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Abstract
In this paper, using the modified hybrid Picard-Mann iteration process, we establish
�-convergence and strong convergence theorems for total asymptotically
nonexpansive mappings on a CAT (0) space. Results established in the paper extend
and improve a number of results in the literature. A numerical example is also given
to examine the fastness of the proposed iteration process under different control
conditions and initial points.
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1 Introduction
Let K be a nonempty, closed and convex subset of a normed linear space E. A mapping
T : K → K is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for every x, y in K . In the
last four decades, many papers have appeared in the literature on the iteration methods to
approximate fixed points of a nonexpansive mapping, cf. [–] and the references therein.
In the meantime, some generalizations of nonexpansive mappings have appeared, namely
asymptotically nonexpansive mapping [], asymptotically nonexpansive type mapping [],
asymptotically nonexpansive mappings in the intermediate sense [].

Recently Alber et al. [] made an effort to unify some generalization of nonexpan-
sive mappings and introduced the notion of total asymptotically nonexpansive mappings.
A mapping T : K → K is said to be total asymptotically nonexpansive if there exist nonneg-
ative real sequences {k()

n } and {k()
n }, n ≥ , k()

n , k()
n →  as n → ∞, and a strictly increasing

and continuous function φ : R+ →R
+ with φ() =  such that

∥
∥Tnx – Tny

∥
∥ ≤ ‖x – y‖ + k()

n φ
(‖x – y‖) + k()

n

for every x, y in K . They further studied the iterative approximation of fixed point of total
asymptotically nonexpansive mappings using a modified Mann iteration process. In the
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modified Mann iteration process [] the sequence {xn} is generated by

x ∈ K ,
xn+ = ( – αn)xn + αnTnxn, n ≥ ,

}

(.)

where {αn} is a real sequence in (, ) satisfying certain conditions.
Iterative approximation of fixed points of total nonexpansive mappings has also been

studied by [–].
In , Khan [] introduced a new iteration process for nonexpansive mappings,

which he called ‘Picard-Mann hybrid iteration process’ and claimed that this process is
independent of Picard and Mann iterative process and the convergence process is faster
than Picard and Mann iteration process. The sequence {xn} in this process is given by

x ∈ K ,
xn+ = Tyn,
yn = ( – αn)xn + αnTxn, n ≥ ,

⎫

⎪⎬

⎪⎭

(.)

where {αn} is in (, ).
On the other hand, in , Kirk [, ] initiated the study of fixed point theory in

metric spaces with nonpositive curvature. He showed that every nonexpansive mapping
defined on a bounded closed convex subset of a complete CAT() space always has a fixed
point. After his work, fixed point theory in CAT() spaces has been rapidly developed
and many papers have appeared [–]. Nanjaras and Panyanak [] proved the demi-
closed principle for asymptotically nonexpansive mappings in CAT() space and obtained
a �-convergence theorem for the Mann iteration. Abbas et al. [] proved the demiclosed
principle for asymptotically nonexpansive mappings in the intermediate sense and estab-
lished convergence theorems, Tang et al. [] proved the demiclosed principle for total
asymptotically nonexpansive mappings in a CAT() space and obtained �-convergence
theorem.

Motivated by the above recorded studies, in this paper, we propose a ‘modified hybrid
Picard-Mann’ iteration process for iterative approximation of fixed points of total asymp-
totically nonexpansive mappings in CAT() spaces. The sequence {xn} in this iteration is
given by

x ∈ C,
xn+ = Tnyn,
yn = ( – αn)xn ⊕ αnTnxn, n ∈N,

⎫

⎪⎬

⎪⎭

(.)

where C is a nonempty bounded closed and convex subset of a complete CAT() space X
and {αn} is in (, ).

We establish some strong and �-convergence results of the iterative process (.) for
total asymptotically nonexpansive mappings on a CAT() space. Our results extend and
improve the corresponding results of Chang et al. [], Nanjaras and Panyanak [] and
others.

2 Preliminaries
Throughout the paper, we denote by N the set of positive integers and by R the set of real
numbers.
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The following lemma plays an important role in our paper.

Lemma . ([], Lemma .) Let X be a CAT() space, then

d
(

( – t)x ⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z)

for all t ∈ [, ] and x, y, z are points in X.

Let C be a nonempty subset of a CAT() space X.

Definition . A mapping T : C → C is said to be a nonexpansive mapping if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ C.

Definition . A mapping T : C → C is said to be asymptotically nonexpansive if there
is a sequence {kn} ⊂ [,∞) with kn →  such that

d
(

Tnx, Tny
) ≤ knd(x, y), ∀n ≥ , x, y ∈ C.

Definition . A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists
a constant L >  such that

d
(

Tnx, Tny
) ≤ Ld(x, y), ∀n ≥ , x, y ∈ C.

Definition . A mapping T : C → C is said to be ({νn}, {μn}, ζ )-total asymptotically non-
expansive if there exist nonnegative sequences {νn}, {μn} with {νn} → , {μn} →  and a
strictly increasing continuous function ζ : [,∞) → [,∞) with ζ () =  such that

d
(

Tnx, Tny
) ≤ d(x, y) + νnζ

(

d(x, y)
)

+ μn, ∀n ≥ , x, y ∈ C.

From the definitions, we see that each nonexpansive mapping is an asymptotically non-
expansive mapping with a sequence {kn = }, and each asymptotically nonexpansive map-
ping is a ({νn}, {μn}, ζ )- total asymptotically nonexpansive mapping with μn = , νn = kn –,
n ≥  and ζ (t) = t, t ≥ , and each asymptotically nonexpansive mapping is a uniformly
L-Lipschitzian mapping with L = sup{kn}, n ≥ .

Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(

x, {xn}
)

= lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}

)

= inf
{

r
(

x, {xn}
)

: x ∈ X
}

.

The asymptotic center A({xn}) of {xn} is the set

A
({xn}

)

=
{

x ∈ X : r
(

x, {xn}
)

= r
({xn}

)}

.

In a CAT() space, A({xn}) consists of exactly one point [], Proposition .
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A sequence {xn} in X is said to �-converge to p ∈ X if p is the unique asymptotic center
of {un} for every subsequence {un} of {xn}. In this case, we write �-lim xn = p and call p
the �-limit of {xn}.

Lemma . In a complete CAT() space X, the following hold:
(i) Every bounded sequence in a complete CAT() space always has a �-convergent

subsequence [], p..
(ii) If {xn} is a bounded sequence in a closed convex subset C of X , then the asymptotic

center of {xn} is in C [], Proposition ..
(iii) If {xn} is a bounded sequence in X with A({xn}) = {p}, {un} is a subsequence of {xn}

with A({un}) = {u} and the sequence {d(xn, u)} converges, then p = u [],
Lemma ..

The following results are useful to prove our main result.

Lemma . ([], Lemma .) Let X be a CAT() space, x ∈ X be a given point and {tn} be
a sequence in [b, c] with b, c ∈ (, ) and  < b( – c) ≤ 

 . Let {xn} and {yn} be any sequences
in X such that

⎧

⎪⎪⎨

⎪⎪⎩

lim supn→∞ d(xn, x) ≤ r,

lim supn→∞ d(yn, x) ≤ r and

lim supn→∞ d(( – tn)xn ⊕ tnyn, x) = r,

for some r ≥ . Then limn→∞ d(xn, yn) = .

Lemma . ([], Lemma ) Let {an}, {λn} and {cn} be the sequences of nonnegative num-
bers such that

an+ ≤ ( + λn)an + cn, ∀n ≥ .

If
∑∞

n= λn < ∞ and
∑∞

n= cn < ∞, then limn→∞ an exists. If there exists a subsequence
{ani} ⊂ {an} such that ani → , then limn→∞ an = .

Lemma . ([], Theorem .) Let C be a closed convex subset of a complete CAT()
space X and let T : C → C be a total asymptotically nonexpansive and uniformly L-
Lipschitzian mapping. Let {xn} be a bounded sequence in C such that limn→∞ d(xn, Txn) = 
and �-limn→∞ xn = p. Then Tp = p.

The following existence result is also needed.

Lemma . ([], Corollary .) Let C be a nonempty bounded closed convex subset of a
complete CAT() space X. If T : C → C is a continuous total asymptotically nonexpansive
mapping, then T has a fixed point.

3 Main results
We now establish a �-convergence result for the modified Picard-Mann hybrid iterative
process.
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Theorem . Let C be a bounded closed and convex subset of a complete CAT() space X.
Let T : C → C be a uniformly L-Lipschitzian and ({νn}, {μn}, ζ )-total asymptotically non-
expansive mapping. If the following conditions are satisfied:

()
∑∞

n= νn < ∞;
∑∞

n= μn < ∞;
() there exist constants a, b ∈ (, ) with  < b( – a) ≤ 

 such that {αn} ⊂ [a, b];
() there exists a constant M∗ > r such that ζ (r) ≤ M∗r, r ≥ ;

then the sequence {xn} defined by (.) �-converges to some point p ∈ F(T), where F(T) is
the set of fixed points of T .

Proof Since T is Lipschitz continuous, F(T) 
= ∅ by Lemma .. We divide the proof of
Theorem . into three steps.

Step-I. First we prove that limn→∞ d(xn, p) exists for each p ∈ F(T).
Step-II. Next we prove that

lim
n→∞ d(xn, Txn) = .

Step-III. Finally to show that the sequence {xn} �-converges to a fixed point of T , we
prove that

W�(xn) =
⋃

{un}⊂{xn}
A

({un}
) ⊆ F(T)

and W�(xn) consists of exactly one point.
Proof of Step-I: For each p ∈ F(T), we have

d(yn, p) = d
(

( – αn)xn ⊕ αnTnxn, p
)

≤ ( – αn)d(xn, p) + αnd
(

Tnxn, p
)

≤ ( – αn)d(xn, p) + αn
{

d(xn, p) + νnζd(xn, p) + μn
}

≤ d(xn, p) + βnνnζd(xn, p) + μn

≤ (

 + νnM∗)d(xn, p) + μn. (.)

Also,

d(xn+, p) = d
(

Tnyn, p
)

≤ d(yn, p) + νnζd(yn, p) + μn

≤ (

 + νnM∗)d(yn, p) + μn

≤ (

 + νnM∗)( + νnM∗)d(xn, p) +
(

 + νnM∗)μn + μn

≤ (

 + νnM∗( + νnM∗))d(xn, p) +
(

 + νnM∗)μn

= ( + σn)d(xn, p) + ρn,

where σn = νnM∗( + νnM∗) and ρn = ( + νnM∗)μn.
It follows from condition (i) and Lemma . that limn→∞ d(xn, p) exists.
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Proof of Step-II. It follows from Step-I that limn→∞ d(xn, p) exists for each given p ∈ F .
Without loss of generality, we can assume that

lim
n→∞ d(xn, p) = r ≥ .

From (.) we have

lim inf
n→∞ d(yn, p) ≤ lim sup

n→∞
d(yn, p) ≤ lim

n→∞
{(

 + νnM∗)d(xn, p) + μn
}

= r ≥ . (.)

Also,

d
(

Tnyn, p
)

= d
(

Tnyn, Tnp
)

≤ d(yn, p) + νnζd(yn, p) + μn

≤ (

 + νnM∗)d(yn, p) + μn, ∀n ≥ ,

so we have

lim sup
n→∞

d
(

Tnyn, p
) ≤ r.

Similarly,

lim sup
n→∞

d
(

Tnxn, p
) ≤ r.

Now,

d(xn+, p) ≤ (

 + νnM∗)d(yn, p) + μn,

taking limit infimum, we have

lim inf
n→∞ d(xn+, p) ≤ lim inf

n→∞ d(yn, p),

i.e.,

r ≤ lim inf
n→∞ d(yn, p). (.)

From (.) and (.), we have

lim
n→∞ d(yn, p) = r,

i.e.,

r = lim
n→∞ d(yn, p) = lim

n→∞ d
(

( – αn)xn ⊕ αnTnxn, p
)

.

Therefore, by Lemma ., we obtain

lim
n→∞ d

(

xn, Tnxn
)

= . (.)
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Also,

d
(

Tnyn, Tnxn
) ≤ d(yn, xn) + νnζd(yn, xn) + μn

≤ (

 + νnM∗)d(yn, xn) + μn

≤ (

 + νnM∗)d
(

( – αn)Tnxn ⊕ αnxn, xn
)

+ μn

≤ (

 + νnM∗){( – αn)d
(

Tnxn, xn
)

+ αnd(xn, xn)
}

+ μn,

from (.), we have

lim
n→∞ d

(

Tnyn, Tnxn
)

= , (.)

and

d(xn+, xn) ≤ d
(

xn+, Tnyn
)

+ d
(

Tnyn, Tnxn
)

+ d
(

Tnxn, xn
)

= d
(

Tnyn, Tnyn
)

+ d
(

Tnyn, Tnxn
)

+ d
(

Tnxn, xn
)

,

using (.) and (.) we have

lim
n→∞ d(xn+, xn) = .

Finally,

d(xn, Txn) ≤ d(xn, xn+) + d
(

xn+, Tn+xn+
)

+ d
(

Tn+xn+, Tn+xn
)

+ d
(

Tn+xn, Txn
)

≤ d(xn, xn+) + d
(

xn+, Tn+xn+
)

+ Ld(xn, xn+) + Ld
(

Tnxn, xn
)

→  as n → ∞.

Hence, Step-II is proved.
Proof of Step-III. Let u ∈ W�(xn). Then there exists a subsequence {un} of {xn} such

that A({un}) = {u} . By Lemma .(i), there exists a subsequence {vn} of {un} such
that �-limn→∞ vn = v ∈ C. By Lemma ., v ∈ F(T). Since {d(un, v)} converges, by
Lemma .(iii), u = v. This shows that W�(xn) ⊆ F(T).

Now we prove that W�(xn) consists of exactly one point. Let {un} be a subsequence of
{xn} with A({un}) = {u} and let A({xn}) = {x}. We have already seen that u = v and v ∈ F(T).
Finally, since {d(xn, v)} converges, by Lemma .(iii), we have x = v ∈ F(T). This shows that
W�(xn) = {x}. �

We now establish some strong convergence results.

Theorem . Let X, C, T , {αn}, {βn}, {xn} satisfy the hypothesis of Theorem .. Then the
sequence {xn} generated by (.) converges strongly to a fixed point of T if and only if

lim inf
n→∞ d

(

xn, F(T)
)

= ,

where d(x, F(T)) = inf{d(x, p) : p ∈ F(T)}.
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Proof Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F(T)) = . As
proved in Step-I of Theorem ., limn→∞ d(xn, F(T)) exists for all p ∈ F(T). Thus, by hy-
pothesis, limn→∞ d(xn, F(T)) = .

Next, we show that {xn} is a Cauchy sequence in C. Let ε >  be arbitrarily chosen. Since
limn→∞ d(xn, F(T)) = , there exists a positive integer n such that for all n ≥ n,

d
(

xn, F(T)
)

<
ε


.

In particular, inf{d(xn , p) : p ∈ F(T)} < ε
 . Thus, there exists p∗ ∈ F(T) such that

d
(

xn , p∗) <
ε


.

Now, for all m, n ≥ n, we have

d(xn+m, xn) ≤ d
(

xn+m, p∗) + d
(

xn, p∗) ≤ d
(

xn , p∗) < 
(

ε



)

= ε,

i.e., {xn} is a Cauchy sequence in the closed subset C of a complete CAT() space and
hence it converges to a point q in C. Now, limn→∞ d(xn, F(T)) =  gives that d(q, F(T)) = 
and closedness of F(T) forces q to be in F(T). This completes the proof. �

Senter and Dotson [], p., introduced the concept of Condition (I) as follows.

Definition . A mapping T : C → C is said to satisfy Condition (I) if there exists a non-
decreasing function f : [,∞) → [,∞) with f () =  and f (r) >  for all r >  such that

d(x, Tx) ≥ f
(

d
(

x, F(T)
))

for all x ∈ C.

It is weaker than demicompactness for a nonexpansive mapping T defined on a bounded
set. Since every completely continuous mapping T : K → K is continuous and demicom-
pact, so it satisfies Condition (I). Recently, Kim [] gave an interesting example of total
asymptotically nonexpansive self-mapping satisfying Condition (I).

Example  ([], Example .) Let X := R and C := [, ]. Define T : C → C by the formula

Tx =

{

, x ∈ [, ];
√


√
 – x, x ∈ [, ].

Here T is a uniformly continuous and total asymptotically nonexpansive mapping with
F(T) = {}. Also T satisfies Condition (I), but T is not Lipschitzian and hence it is not an
asymptotically nonexpansive mapping.

Using Condition (I), we now establish the following strong convergence result for total
asymptotically nonexpansive mapping.

Theorem . Let X, C, T , {αn}, {βn}, {xn} satisfy the hypothesis of Theorem . and let T
be a mapping satisfying Condition (I). Then the sequence {xn} generated by (.) converges
strongly to a fixed point of T .
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Proof As proved in Theorem ., limn→∞ d(xn, F(T)) exists. Also, by Step-II of Theo-
rem ., we have limn→∞ d(xn, Txn) = . It follows from Condition (I) that

lim
n→∞ f

(

d
(

xn, F(T)
)) ≤ lim

n→∞ d(xn, Txn) = .

That is, limn→∞ f (d(xn, F(T))) = . Since f : [,∞) → [,∞) is a non-decreasing function
satisfying f () =  and f (r) >  for all r > , we obtain

lim
n→∞ d

(

xn, F(T)
)

= .

Now all the conditions of Theorem . are satisfied, therefore by its conclusion {xn} con-
verges strongly to a point of F(T). �

4 Numerical example
In this section, using Example  of a total asymptotically nonexpansive mapping, we com-
pare the convergence of modified Picard-Mann hybrid iteration process (.) with the
modified Mann iteration process (.).

Table 1 Iterates of modified Mann and modified Picard-Mann hybrid iterations

Iterate x1 = 1.1 x1 = 1.5 x1 = 1.9

Iteration (1.1) Iteration (1.3) Iteration (1.1) Iteration (1.3) Iteration (1.1) Iteration (1.3)

x2 1.03218253804965 0.98903980508798 1.13188130791299 0.95198821855406 1.13027756377320 0.95262315543817
x3 1.01072751268322 1.00000000000000 1.04396043597100 1.00000000000000 1.04342585459107 1.00000000000000
x4 1.00268187817080 1.00000000000000 1.01099010899275 1.00000000000000 1.01085646364777 1.00000000000000
x5 1.00053637563416 1.00000000000000 1.00219802179855 1.00000000000000 1.00217129272955 1.00000000000000
x6 1.00008939593903 1.00000000000000 1.00036633696643 1.00000000000000 1.00036188212159 1.00000000000000
x7 1.00001277084843 1.00000000000000 1.00005233385235 1.00000000000000 1.00005169744594 1.00000000000000
x8 1.00000159635605 1.00000000000000 1.00000654173154 1.00000000000000 1.00000646218074 1.00000000000000
x9 1.00000017737289 1.00000000000000 1.00000072685906 1.00000000000000 1.00000071802008 1.00000000000000
x10 1.00000001773729 1.00000000000000 1.00000007268591 1.00000000000000 1.00000007180201 1.00000000000000
x11 1.00000000161248 1.00000000000000 1.00000000660781 1.00000000000000 1.00000000652746 1.00000000000000
x12 1.00000000013437 1.00000000000000 1.00000000055065 1.00000000000000 1.00000000054395 1.00000000000000
x13 1.00000000001034 1.00000000000000 1.00000000004236 1.00000000000000 1.00000000004184 1.00000000000000
x14 1.00000000000074 1.00000000000000 1.00000000000303 1.00000000000000 1.00000000000299 1.00000000000000
x15 1.00000000000005 1.00000000000000 1.00000000000020 1.00000000000000 1.00000000000020 1.00000000000000
x16 1.00000000000000 1.00000000000000 1.00000000000001 1.00000000000000 1.00000000000001 1.00000000000000
x17 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000

Table 2 Comparison of fastness for different control conditions

αn Least number of iterate to reach the fixed point 1

x1 = 1.1 x1 = 1.5 x1 = 1.9

Iteration (1.1) Iteration (1.3) Iteration (1.1) Iteration (1.3) Iteration (1.1) Iteration (1.3)

0.3 x87 x3 x91 x3 x92 x3
0.5 x45 x3 x47 x3 x47 x3
0.84 x19 x2 x21 x2 x21 x2
0.95 x13 x2 x14 x2 x14 x2
n

n+1 x16 x3 x17 x3 x17 x3
1 – 1√

n+1
x26 x3 x27 x3 x28 x3

1√
n+1

– 1
(n+1)2

x235 x3 x258 x3 x261 x3
1√
n+5

x265 x3 x288 x3 x295 x3
1√
2n+5

x492 x3 x537 x3 x555 x3
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Set αn = n
n+ for all n ≥ . Using MATLAB, we computed the iterates of (.) and (.)

for three different initial points x = ., x = . and x = .. Both iterations converge to
the fixed point , the detailed observation is given in Table .

Next we examine the fastness of both iterations for different control conditions. Sum-
mary of the findings is given in Table , where the least number of iterates required to
obtain the fixed point for different initial conditions is given under various control condi-
tions.

From Table  and Table , it is clear that for a total asymptotically nonexpansive mapping,
modified Mann iteration (.) is very much sensitive about the choice of initial point and
control condition αn, whereas the behavior of proposed iteration (.) is consistent.
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