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1 Introduction
Let C be a nonempty subset of a metric space (X, d) and T : C → C be a nonlinear map-
ping. The fixed point set of T is denoted by F(T), that is, F(T) = {x ∈ C : x = Tx}. Recall
that a mapping T is said to be nonexpansive if

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C.
There have been many iterative schemes constructed and proposed in order to approx-

imate fixed points of nonexpansive mappings. The Mann iteration process is defined as
follows: x ∈ C and

xn+ = ( – αn)xn + αnTxn (.)

for each n ∈N, where {αn} is a sequence in (, ). The Ishikawa iteration process is defined
as follows: x ∈ C and

⎧
⎨

⎩

xn+ = ( – αn)xn + αnTyn,

yn = ( – βn)xn + βnTxn
(.)

for each n ∈N, where {αn} and {βn} are sequences in (, ).
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Recently, Agarwal et al. [] introduced the following S-iteration process: x ∈ C and

⎧
⎨

⎩

xn+ = ( – αn)Txn + αnTyn,

yn = ( – βn)xn + βnTxn
(.)

for each n ∈ N, where {αn} and {βn} are sequences in (, ).
It is noted in [] that (.) is independent of (.) (and hence (.)) and has the conver-

gence rate better than (.) and (.) for contractions.
Fixed point theory in a CAT() space was first studied by Kirk []. Since then, fixed point

theory for various types of mappings in CAT() spaces has been investigated rapidly. In
, Dhompongsa-Panyanak [] studied the convergence of the processes (.) and (.)
for nonexpansive mappings in CAT() spaces. Subsequently, in , Khan-Abbas [] stud-
ied the convergence of Ishikawa-type iteration process for two nonexpansive mappings. In
CAT() spaces, they also modified the process (.) and studied strong and �-convergence
of the S-iteration as follows: x ∈ C and

⎧
⎨

⎩

xn+ = ( – αn)Txn ⊕ αnTyn,

yn = ( – βn)xn ⊕ βnTxn

for each n ∈ N, where {αn} and {βn} are sequences in (, ).
Some interesting results for solving a fixed point problem of nonlinear mappings in the

framework of CAT() spaces can also be found, for examples, in [–].
Let (X, d) be a geodesic metric space and f : X → (–∞,∞] be a proper and convex func-

tion. One of the major problems in optimization is to find x ∈ X such that

f (x) = min
y∈X

f (y).

We denote argminy∈X f (y) by the set of minimizers of f . A successful and powerful tool
for solving this problem is the well-known proximal point algorithm (shortly, the PPA)
which was initiated by Martinet [] in . In , Rockafellar [] generally studied,
by the PPA, the convergence to a solution of the convex minimization problem in the
framework of Hilbert spaces.

Indeed, let f be a proper, convex, and lower semi-continuous function on a Hilbert space
H which attains its minimum. The PPA is defined by x ∈ H and

xn+ = argmin
y∈H

(

f (y) +


λn
‖y – xn‖

)

for each n ∈ N, where λn >  for all n ∈ N. It was proved that the sequence {xn} converges
weakly to a minimizer of f provided

∑∞
n= λn = ∞. However, as shown by Güler [], the

PPA does not necessarily converges strongly in general. In , Kamimura-Takahashi
[] combined the PPA with Halpern’s algorithm [] so that the strong convergence is
guaranteed (see also [–]).

In , Bačák [] introduced the PPA in a CAT() space (X, d) as follows: x ∈ X and

xn+ = argmin
y∈X

(

f (y) +


λn
d(y, xn)

)
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for each n ∈ N, where λn >  for all n ∈ N. Based on the concept of the Fejér monotonic-
ity, it was shown that, if f has a minimizer and

∑∞
n= λn = ∞, then the sequence {xn}

�-converges to its minimizer (see also []). Recently, in , Bačák [] employed a
split version of the PPA for minimizing a sum of convex functions in complete CAT()
spaces. Other interesting results can also be found in [, , ].

Recently, many convergence results by the PPA for solving optimization problems have
been extended from the classical linear spaces such as Euclidean spaces, Hilbert spaces and
Banach spaces to the setting of manifolds [–]. The minimizers of the objective convex
functionals in the spaces with nonlinearity play a crucial role in the branch of analysis
and geometry. Numerous applications in computer vision, machine learning, electronic
structure computation, system balancing and robot manipulation can be considered as
solving optimization problems on manifolds (see [–]).

A question arises naturally:

Can we establish strong convergence of the sequence to minimizers of a convex function
and to fixed points of nonexpansive mappings in CAT() spaces?

Motivated by the previous works, we propose the modified proximal point algorithm
using the S-type iteration process for two nonexpansive mappings in CAT() spaces and
prove some convergence theorems of the proposed processes under some mild conditions.

2 Preliminaries and lemmas
Let (X, d) be a metric space and x, y ∈ X with d(x, y) = l. A geodesic path from x to y is an
isometry c : [, l] → X such that c() = x and c(l) = y. The image of a geodesic path is called
the geodesic segment. The space (X, d) is said to be a geodesic space if every two points of X
are joined by a geodesic. A space (X, d) is a uniquely geodesic space if every two points of
X are jointed by only one geodesic segment. A geodesic triangle �(x, x, x) in a geodesic
metric space (X, d) consists of three points x, x, x in X and a geodesic segment between
each pair of vertices. A comparison triangle for the geodesic triangle �(x, x, x) in (X, d)
is a triangle �̄(x, x, x) := �(x̄, x̄, x̄) in Euclidean space R such that dR (x̄i, x̄j) = d(xi, xj)
for each i, j ∈ {, , }. A geodesic space is said to be a CAT() space if, for each geodesic
triangle �(x, x, x) in X and its comparison triangle �̄ := �(x̄, x̄, x̄) in R

, the CAT()
inequality

d(x, y) ≤ dR (x̄, ȳ)

is satisfied for all x, y ∈ � and comparison points x̄, ȳ ∈ �̄. We write ( – t)x ⊕ ty for the
unique point z in the geodesic segment joining from x to y such that d(x, z) = td(x, y) and
d(y, z) = ( – t)d(x, y). We also denote by [x, y] the geodesic segment joining x to y, that
is, [x, y] = {( – t)x ⊕ ty : t ∈ [, ]}. A subset C of a CAT() space is said to be convex if
[x, y] ⊂ C for all x, y ∈ C. For more details, the readers may consult []. A geodesic space
X is a CAT() space if and only if

d(( – t)x ⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y) (.)

for all x, y, z ∈ X and t ∈ [, ] []. In particular, if x, y, z are points in X and t ∈ [, ], then
we have

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z). (.)
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The following examples are CAT() spaces:
() Euclidean spaces Rn;
() Hilbert spaces;
() simply connected Riemannian manifolds of nonpositive sectional curvature;
() hyperbolic spaces;
() trees.
Let (X, d) be a complete CAT() space and C be a nonempty closed and convex subset

of X. Then, for each point x ∈ X, there exists a unique point of C, denoted by PCx, such
that

d(x, PCx) = inf
y∈C

d(x, y)

(see []). Such a mapping PC is called the metric projection from X onto C.
Let {xn} be a bounded sequence in a closed convex subset C of a CAT() space X. For

any x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)
= inf

{
r
(
x, {xn}

)
: x ∈ X

}

and the asymptotic center A({xn}) of {xn} is the set

A
({xn}

)
=

{
x ∈ X : r

({xn}
)

= r
(
x, {xn}

)}
.

It is well known that, in CAT() spaces, A({xn}) consists of exactly one point [].

Definition . A sequence {xn} in a CAT() space X is said to �-converge to a point x ∈ X
if x is the unique asymptotic center of {un} for every subsequence {un} of {xn}.

In this case, we write �-limn→∞ xn = x and call x the �-limit of {xn}. We denote w�(xn) :=
⋃{A({un})}, where the union is taken over all subsequences {un} of {xn}.

Recall that a bounded sequence {xn} in X is said to be regular if r({xn}) = r({un}) for
every subsequence {un} of {xn}. It is well known that every bounded sequence in X has a
�-convergent subsequence [].

Lemma . [] Let C be a closed and convex subset of a complete CAT() space X and
T : C → C be a nonexpansive mapping. Let {xn} be a bounded sequence in C such that
limn→∞ d(xn, Txn) =  and �-limn→∞ xn = x. Then x = Tx.

Lemma . [] If {xn} is a bounded sequence in a complete CAT() space with A({xn}) =
{x}, {un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges,
then x = u.

Recall that a function f : C → (–∞,∞] defined on a convex subset C of a CAT() space is
convex if, for any geodesic γ : [a, b] → C, the function f ◦γ is convex. Some important ex-
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amples can be found in []. We say that a function f defined on C is lower semi-continuous
at a point x ∈ C if

f (x) ≤ lim inf
n→∞ f (xn)

for each sequence xn → x. A function f is said to be lower semi-continuous on C if it is
lower semi-continuous at any point in C.

For any λ > , define the Moreau-Yosida resolvent of f in CAT() spaces as

Jλ(x) = argminy∈X

[

f (y) +


λ
d(y, x)

]

(.)

for all x ∈ X. The mapping Jλ is well defined for all λ >  (see [, ]).
Let f : X → (–∞,∞] be a proper convex and lower semi-continuous function. It was

shown in [] that the set F(Jλ) of fixed points of the resolvent associated with f coincides
with the set argminy∈X f (y) of minimizers of f .

Lemma . [] Let (X, d) be a complete CAT() space and f : X → (–∞,∞] be proper
convex and lower semi-continuous. For any λ > , the resolvent Jλ of f is nonexpansive.

Lemma . [] Let (X, d) be a complete CAT() space and f : X → (–∞,∞] be proper
convex and lower semi-continuous. Then, for all x, y ∈ X and λ > , we have


λ

d(Jλx, y) –


λ
d(x, y) +


λ

d(x, Jλx) + f (Jλx) ≤ f (y).

Proposition . [, ] (The resolvent identity) Let (X, d) be a complete CAT() space
and f : X → (–∞,∞] be proper convex and lower semi-continuous. Then the following
identity holds:

Jλx = Jμ
(

λ – μ

λ
Jλx ⊕ μ

λ
x
)

for all x ∈ X and λ > μ > .

For more results in CAT() spaces, refer to [].

3 Main results
We are now ready to prove our main results.

Theorem . Let (X, d) be a complete CAT() space and f : X → (–∞,∞] be a proper
convex and lower semi-continuous function. Let T and T be nonexpansive mappings on
X such that � = F(T) ∩ F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn}
are sequences such that  < a ≤ αn, βn ≤ b <  for all n ∈ N and for some a, b and {λn} is
a sequence such that λn ≥ λ >  for all n ∈ N and for some λ. Let {xn} be generated in the
following manner:

⎧
⎪⎪⎨

⎪⎪⎩

zn = argminy∈X[f (y) + 
λn

d(y, xn)],

yn = ( – βn)xn ⊕ βnTzn,

xn+ = ( – αn)Txn ⊕ αnTyn
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for each n ∈ N. Then we have the following:
() limn→∞ d(xn, q) exists for all q ∈ �;
() limn→∞ d(xn, zn) = ;
() limn→∞ d(xn, Txn) = limn→∞ d(xn, Txn) = .

Proof Let q ∈ �. Then q = Tq = Tq and f (q) ≤ f (y) for all y ∈ X. It follows that

f (q) +


λn
d(q, q) ≤ f (y) +


λn

d(y, q)

for all y ∈ X and hence q = Jλn q for all n ∈N.
() We show that limn→∞ d(xn, q) exists. Noting that zn = Jλn xn for all n ∈ N, we have, by

Lemma .,

d(zn, q) = d(Jλn xn, Jλn q) ≤ d(xn, q). (.)

Also, we have, by (.) and (.),

d(yn, q) = d
(
( – βn)xn ⊕ βnTzn, q

)

≤ ( – βn)d(xn, q) + βnd(Tzn, q)

≤ ( – βn)d(xn, q) + βnd(zn, q)

≤ d(xn, q). (.)

So, by (.), we obtain

d(xn+, q) = d
(
( – αn)Txn ⊕ αnTyn, q

)

≤ ( – αn)d(Txn, q) + αnd(Tyn, q)

≤ ( – αn)d(xn, q) + αnd(yn, q)

≤ d(xn, q). (.)

This shows that limn→∞ d(xn, q) exists. Hence limn→∞ d(xn, q) = c for some c.
() We show that limn→∞ d(xn, zn) = . By Lemma ., we see that


λn

d(zn, q) –


λn
d(xn, q) +


λn

d(xn, zn) ≤ f (q) – f (zn).

Since f (q) ≤ f (zn) for all n ∈N, it follows that

d(xn, zn) ≤ d(xn, q) – d(zn, q).

In order to show that limn→∞ d(xn, zn) = , it suffices to show that

lim
n→∞ d(zn, q) = c.

In fact, from (.), we have

d(xn+, q) ≤ ( – αn)d(xn, q) + αnd(yn, q),
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which is equivalent to

d(xn, q) ≤ 
αn

(
d(xn, q) – d(xn+, q)

)
+ d(yn, q)

≤ 
a
(
d(xn, q) – d(xn+, q)

)
+ d(yn, q)

since d(xn+, q) ≤ d(xn, q) and αn ≥ a >  for all n ∈ N. Hence we have c = lim infn→∞ d(xn,
q) ≤ lim infn→∞ d(yn, q).

On the other hand, by (.), we see that

lim sup
n→∞

d(yn, q) ≤ lim sup
n→∞

d(xn, q) = c.

Therefore, we have limn→∞ d(yn, q) = c. Also, by (.), we have

d(xn, q) ≤ 
βn

(
d(xn, q) – d(yn, q)

)
+ d(zn, q)

≤ 
a
(
d(xn, q) – d(yn, q)

)
+ d(zn, q),

which yields

c = lim inf
n→∞ d(xn, q) ≤ lim inf

n→∞ d(zn, q).

From this, together with (.), we conclude that

lim
n→∞ d(zn, q) = c.

This shows that

lim
n→∞ d(xn, zn) =  (.)

and so we prove ().
() We show that

lim
n→∞ d(xn, Txn) = lim

n→∞ d(xn, Txn) = . (.)

We observe that

d(yn, q) = d(( – βn)xn ⊕ βnTzn, q
)

≤ ( – βn)d(xn, q) + βnd(Tzn, q) – βn( – βn)d(xn, Tzn)

≤ d(xn, q) – a( – b)d(xn, Tzn). (.)

This implies that

d(xn, Tzn) ≤ 
a( – b)

(
d(xn, q) – d(yn, q)

)

→ 



Cholamjiak et al. Fixed Point Theory and Applications  (2015) 2015:227 Page 8 of 13

as n → ∞. Hence we have

lim
n→∞ d(xn, Tzn) = . (.)

It follows from (.) and (.) that

d(xn, Txn) ≤ d(xn, Tzn) + d(Tzn, Txn)

≤ d(xn, Tzn) + d(zn, xn)

→  (.)

as n → ∞. Similarly, we obtain

d(xn+, q) ≤ ( – αn)d(Txn, q) + αnd(Tyn, q) – αn( – αn)d(Txn, Tyn)

≤ d(xn, q) – a( – b)d(Txn, Tyn),

which implies

d(Txn, Tyn) ≤ 
a( – b)

(
d(xn, q) – d(xn+, q)

)

→  (.)

as n → ∞. From (.), we have

d(yn, xn) = βnd(Tzn, xn) →  (.)

as n → ∞. From (.), (.), and (.), it follows that

d(xn, Txn) ≤ d(xn, Txn) + d(Txn, Tyn) + d(Tyn, Txn)

≤ d(xn, Txn) + d(Txn, Tyn) + d(xn, yn)

→  (.)

as n → ∞ and so we prove (). This completes the proof. �

Next, we prove the �-convergence of our iteration.

Theorem . Let (X, d) be a complete CAT() space and f : X → (–∞,∞] be a proper
convex and lower semi-continuous function. Let T and T be nonexpansive mappings on
X such that � = F(T) ∩ F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn}
are sequences such that  < a ≤ αn, βn ≤ b <  for all n ∈ N and for some a, b, and {λn} is
a sequence such that λn ≥ λ >  for all n ∈ N and for some λ. Let {xn} be generated in the
following manner:

⎧
⎪⎪⎨

⎪⎪⎩

zn = argminy∈X[f (y) + 
λn

d(y, xn)],

yn = ( – βn)xn ⊕ βnTzn,

xn+ = ( – αn)Txn ⊕ αnTyn

(.)

for each n ∈ N. Then the sequence {xn} �-converges to a common element of �.



Cholamjiak et al. Fixed Point Theory and Applications  (2015) 2015:227 Page 9 of 13

Proof Since λn ≥ λ > , by Proposition . and Theorem .(),

d(Jλxn, Jλn xn) = d
(

Jλxn, Jλ
(

λn – λ

λn
Jλn xn ⊕ λ

λn
xn

))

≤ d
(

xn,
(

 –
λ

λn

)

Jλn xn ⊕ λ

λn
xn

)

=
(

 –
λ

λn

)

d(xn, zn)

→ 

as n → ∞. So, we obtain

d(xn, Jλxn) ≤ d(xn, zn) + d(zn, Jλxn)

→ 

as n → ∞. Theorem .() shows that limn→∞ d(xn, q) exists for all q ∈ � and Theo-
rem .() also implies that limn→∞ d(xn, Tixn) =  for all i = , .

Next, we show that w�(xn) ⊂ �. Let u ∈ w�(xn). Then there exists a subsequence {un} of
{xn} such that A({un}) = {u}. From Lemma ., there exists a subsequence {vn} of {un} such
that �-limn→∞ vn = v for some v ∈ �. So, u = v by Lemma .. This shows that w�(xn) ⊂ �.

Finally, we show that the sequence {xn} �-converges to a point in �. To this end, it
suffices to show that w�(xn) consists of exactly one point. Let {un} be a subsequence of {xn}
with A({un}) = {u} and let A({xn}) = {x}. Since u ∈ w�(xn) ⊂ � and {d(xn, u)} converges, by
Lemma ., we have x = u. Hence w�(xn) = {x}. This completes the proof. �

If T = T = T in Theorem ., then we obtain the following result.

Corollary . Let (X, d) be a complete CAT() space and f : X → (–∞,∞] be a proper
convex and lower semi-continuous function. Let T be a nonexpansive mapping on X such
that � = F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn} are sequences such
that  < a ≤ αn, βn ≤ b <  for all n ∈N and for some a, b, and {λn} is a sequence such that
λn ≥ λ >  for all n ∈N and for some λ. Let {xn} be generated in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

zn = argminy∈X[f (y) + 
λn

d(y, xn)],

yn = ( – βn)xn ⊕ βnTzn,

xn+ = ( – αn)xn ⊕ αnTyn

for each n ∈ N. Then the sequence {xn} �-converges to a common element of �.

Since every Hilbert space is a complete CAT() space, we obtain directly the following
result.

Corollary . Let H be a Hilbert space and f : H → (–∞,∞] be a proper convex and
lower semi-continuous function. Let T and T be nonexpansive mappings on H such that
� = F(T) ∩ F(T) ∩ argminy∈H f (y) is nonempty. Assume that {αn} and {βn} are sequences
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such that  < a ≤ αn, βn ≤ b <  for all n ∈N and for some a, b, and {λn} is a sequence such
that λn ≥ λ >  for all n ∈N and for some λ. Let {xn} be generated in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

zn = argminy∈X[f (y) + 
λn

‖y – xn‖],

yn = ( – βn)xn + βnTzn,

xn+ = ( – αn)Txn + αnTyn

for each n ∈ N. Then the sequence {xn} weakly converges to a common element of �.

Next, we establish the strong convergence theorems of our iteration.

Theorem . Let X be a complete CAT() space and f : X → (–∞,∞] be a proper con-
vex and lower semi-continuous function. Let T and T be nonexpansive mappings on X
such that � = F(T) ∩ F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn} are
sequences such that  < a ≤ αn, βn ≤ b <  for all n ∈ N and for some a, b, and {λn} is a se-
quence such that λn ≥ λ >  for all n ∈N and for some λ. Then the sequence {xn} generated
by (.) strongly converges to a common element of � if and only if lim infn→∞ d(xn,�) = ,
where d(x,�) = inf{d(x, q) : q ∈ �}.

Proof The necessity is obvious. Conversely, suppose that lim infn→∞ d(xn,�) = . Since

d(xn+, q) ≤ d(xn, q)

for all q ∈ �, it follows that

d(xn+,�) ≤ d(xn,�).

Hence limn→∞ d(xn,�) exists and limn→∞ d(xn,�) = . Following the proof of Theorem 
of [], we can show that {xn} is a Cauchy sequence in X. This implies that {xn} converges
to a point x∗ in X and so d(x∗,�) = . Since � is closed, x∗ ∈ �. This completes the proof.

�

A family {A, B, C} of mappings is said to satisfy the condition (�) if there exists a nonde-
creasing function f : [,∞) → [,∞) with f () = , f (r) >  for all r ∈ (,∞) such that
d(x, Ax) ≥ f (d(x, F)) or d(x, Bx) ≥ f (d(x, F)) or d(x, Cx) ≥ f (d(x, F)) for all x ∈ X. Here
F = F(A) ∩ F(B) ∩ F(C).

Theorem . Let X be a complete CAT() space and f : X → (–∞,∞] be a proper con-
vex and lower semi-continuous function. Let T and T be nonexpansive mappings on X
such that � = F(T) ∩ F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn} are
sequences such that  < a ≤ αn, βn ≤ b <  for all n ∈ N and for some a, b, and {λn} is a
sequence such that λn ≥ λ >  for all n ∈ N and for some λ. If {Jλ, T, T} satisfies the condi-
tion (�), then the sequence {xn} generated by (.) strongly converges to a common element
of �.

Proof From Theorem .(), we know that limn→∞ d(xn, q) exists for all q ∈ �. This implies
that limn→∞ d(xn,�) exists. On the other hand, by the hypothesis, we see that

lim
n→∞ f

(
d(xn,�)

) ≤ lim
n→∞ d(xn, Txn) = 
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or

lim
n→∞ f

(
d(xn,�)

) ≤ lim
n→∞ d(xn, Txn) = ,

or

lim
n→∞ f

(
d(xn,�)

) ≤ lim
n→∞ d(xn, Jλxn) = .

So, we have

lim
n→∞ f

(
d(xn,�)

)
= .

Using the property of f , it follows that limn→∞ d(xn,�) = . Following the proof of Theo-
rem ., we obtain the desired result. This completes the proof. �

A mapping T : C → C is said to be semi-compact if any sequence {xn} in C satisfying
d(xn, Txn) →  has a convergent subsequence.

Theorem . Let X be a complete CAT() space and f : X → (–∞,∞] be a proper con-
vex and lower semi-continuous function. Let T and T be nonexpansive mappings on X
such that � = F(T) ∩ F(T) ∩ argminy∈X f (y) is nonempty. Assume that {αn} and {βn} are
sequences such that  < a ≤ αn, βn ≤ b <  for all n ∈ N and for some a, b, and {λn} is a se-
quence such that λn ≥ λ >  for all n ∈N and for some λ. If T or T, or Jλ is semi-compact,
then the sequence {xn} generated by (.) strongly converges to a common element of �.

Proof Suppose that T is semi-compact. By Theorem .(), we have

d(xn, Txn) → 

as n → ∞. So, there exists a subsequence {xnk } of {xn} such that xnk → x∗ ∈ X. Since
d(xn, Jλxn) →  and d(xn, Tixn) →  for all i ∈ {, }, d(x∗, Jλx∗) = , and d(x∗, Tx∗) =
d(x∗, Tx∗) = , which shows that x∗ ∈ �. In other cases, we can prove the strong con-
vergence of {xn} to a common element of �. This completes the proof. �

Remark .
() Our main results generalize Theorem , Theorem  and Theorem  of Khan-Abbas

[] from one nonexpansive mapping to two nonexpansive mappings involving the
convex and lower semi-continuous function in CAT() spaces.

() Theorem . extends that of Bačák [] in CAT() spaces. In fact, we present a new
modified proximal point algorithm for solving the convex minimization problem as
well as the fixed point problem of nonexpansive mappings in CAT() spaces.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.



Cholamjiak et al. Fixed Point Theory and Applications  (2015) 2015:227 Page 12 of 13

Author details
1School of Science, University of Phayao, Phayao, 56000, Thailand. 2Department of Mathematics, King Abdulaziz
University, Jeddah, 21589, Saudi Arabia. 3Department of Mathematics Education and the RINS, Gyeongsang National
University, Jinju, 660-701, Republic of Korea.

Acknowledgements
This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, under grant
No. (18-130-36-HiCi). The authors, therefore, acknowledge with thanks DSR technical and financial support. Prasit
Cholamjiak thanks University of Phayao. Also, Yeol Je Cho was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning
(2014R1A2A2A01002100).

Received: 10 August 2015 Accepted: 9 November 2015

References
1. Agarwal, RP, O’Regan, D, Sahu, DR: Iterative construction of fixed points of nearly asymptotically nonexpansive

mappings. J. Nonlinear Convex Anal. 8, 61-79 (2007)
2. Kirk, WA: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis (Malaga/Seville,

2002/2003), pp. 195-225. Univ. Sevilla Secr. Publ., Seville (2003)
3. Dhompongsa, S, Panyanak, B: On �-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56, 2572-2579

(2008)
4. Khan, SH, Abbas, M: Strong and �-convergence of some iterative schemes in CAT(0) spaces. Comput. Math. Appl. 61,

109-116 (2011)
5. Chang, SS, Wang, L, Lee, HWJ, Chan, CK, Yang, L: Demiclosed principle and �-convergence theorems for total

asymptotically nonexpansive mappings in CAT(0) spaces. Appl. Math. Comput. 219, 2611-2617 (2012)
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