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Abstract
In this paper, we prove strong convergence theorems for Noor-type iteration
schemes involving quasi-nonexpansive multivalued mappings in the framework of
CAT(0) spaces. The results we obtain are generalizations of Panyanak (Nonlinear Anal.
70:1547-1556, 2009), Sastry and Babu (Czechoslov. Math. J. 55:817-826, 2005), Shazhad
and Zegeye (Nonlinear Anal. 71:838-844, 2009), Song and Wang (Comput. Math. Appl.
55:2999-3002, 2008; Nonlinear Anal. 70:1547-1556, 2009) and many others in the
sense of Noor-type iteration process in the setting of CAT(0) spaces.
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1 Introduction
The study of metric spaces without linear structure has played a vital roll in various
branches of pure and applied sciences. In particular, existence and approximation results
in CAT() spaces for classes of single-valued and multivalued mappings have been studied
extensively by many researchers (see [–]).

Iteration schemes for numerical reckoning fixed points of diverse classes of nonlinear
operators are available in the literature. The class of nonexpansive mappings via iteration
methods has extensively been studied in this regard (see Tan and Xu []; Thakur et al.
[, ]). The class of pseudocontractive mappings in their relation with iteration proce-
dures has been studied by several researchers under suitable conditions (see Yao et al.
[, ]; Thakur et al. [, ]; Dewangan et al. [, ]) and applications to variational in-
equalities are also considered [, ]. For nonexpansive multivalued mappings, Sastry and
Babu [] defined a Mann and Ishikawa iteration process in Hilbert spaces. Panyanak []
and Song and Wang [] (see also []) extended the result of Sastry and Babu [] to uni-
formly convex Banach spaces. Recently, Shahzad and Zegeye [] extended and improved
results of [–].

In [], Dhompongsa and Panyanak established �-convergence theorems for the Mann
and Ishikawa iterations for nonexpansive single-valued mappings in CAT() spaces.
Inspired by Song and Wang [], Laowang and Panyanak [] extended the result of
Dhompongsa and Panyanak [] for multivalued nonexpansive mappings in a CAT()
space.

© 2015 Pathak et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13663-015-0380-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0380-8&domain=pdf
mailto:sdd11@rediffmail.com


Pathak et al. Fixed Point Theory and Applications  (2015) 2015:133 Page 2 of 12

It is important to note here that several iteration processes having various number of
steps have been employed for the purpose of the approximation of fixed points for vari-
ous classes of nonlinear operators. The very famous Mann iteration process is a one-step
process, while the Ishikawa process is a two-step process, among others.

In , Noor [] introduced a three-step iterative process and studied the approxi-
mate solution of variational inclusion in Hilbert spaces. This iteration process was further
studied by many researchers to approximate fixed points for various classes of nonlinear
operators (see e.g. [–]). It is observed that in many respects a three-step iterative pro-
cess is better than a two- and a one-step iterative process in giving numerical results under
certain conditions (see [–]). Thus we conclude that studying three-step iterative pro-
cesses is very important in solving various numerical problems arising in pure and applied
sciences.

Motivated by the above facts in this paper, we introduce a Noor-type iteration process
for nonexpansive multivalued mappings and prove strong convergence theorems for the
proposed iterative process in CAT() spaces. The results we obtain are generalizations of
Panyanak [], Sastry and Babu [], Shazhad and Zegeye [] and Song and Wang []
and many others in the sense of a Noor-type iteration process in the setting of CAT()
spaces.

2 Preliminaries
Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X is a map c from a
closed interval [, l] ⊂ R to X such that c() = x, c(l) = y, and d(c(t), c(t′)) = |t – t′| for all
t, t′ ∈ [, l].

In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic segment
joining x and y; when it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space if any two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each
x, y ∈ X. A subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining
any two points of itself.

A geodesic triangle �(x, x, x) in a geodesic metric space (X, d) consists of three points
x, x, x in X (the vertices of �) and a geodesic segment between each pair of vertices
(the edges of �). A comparison triangle for the geodesic triangle �(x, x, x) in (X, d) is a
triangle �(x, x, x) := �(x, x, x) in the Euclidean plane E such that dE (xi, xj) = d(xi, xj)
for i, j ∈ {, , }.

A geodesic metric space X is said to be a CAT() space if all geodesic triangles of appro-
priate size satisfy the following comparison axiom.

CAT(): Let � be a geodesic triangle in X and let � be its comparison triangle for E.
Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d(x, y) ≤ dE (x, y).

If x, y, y are points in a CAT() space and if y is the midpoint of the segment [y, y],
then the CAT() inequality implies

d(x, y) ≤ 


d(x, y) +



d(x, y) –



d(y, y). (CN)



Pathak et al. Fixed Point Theory and Applications  (2015) 2015:133 Page 3 of 12

This is the (CN) inequality of Bruhat and Tits []. In fact, a geodesic space is a CAT()
space if and only if it satisfies the (CN) inequality (cf. [], p.). We now collect some
elementary facts about CAT() spaces which will be used frequently in the proofs of our
main results.

Lemma . (Lemma .(iv), Lemma . and Lemma . in []) Let (X, d) be a CAT()
space.

(i) For x, y ∈ X and t ∈ [, ], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = ( – t)d(x, y). (.)

(ii) For x, y, z ∈ X and t ∈ [, ], we have

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z).

(iii) For x, y, z ∈ X and t ∈ [, ], we have

d
(
( – t)x ⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y).

We will use the notation ( – t)x ⊕ ty for the unique point z satisfying (.). Now we
define preliminaries for the construction of multivalued nonexpansive mapping.

Let K be the subset of CAT() space X. Then:
(i) The distance from x ∈ X to K is defined by

dist(x, K) = inf
{

d(x, y) : y ∈ K
}

.

(ii) The diameter of K is defined by

diam(K) = sup
{

d(u, v) : u, v ∈ K
}

.

The set K is called proximinal if for each x ∈ X, there exists an element y ∈ K such
that d(x, y) = dist(x, K). Let CB(K), C(K), and P(K) denote the family of nonempty closed
bounded subsets, nonempty compact subsets and nonempty proximinal subsets of K , re-
spectively. The Hausdorff metric H on CB(K) is defined by

H(A, B) = max
{

sup
x∈A

dist(x, B), sup
y∈B

dist(x, A)
}

for A, B ∈ CB(K), where dist(x, B) = inf{d(x, z), z ∈ B}.
Let T : X → X be a multivalued mapping. An element x ∈ X is said to be a fixed point

of T , if x ∈ Tx. The set of fixed points will be denoted by Fix(T).

Definition . A multivalued mapping T : K → CB(K) is called:
(i) nonexpansive, if H(T(x), T(y)) ≤ d(x, y) for all x, y ∈ K ;

(ii) quasi-nonexpansive, if Fix(T) 	= φ, and H(x, T(p)) ≤ d(x, p) for all x ∈ K and
p ∈ Fix(T).
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The following example shows that every nonexpansive multivalued map T with Fix(T) 	=
φ is quasi-nonexpansive. There exist quasi-nonexpansive mappings that are not nonex-
pansive.

Example . Let K = [,∞) with the usual metric and T : K → CB(K) be defined by

Tx =

⎧
⎨

⎩
{}, if x ≤ ,

[x – 
 , x – 

 ], if x > .

Indeed, it is clear that Fix(T) = {} and for any x we have H(T(x), T()) ≤ |x – |, hence,
T is quasi-nonexpansive. However, if x = , y =  we get H(T(x), T(y)) > |x – y| = , and,
hence, T is not nonexpansive.

3 Strong convergence theorems in CAT(0) spaces
Now we introduce the notion of the proposed multivalued version of the Noor iteration
process for a nonexpansive mapping T .

Let K be a nonempty convex subset of a complete CAT() space X. The sequence of
Noor iterates is defined by x ∈ K ,

wn = ( – γn)xn ⊕ γnzn,

yn = ( – βn)xn ⊕ βnz′
n, (.)

xn+ = ( – αn)xn ⊕ αnzn
′′,

where zn ∈ Txn, z′
n ∈ Twn, z′′

n ∈ Tyn, and {αn}, {βn}, {γn} are real sequences in [a, b] ⊂ [, ].

Lemma . Let K be a nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a quasi-nonexpansive multivalued mapping with Fix(T) 	= φ and for
which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and {αn},
{βn}, {γn} be real sequences in [a, b] ⊂ (, ). Then:

(i) limn→∞ d(xn, p) exists for each p ∈ Fix(T).
(ii) limn→∞ dist(Txn, xn) = .

Proof Let p ∈ Fix(T). Then, using (.) and Lemma .(ii), we have

d(wn, p) = d
(
( – γn)xn ⊕ γnzn, p

)

≤ ( – γn)d(xn, p) + γnd(zn, p)

≤ ( – γn)d(xn, p) + γn dist
(
zn, T(p)

)

≤ ( – γn)d(xn, p) + γnH
(
T(xn), T(p)

)

≤ ( – γn)d(xn, p) + γnd(xn, p)

≤ d(xn, p). (.)

Also

d(yn, p) = d
(
( – βn)xn ⊕ βnz′

n, p
)

≤ ( – βn)d(xn, p) + βnd
(
z′

n, p
)
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≤ ( – βn)d(xn, p) + βn dist
(
z′

n, T(p)
)

≤ ( – βn)d(xn, p) + βnH
(
T(wn), T(p)

)

≤ ( – βn)d(xn, p) + βnd(wn, p)

≤ d(xn, p). (.)

Again, using (.), (.), and Lemma .(ii), we have

d(xn+, p) = d
(
( – αn)xn ⊕ αnz′′

n, p
)

≤ ( – αn)d(xn, p) + αnd
(
z′′

n, p
)

≤ ( – αn)d(xn, p) + αn dist
(
z′′

n, T(p)
)

≤ ( – αn)d(xn, p) + αnH
(
T(yn), T(p)

)

≤ ( – αn)d(xn, p) + αnd(yn, p)

≤ ( – αn)d(xn, p) + αnd(xn, p)

≤ d(xn, p). (.)

Hence, the sequence {d(xn, p)} is decreasing and bounded below. It now follows that
limn→∞ d(xn, p) exists for any p ∈ Fix(T). From Lemma .(iii), we have

d(xn+, p) = d(( – αn)xn ⊕ αnz′′
n, p

)

≤ ( – αn)d(xn, p) + αnd(z′′
n, p

)
– αn( – αn)d(xn, z′′

n
)

≤ ( – αn)d(xn, p) + αn dist(z′′
n, T(p)

)
– αn( – αn)d(xn, z′′

n
)

≤ ( – αn)d(xn, p) + αnH(T(yn), T(p)
)

– αn( – αn)d(xn, z′′
n
)

≤ ( – αn)d(xn, p) + αnd(yn, p) – αn( – αn)d(xn, z′′
n
)

≤ ( – αn)d(xn, p) + αnd(yn, p). (.)

From Lemma .(iii), we have

d(yn, p) = d(( – βn)xn ⊕ βnz′
n, p

)

≤ ( – βn)d(xn, p) + βnd(z′
n, p

)
– βn( – βn)d(xn, z′

n
)

≤ ( – βn)d(xn, p) + βn dist(z′
n, T(p)

)
– βn( – βn)d(xn, z′

n
)

≤ ( – βn)d(xn, p) + βnH(T(wn), T(p)
)

– βn( – βn)d(xn, z′
n
)

≤ ( – βn)d(xn, p) + βnd(wn, p) – βn( – βn)d(xn, z′
n
)

≤ ( – βn)d(xn, p) + βnd(wn, p). (.)

Also

d(wn, p) = d(( – γn)xn ⊕ γnzn, p
)

≤ ( – γn)d(xn, p) + γnd(zn, p) – γn( – γn)d(xn, zn)
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≤ ( – γn)d(xn, p) + γn dist(zn, T(p)
)

– γn( – γn)d(xn, zn)

≤ ( – γn)d(xn, p) + γnH(T(xn), T(p)
)

– γn( – γn)d(xn, zn)

≤ ( – γn)d(xn, p) + γnd(xn, p) – γn( – γn)d(xn, zn). (.)

From (.), (.), and (.), we have

d(xn+, p) ≤ d(xn, p) – αnβnγn( – γn)d(xn, zn).

This implies that

a( – b)d(xn, zn) ≤ αnβnγn( – γn)d(xn, zn) ≤ d(xn, p) – d(xn+, p)

and so
∞∑

n=

a( – b)d(xn, zn) < ∞

and hence limn→∞ d(xn, zn) = . Thus limn→∞ d(xn, zn) = . Hence, dist(Txn, xn) ≤ d(xn,
zn) →  as n → ∞. �

Now we prove a strong convergence theorem for the Noor iteration process for multi-
valued mappings.

Theorem . Let K be nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a quasi-nonexpansive multivalued mappings such that Fix(T) 	= φ and
for which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and
{αn}, {βn}, {γn} be real sequences in [a, b] ⊂ (, ). Then {xn} converges strongly to a fixed
point of T if and only if limn→∞ inf dist(xn, Fix(T)) = .

Proof Necessity is obvious. To prove the sufficiency, suppose that

lim
n→∞ inf dist

(
xn, Fix(T)

)
= .

As in the proof of Lemma ., we have

d(xn+, p) ≤ d(xn, p)

for all p ∈ Fix(T). This implies that

dist
(
xn, Fix(T)

) ≤ dist
(
xn, Fix(T)

)

so that limn→∞ dist(xn, Fix(T)) exists. Thus limn→∞ dist(xn, Fix(T)) = . Therefore, we can
choose a subsequence {xnk } of {xn} such that

d(xnk , pk) <


k

for some {pk} ⊂ Fix(T) and for all k. By Lemma . we have

d(xnk+ , pk) ≤ d(xnk , pk) <


k .
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Hence

d(pk+, pk) ≤ d(xnk+ , pk+) + d(xnk+ , pk) <


k+ +


k <


k– .

Consequently, {pk} is a Cauchy sequence in K and hence converges to some q ∈ K . Since

dist
(
pk , T(q)

) ≤ H
(
T(pk), T(q)

) ≤ d(q, pk)

and pk → q as k → ∞, it follows that dist(q, T(q)) =  and so q ∈ Fix(T) and thus {xnk }
converges strongly to q. Since limn→∞ d(xn, q) exists, it follows that {xn} converges strongly
to q. This completes the proof. �

Theorem . Let K be nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a quasi-nonexpansive multivalued mapping such that Fix(T) 	= φ and
for which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and
{αn}, {βn}, {γn} be real sequences in [a, b] ⊂ (, ). Assume that T is hemicompact and con-
tinuous, then {xn} converges strongly to a fixed point of T .

Proof By Lemma ., we have limn→∞ dist(Txn, xn) = . Since T is hemicompact, there
exist a subsequence {xnk } of {xn} and q ∈ K such that limk→∞ xnk = q. From continuity
of T , we find that d(xnk , T(xnk )) → d(q, T(q)). As a result, we have d(q, T(q)) =  and so
q ∈ Fix(T). By Lemma ., we find that limn→∞ d(xn, p) exists for each p ∈ Fix(T), hence
{xn} converges strongly to q. �

Theorem . Let K be nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a quasi-nonexpansive multivalued mappings such that Fix(T) 	= φ and
for which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and
{αn}, {βn}, {γn} be real sequences in [a, b] ⊂ (, ). Assume that there is a nondecreasing
function f : [,∞) → [,∞) with f () = , f (r) >  for r ∈ (,∞) such that

dist
(
x, T(x)

) ≥ f
(
dist

(
x, F(T)

))
for all x ∈ K .

Then {xn} converges strongly to a fixed point of T .

Proof By Lemma ., we have limn→∞ dist(Txn, xn) = . Hence, from the assumption we
obtain limn→∞ dist(xn, Fix(T)) = . The rest of the conclusion now follows from Theo-
rem .. �

The following corollaries are direct consequences of Theorems ., ., and ..

Corollary . Let K be nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a nonexpansive multivalued mappings such that Fix(T) 	= φ and for
which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and {αn},
{βn}, {γn} be real sequences in [a, b] ⊂ (, ). Then {xn} converges strongly to a fixed point
of T if and only if limn→∞ dist(xn, Fix(T)) = .
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Corollary . Let K be nonempty closed convex subset of a complete CAT() space X. Let
T : K → CB(K) be a nonexpansive multivalued mappings such that Fix(T) 	= φ and for
which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and {αn},
{βn}, {γn} be real sequences in [a, b] ⊂ (, ). Assume that T is hemicompact and continu-
ous, then {xn} converges strongly to a fixed point of T .

Corollary . Let K be a nonempty closed convex subset of a complete CAT() space X.
Let T : K → CB(K) be a nonexpansive multivalued mapping such that Fix(T) 	= φ and
for which T(p) = {p} for each p ∈ Fix(T). Let {xn} be the Noor iterates defined by (.) and
{αn}, {βn}, {γn} be sequences in [a, b] ⊂ (, ). Assume that there is a nondecreasing function
f : [,∞) → [,∞) with f () = , f (r) >  for r ∈ (,∞) such that

dist
(
x, T(x)

) ≥ f
(
dist

(
x, F(T)

))
for all x ∈ K .

Then {xn} converges strongly to a fixed point of T .

For a single-valued mapping, we obtain the following corollary.

Corollary . Let K be a nonempty closed convex subset of a complete CAT() space X.
Let T : K → K be a quasi-nonexpansive mappings such that Fix(T) 	= φ. Let {xn} be the
Noor iterates defined by

xn+ = ( – αn)xn ⊕ αnTyn,

yn = ( – βn)xn ⊕ βnTzn,

zn = ( – γn)xn ⊕ γnTxn,

where {αn}, {βn}, {γn} are real sequences in [a, b] ⊂ [, ]. Assume that there is a nonde-
creasing function f : [,∞) → [,∞) with f () = , f (r) >  for r ∈ (,∞) such that

d(x, Tx) ≥ f
(
d
(
x, Fix(T)

))
for all x ∈ K .

Then {xn} converges strongly to a fixed point of T .

Remark . Corollary . extends the results of Dhompongsa and Panyanak [] and the
results of Khan and Abbas [] from the Ishikawa iteration process to the Noor iteration
process.

In [], Shahzad and Zegeye removed the restriction T(p) = {p} for each p ∈ Fix(T) and
defined a two-step iterative process. In view of this, we now define the following iteration
process.

Let T : K → P(K) and PT (x) = {y ∈ T(x) : ‖x–y‖ = dist(x, T(x))}. For x ∈ K , the sequence
{xn} is defined iteratively in the following manner:

wn = ( – γn)xn ⊕ γnzn,

yn = ( – βn)xn ⊕ βnz′
n,

xn+ = ( – αn)xn ⊕ αnzn
′′,

(.)
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where zn ∈ PT (xn), z′
n ∈ PT (wn), z′′

n ∈ PT (yn), and {αn}, {βn}, {γn} are real sequences in
[a, b] ⊂ [, ].

Theorem . Let X be a complete CAT() space, K a nonempty closed convex subset of X,
and T : K → P(K) a multivalued mapping with Fix(T) 	= φ such that PT is nonexpansive.
Let {xn} be an iterative process defined by (.), where {αn}, {βn}, {γn} are real sequences
in [a, b] ⊂ (, ). Assume that there is a nondecreasing function f : [,∞) → [,∞) with
f () = , f (r) >  for r ∈ (,∞) such that

dist
(
x, T(x)

) ≥ f
(
dist

(
x, Fix(T)

))
for all x ∈ K .

Then {xn} converges strongly to a fixed point of T .

Proof Let p ∈ PT (p) = {p}. Then, using (.) and Lemma .(ii), we have

d(wn, p) = d
(
( – γn)xn ⊕ γnzn, p

)

≤ ( – γn)d(xn, p) + γnd(zn, p)

≤ ( – γn)d(xn, p) + γn dist
(
zn, PT (p)

)

≤ ( – γn)d(xn, p) + γnH
(
PT (xn), PT (p)

)

≤ ( – γn)d(xn, p) + γnd(xn, p)

≤ d(xn, p). (.)

Using (.), (.), and Lemma .(ii), we have

d(yn, p) = d
(
( – βn)xn ⊕ βnz′

n, p
)

≤ ( – βn)d(xn, p) + βnd
(
z′

n, p
)

≤ ( – βn)d(xn, p) + βn dist
(
z′

n, PT (p)
)

≤ ( – βn)d(xn, p) + βnH
(
PT (wn), PT (p)

)

≤ ( – βn)d(xn, p) + βnd(wn, p)

≤ d(xn, p). (.)

Using (.), (.), and Lemma .(ii), we have

d(xn+, p) = d
(
( – αn)xn ⊕ αnz′′

n, p
)

≤ ( – αn)d(xn, p) + αnd
(
z′′

n, p
)

≤ ( – αn)d(xn, p) + αn dist
(
z′′

n, PT (p)
)

≤ ( – αn)d(xn, p) + αnH
(
PT (yn), PT (p)

)

≤ ( – αn)d(xn, p) + αnd(yn, p)

≤ ( – αn)d(xn, p) + αnd(xn, p)

≤ d(xn, p). (.)
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Consequently, the sequence {d(xn, p)} is decreasing and bounded below, and thus
limn→∞ d(xn, p) exists for any p ∈ Fix(T). Applying Lemma .(iii), we have

d(xn+, p) = d(( – αn)xn ⊕ αnz′′
n, p

)

≤ ( – αn)d(xn, p) + αn dist(z′′
n, p

)
– αn( – αn)d(xn, z′′

n
)

≤ ( – αn)d(xn, p) + αnH(PT (yn), PT (p)
)

– αn( – αn)d(xn, z′′
n
)

≤ ( – αn)d(xn, p) + αnd(yn, p). (.)

From Lemma .(iii), it follows that

d(yn, p) = d(( – βn)xn ⊕ βnz′
n, p

)

≤ ( – βn)d(xn, p) + βn dist(z′
n, p

)
– βn( – βn)d(xn, z′

n
)

≤ ( – βn)d(xn, p) + βnH(PT (wn), PT (p)
)

– βn( – βn)d(xn, z′
n
)

≤ ( – βn)d(xn, p) + βnd(wn, p). (.)

Also

d(wn, p) = d(( – γn)xn ⊕ γnzn, p
)

≤ ( – γn)d(xn, p) + γn dist(zn, p) – γn( – γn)d(xn, zn)

≤ ( – γn)d(xn, p) + γnH(PT (xn), PT (p)
)

– γn( – γn)d(xn, zn)

≤ ( – γn)d(xn, p) + γnd(xn, p) – γn( – γn)d(xn, zn). (.)

From (.), (.), and (.), we have

d(xn+, p) ≤ d(xn, p) – αnβnγn( – γn)d(xn, zn).

This implies that

a( – b)d(xn, zn) ≤ αnβnγn( – γn)d(xn, zn) ≤ d(xn, p) – d(xn+, p)

and so

∞∑

n=

a( – b)d(xn, zn) < ∞.

Thus limn→∞ d(xn, zn) = . Also dist(Txn, xn) ≤ d(xn, zn) →  as n → ∞ and hence by as-
sumption limn→∞ dist(Txn, Fix(T)) = . Thus there is a subsequence {xnk } of {xn} such that
d(xnk , pk) < 

k for some {pk} ⊂ F(T) and all k. As in the proof of Theorem ., {pk} is a
Cauchy sequence in K and thus converges to q ∈ K . Since

d
(
pk , T(q)

) ≤ d
(
pk , PT (q)

)

≤ H
(
PT (pk), PT (q)

)

≤ d(pk , q),
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and pk → q as k → ∞, it follows that dist(q, T(q)) =  and so q ∈ Fix(T), and thus {xnk }
converges strongly to q. Since limn→∞ d(xn, q) =  exists, it follows that {xn} converges
strongly to q. This completes the proof. �

4 Conclusion
Remark . Theorems ., ., ., and . improve and generalize the well-known re-
sults of Sastry and Babu (Theorem  in []), Panyanak (Theorem . and Theorem . in
[]), Song and Wang (Theorem  and Theorem  in []), Shahzad and Zegeye [] and
Laowang and Panyanak [] and many others in the sense of Noor-type iteration process
in the setting of CAT() spaces.

Stability results established in metric spaces, normed linear spaces, and Banach spaces
are available in the literature for single-valued mappings (see e.g., Haghi et al. [],
Olatinwo and Postolache [] and references therein).

Open problem It will be interesting to study the stability of iteration scheme (.).
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