ,bϕ] ≥ cb

m
(.)

or

∥∥f (x)
∥∥

x∈[δaϕ,aϕ] ≥ ca
m

and
∥∥f (x)

∥∥
x∈[δbϕ,bϕ] ≤ b

cM
(.)

are satisfied; then the operator equation (.) has a solution x ∈ [δaϕ, bϕ].

The proof of Theorem . follows directly from Theorem . (u = δϕ) and the fact that
condition (.) implies

m
c

∥∥f (x)
∥∥ ≤ ∥∥Kf (x)

∥∥ ≤ cM
∥∥f (x)

∥∥ for x ∈ Pδϕ ∩ (�b \ �a).

In the following example, we use the notation col(x, x) to denote the column vector
(x, x)⊥ ∈ R

.

Example  Let f (x) = x – , x ∈R+ = [,∞). Consider the system of equation:

(
a a

a a

)

f (x) = x, (.)

where aij > , x = col(x, x) ∈ R
, f (x) = col(f (x), f (x)). Let the norm of R be defined as

‖x‖ = max{|x|, |x|} and denote

R

+ =

{
col(x, x) : xi ≥ , i = , 

}
.

Obviously R

+ is a normal cone of R with the normal parameter c = .
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System (.) can be written as Kf (x) = x, where K : R →R
 is the linear operator

K(x) =

(
a a

a a

)

x, x = col(x, x) ∈R
.

Assume that

m =  min(aij) =  and M =  max(aij) = .

Let ϕ = col(, ), δ = m
M , a = 

 , b = . It can be verified that conditions (.) and (.) are
satisfied. Therefore, (.) has at least one solution x = col(x, x) and 

 ≤ xi ≤ , i = , .
In fact, if a = a = , a = a = 

 , we can find that x = col( (+
√

)
 , +

√


 ) is a solution of
(.).

It can be seen that Example  is true for any finite dimensional space with the dimension
n > .

Remark . If there exist {ak} and {bk} such that ak and bk (k = , , . . . , n) satisfy all con-
ditions of Theorem ., and

[aiu, biϕ] ∩ [aju, bjϕ] = φ for i �= j,

then we can obtain n fixed points of T with ak , bk (k = , , . . . , n) as an ordered sequence.
The same results on multiple fixed points can be derived from other theorems.

Remark . Theorems proved in this section can also be extended to negative intervals
to prove the existence of negative solutions.

3 Applications
The results obtained in Section  can be applied to existence of solutions for differential
and difference equations. We will show some examples.

Example  Consider the discrete Dirichlet boundary value problem []:

{
�xi– + f (xi) = , i ∈ [, n],
x =  = xn+,

(.)

where n is a positive integer, [, n] = {, , . . . , n}, f : R+ → R+, � is the forward difference
operator,

�xi– = xi – xi–, �xi– = �(�xi–).

Let

gij =

{ (n–i+)j
n+ ,  ≤ j ≤ i ≤ n,

(n–j+)i
n+ ,  ≤ i ≤ j ≤ n.
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BVP (.) can be rewritten as

xi =
n∑

j=

gijf (xj) for i ∈ [, n], (.)

where x = col(x, x, . . . , xn), f (x) = col(f (x), f (x), . . . , f (xn)). The same as shown in Exam-
ple , (.) can be written as x = Kf (x) for x ∈ R

n
+, where K : Rn → R

n is a linear operator.
Let

‖x‖ = max
{|xi|

}
, ϕ = {, , . . . , },

m = n min
i,j∈[,n]

{gij}, M = n max
i,j∈[,n]

{gij}.

Let δ = m
M . Applying Theorem ., we obtain the results that were obtained in [] most

recently.

The following definition of a fractional derivative is related to our next example on frac-
tional boundary value problem.

Definition . The Riemann-Liouvillle fractional derivative of order α >  of a continu-
ous function u : [,∞) → R is defined to be

Dα
+u(t) =


�(n – α)

(
d
dt

)n ∫ t



u(s)
(t – s)α–n+ ds, n = �α�,

where �α� denotes the ceiling function that returns the smallest integer greater than or
equal to α.

Example  Consider the fractional boundary value problem []:

Dα
+u(t) + λh(t)f

(
u(t)

)
= ,  < t < ,  < α < , (.)

u() = u′() = u′() = , (.)

where λ >  is a parameter, h : (, ) → (,∞), and f : [,∞) → R
+ are nonnegative and

continuous.
Let X = C[, ] with the standard norm ‖u‖ = max≤t≤ |u(t)|, u ∈ X. Let X+ = {u ∈

C[, ], u(t) ≥  for t ∈ [, ]}. Define the Hammerstein operator N : X → X:

N(u)(t) = λ

∫ 


G(t, s)a(s)f

(
u(s)

)
ds, t ∈ [, ], u ∈ X, (.)

where

G(t, s) =

{ (–s)α–tα–

�(α) if  ≤ t ≤ s ≤ ,
(–s)α–tα–

�(α) – (t–s)α–

�(α) if  ≤ s ≤ t ≤ .

It is well-known that u ∈ X is a solution of (.)-(.) if and only if N(u) = u [].
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System (.)-(.) was recently studied in []. Applying Theorem ., the following new
result on the existence of a positive solution is obtained.

Theorem . Assume that h(s) ≥  for s >  and f (x) >  for x > . Denote

f = lim
x→+

f (x)
x

, f∞ = lim
x→∞

f (x)
x

,

A =
∫ 


G(, s)h(s) ds, B =

∫ 


G(, s)h(s)q(s) ds,

where q(s) = sα–. Assume that  < f, f∞ < ∞. If Af < Bf∞, then the BVP (.)-(.) has at
least one positive solution for λ ∈ ( 

Bf∞ , 
Af

).

Proof Let u = q(t), ϕ = . It was shown that, for any λ > , N : Pu → Pu is completely
continuous []. For u ∈ Pu , ‖u‖ = u(). So u and ϕ satisfy the conditions of Theorem ..

Since λ < 
Af

, we select ε >  small enough such that λ(f + ε)A < . Let δ >  such that
f (x)

x < f + ε for x ∈ (, δ) and a = δ
 . Then, for u ∈ C[, ], u ∈ [aq(t), a], we have

‖N(u)‖ = N(u)() = λ

∫ 


G(, s)h(s)f

(
u(s)

)
ds

≤ λ(f + ε)
∫ 


G(, s)h(s)u(s) ds ≤ a.

Since λ > 
Bf∞ , there exist c >  and ε >  such that

λ(f∞ – ε)
∫ 

c
G(, s)h(s)q(s) ds > .

Let N >  such that f (x)
x > f∞ – ε for x ≥ N . Assume that N > cα–δ. Let b = N

cα– . For
u ∈ C[, ], btα– ≤ u ≤ b, u(t) ≥ N for t ∈ [c, ]. Therefore

‖N(u)‖ = N(u)() = λ

∫ 


G(, s)h(s)f

(
u(s)

)
ds

≥ λ(f∞ – ε)
∫ 

c
G(, s)h(s)u(s) ds

≥ λ(f∞ – ε)b
∫ 

c
G(, s)h(s)q(s) ds ≥ b.

By Theorem ., N has a fixed point uλ ∈ [aq(t), b]. It is a positive solution of (.)-(.).
�
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