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Abstract

The split common fixed point problem for two quasi-pseudo-contractive operators is
studied. Some properties for quasi-pseudo-contractive operators are presented. An
iterative algorithm for solving the split common fixed point problem for two
quasi-pseudo-contractive operators is constructed. Strong convergence theorems are
proved. A unified framework for the study of this class problem and class of operators
is provided.
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1 Introduction

The split common fixed point problem has recently attracted so much attention (see, e.g.,
[1-13]) due to the fact that it is a generalization of the split feasibility problem and the con-
vex feasibility problem. In this paper, we aim to construct iterative algorithms for solving
the split common fixed point problem for the class of quasi-pseudo-contractive opera-
tors. This more general class, which properly includes the classes of quasi-nonexpansive
operators, directed operators, and demicontractive operators, is more desirable for exam-
ple in fixed point methods in image recovery where in many cases, it is possible to map
the set of images possessing a certain property to the fixed point set of a nonlinear quasi-
nonexpansive operator. Our work is related to significant real-world applications; see for
instance [14-18] and [19-21], where such methods were applied to the inverse problem of
intensity-modulated radiation therapy and to the dynamic emission tomographic image
reconstruction. Based on the related work in the literature, we present a unified framework
for the study of this class problem and class of operators and propose iterative algorithms
and study their convergence.

To begin with, let us recall that the split feasibility problem is to find a point

x* € C suchthat Ax"eQ, (1.1)

where C and Q are two nonempty closed convex subsets of real Hilbert spaces H; and H,
respectively and A : H; — H is a bounded linear operator.
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The split feasibility problem in finite-dimensional Hilbert spaces was first introduced by
Censor and Elfving [14] for modeling inverse problems which arise from phase retrievals
and in medical image reconstruction. They used their simultaneous multiprojections algo-
rithm to obtain iterative algorithms to solve the split feasibility problem. Their algorithms,
as well as others, see, e.g., Byrne [22], involve matrix inversion at each iterative step. Cal-
culating the inverses of matrices is very time-consuming, particularly if the dimensions
are large. Therefore, a new algorithm for solving the split feasibility problem was devised
by Byrne [15], called the CQ-algorithm, with the following iterative step:

KXn+l = PC(xn - VA*(I _PQ)Axn): n= 0, (12)

where 0 < ¥ < 2/|A||? and P denotes the nearest point projection from H, onto Q. The
CQ-algorithm converges to a solution of the split feasibility problem, for any starting vec-
tor xy € RN, whenever the split feasibility problem has a solution. When the split feasibility
problem has no solutions, the CQ-algorithm converges to a minimizer of [|[Py(Ac) — Ac||
over all ¢ € C, whenever such a minimizer exists.

In the case where C and Q in (1.1) are the intersections of finitely many fixed point sets
of nonlinear operators, problem (1.1) is called by Censor and Segal [1] the split common
fixed point problem. More precisely, the split common fixed point problem requires one
to seek an element x* € H satisfying

x* e mFix(Tl-) and Ax* e mFix(S,), (1.3)

i=1 j=1

where Fix(T;) and Fix(S;) denote the fixed point sets of two classes of nonlinear operators
T;: Hy — H; and S; : Hy, — H), respectively.

Remark1.1 Ifweset C = (), Fix(T;) and Q = ﬂ;’zl Fix(S;), a natural problem arises: could
we use iterative algorithm (1.2) to approach the solution of the split common fixed point
problem (1.3)? However, in this situation, Byrne’s CQ-algorithm does not work because

the metric projection onto fixed point sets is generally not easy to calculate.

Consequently, in order to solve the two-set split common fixed point problem, Censor
and Segal [1] constructed the following iterative algorithm without using the projection.

Algorithm 1.2 Initialization: Let x, € RN be arbitrary.
Iterative step: For k > 0 let

a1 = T (o + AAS(S - DAxy), k=0, (1.4)

where T and S are directed operators and A € (0,2/y) with y being the spectral radius of
the operator A*A.

They have shown the following convergence theorem.

Theorem 1.3 Assume that T — I and S — I are demiclosed at 0. If T" := {x € Fix(T); Ax €
Fix(S)} # 0, i.e., the problem is consistent, then any sequence {xy}, generated by Algo-
rithm 1.2, converges to a split common fixed point x* € T.
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Remark 1.4 Note that the underlying space in Theorem 1.3 is a finite-dimensional
space RN, Hence, the strong convergence and weak convergence are consistent. Could

we extend it to an infinite-dimensional space?

In [2], Moudafi demonstrated this work for us. He not only extended the space to the
infinite-dimensional case but also extended the operators to a general class of operators
and obtained the following algorithm and result.

Algorithm 1.5 Initialization: Let xy, € H; be arbitrary.
Iterative step: For k € N set uy = xy + AA*(S — I)Axy and let

X1 = L —ap)ug + o T(ue), keN, (1.5)
where A € (0, 1_7“) with y being the spectral radius of the operator A*A and o € (0,1).

Theorem 1.6 Given a bounded linear operator A : Hy — Hy,let T : H — Hy and S : Hy —
H, be demicontractive operators (with constants B and i, respectively) with nonempty
Fix(T) = C and Fix(S) = Q. Assume that T — I and S — I are demiclosed at 0. If " # {J,
then any sequence {xi} generated by the Algorithm 1.5 converges weakly to a split common
fixed point x* € T, provided that oy € (8,1 — B — §) for a small enough § > 0.

Remark 1.7 It is clear that Algorithm 1.5 is a relaxation version of Algorithm 1.2. Theo-
rem 1.6 extended Theorem 1.3 from directed operators to demicontractive operators and
from finite-dimensional spaces to infinite-dimensional spaces.

Remark 1.8 Notice that Theorem 1.6 has only weak convergence in infinite-dimensional
spaces, and it is well known that the strong convergence theorem is always more conve-
nient to use. Could we construct an algorithm such that the strong convergence is guar-
anteed in the infinite-dimensional spaces?

For this purpose, He and Du [23] presented the following hybrid algorithm.

Algorithm 1.9

x1 € C) chosen arbitrarily,
Yn =1 —a)x, + aTx,,

Zn = Py + (1= B)Tyn,

Wy = Pc(z, + MA*(S —1)Ax,,),

(1.6)

Crn={ve Cu:llwy —vll < llzn = vIl < [lx, = VII},

Xne1 = Pc,, (x1), VmeN,
where P is a projection operator.

Remark 1.10 Algorithm 1.9 has strong convergence under some mild assumptions. How-
ever, Algorithm 1.9 is involved with the computation of metric projection. This might se-
riously affect the efficiency of the method.
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To overcome the above difficulty, the so-called self-adaptive method which permits step-
size being selected self-adaptively was developed. Especially, in [24], Yao et al. presented
the following algorithm.

Algorithm 1.11 Let C and Q be nonempty closed convex subsets of real Hilbert spaces H;
and H,, respectively. Let : C — H; be a §-contraction with § € [0, %). Let A: H — H,
be a bounded linear operator. For given x¢ € C, assume that {x,} has been constructed. If
Vf(x,) = 0, then stop and x,, is a solution of the (1.1). Otherwise, continue and compute

%41 by the recursion

s = P [anw(xn> oo an)(xn - %WW))], n=0, 17)

where {a,,} C (0,1) and {p,} C (0,2).

Consequently, Yao et al. proved the strong convergence of (1.7) under some additional
conditions. Further, Zhou and Wang [25] used a new analysis technique to prove the con-
vergence of (1.7) under some mild conditions.

The purpose of this paper is twofold. First, we will consider the split common fixed point
problem for the class of quasi-pseudo-contractive operators which is more general than
that the classes of quasi-nonexpansive operators, directed operators and demicontractive
operators. Secondly, we will construct iterative algorithms with strong convergence with-
out using the projection. Our results provide a unified framework for the study of this

problem and this class of operators.

2 Preliminaries
In this section, we collect some tools including some definitions, some useful inequalities
and lemmas which will be used to derive our main results in the next section.

Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively. Let C
be a nonempty closed convex subset of H. Let T : C — C be an operator. We use Fix(T)
to denote the set of fixed points of T, that is, Fix(T) = {x | x = Tx,x € C}.

Definition 2.1 An operator T': C — C is said to be
(i) Nonexpansive if || Tx — Ty|| < |lx —y|| for allx,y € C.
(ii) Quasi-nonexpansive if || Tx — x*|| < ||x — x*|| for all x € C and x* € Fix(T).
(iii) Firmly nonexpansive if | Tx — Ty||® < |lx = y||*> = |(I = T)x — (I = T)y||* for all
x,y€C.
(iv) Firmly quasi-nonexpansive if || Tx — x*||? < |lx —x*[|* — || Tx — x|| for all x € C and
x* € Fix(T).
(v) Strictly pseudo-contractive if || Tx — Ty||> < |lx — y||> + k||(I = T)x — (I - T)y||? for all
%,y € C, where k € [0,1).
(vi) Directed if (Tx —x*, Tx —x) < 0 for all x € C and x* € Fix(T).
(vii) Demicontractive if | T — x*||> < ||x — x*||% + k|| Tx — x||? for all x € C and
x* € Fix(T), where k € [0,1).

Remark 2.2 The concept of directed operators was introduced and investigated by
Bauschke and Combettes in [26] and by Combettes in [27]. They proved that T: C — C
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is directed if and only if
7=t * < oot |~ 1 2 - ?

for all x € C and x* € Fix(7T). It can be seen easily that the class of directed operators
coincides with that of firmly quasi-nonexpansive operators.

Remark 2.3 From the above definitions, we note that the class of demicontractive opera-
tors contains important operators such as the directed operators, the quasi-nonexpansive
operators and the strictly pseudo-contractive operators with fixed points. Such a class of
operators is fundamental because it includes many types of nonlinear operators arising in
applied mathematics and optimization.

Definition 2.4 An operator T : C — C is said to be pseudo-contractive if
(Tx - Ty,x-y) < |lx =yl
forallx,y € C.

The interest of pseudo-contractive operators lies in their connection with monotone
operators; namely, T is a pseudo-contraction if and only if the complement I — T is a
monotone operator. It is well known that T is pseudo-contractive if and only if

1T = Ty1* < e =yl + | (4 = T)x = (1 = Ty
forallx,y € C.
Definition 2.5 An operator T : C — C is said to be quasi-pseudo-contractive if
||Tx—x*||2§ ||x—x*||2+||Tx—x||2 (2.1)
for all x € C and x* € Fix(T).

It is obvious that the class of quasi-pseudo-contractive mappings includes the class of
demicontractive mappings.

Definition 2.6 An operator T : C — C is said to be L-Lipschitzian if there exists L > 0
such that

1 Tx — Tyl < Lllx - yll
forallx,y € C.

Usually, the convergence of fixed point algorithms requires some additional smoothness

properties of the mapping T such as demi-closedness.

Definition 2.7 An operator T is said to be demiclosed if, for any sequence {x,} which
weakly converges to ¥, and if the sequence {T(x,)} strongly converges to z, then T'(x) = z.
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For all %,y € H, the following conclusions hold:

|ex+ (1= 2)y]) = 20 + A= D) Iyl> -t - D) lx - yI%, € [0,1], (2.2)

lloe + y1I* = llxll* + 24x, ) + lylI%, (2.3)
and

lla + y1> < 1l + 2y, + ). (2.4)

Lemma 2.8 ([28]) Assume that {a,} is a sequence of nonnegative real numbers such that
App1 = (1 - yn)an + (Sm ne N;

where {y,} is a sequence in (0,1) and {3,} is a sequence such that
1) Z;o:l Vn = O0;
(2) limsup,,_, ., i—z <00r Y% 18,] < 00.

Then lim,,_, o a, = 0.

Lemma 2.9 ([29]) Let {w,} be a sequence of real numbers. Assume {w,} does not decrease
at infinity, that is, there exists at least a subsequence {w,, } of {w,} such that w,, < wy, .
for all k > 0. For every n > Ny, define an integer sequence {t(n)} as

T(n) =max{i <n:wy, < Wyl
Then t(n) — 00 as n — 0o and for all n > Nj
max{wr(n): Wy} < We(n)+1-

3 Main results

In this section, we first show several properties for Lipschitzian operators and quasi-
pseudo-contractive operators. These properties will be very useful for our main theorem.
The first property is said to be commutativity in the sense of the set of fixed points of two

operators.

Property 3.1 (Commutativity) Let H be a Hilbert space. Let T : H — H be an L-
Lipschitzian operator with L > 1. Then

Fix((1- ) +¢T)T) =Fix(T((1 - ¢)I + ¢ T)) = Fix(T)
forall ¢ € (0, %).

Proof We will divide our proof into two steps:

(i) Fix((A-¢) +¢T)T) = Fix(T);

(i) Fix(T((1-¢) +¢T))=Fix(T).

Proofof (i). Fix(T) C Fix((1-¢)I+¢ T)T) is obvious. We only need to prove that Fix(((1-
OI+¢T)T) C Fix(T). Letx" e Fix((1-¢)I+¢ T)T). Thus, (1-¢) +¢ T)Tx" = x7. Observe
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that

|t = T = | (L= )+ ¢ T) In" - T |
=¢| T() - 7'
<CL|Tx" - &7
Since ¢L <1, we get x" = Tx". That is, x" € Fix(T). Hence, Fix((1 - ¢)I + ¢ T)T) C Fix(T).
Proof of (ii). Fix(T) C Fix(T((1 — ¢)I + ¢T)) is obvious. Next, we show that Fix(7T'((1 -
O +¢T)) CFix(T).
Take any x* € Fix(T((1-¢)[+¢T)). Wehave T((1-¢)[+¢T)x* =x*.SetU = (1-¢)[+¢T.
We have TUx* = x*. Write Ux* = y*. Then Ty* = x*. Now we show x* = y*. In fact,
" =] = | 7" - 1"
= || Ty —(1-¢)a* — ¢ Tx™ ||
=¢| -1
< ¢Lfy -]

Since ¢ < %, we deduce y* = x* € Fix(U) = Fix(T). Thus, x* € Fix(T). Hence, Fix(T((1 -
) + ¢ T)) C Fix(T). Therefore, Fix(T((1 - ¢)I + ¢ T)) = Fix(T). a

The second property is the demiclosed principle for the operator [ — T((1 — ¢)I + ¢T)
under some mild conditions.

Property 3.2 (Demiclosedness) Let H be a Hilbert space. Let T : H — H be an L-
Lipschitzian operator with L > 1. If I — T is demiclosed at O, then I — T((1 - ¢)[ + ¢ T)

is also demiclosed at 0 when ¢ € (0, %).

Proof Let the sequence {u,} C H satisfying u, — xand u,, — T((1-¢)I + ¢ T)u,, — 0. Next,
we will show that x € Fix(T((1 - ¢)I +¢T)).
From Property 3.1, we only need to prove that X € Fix(T). As a matter of fact, since T is

L-Lipschizian, we have

ety = Titnll < lttn = T(1 =) + ¢ T + | T (1= ) + ¢ T )1ty — Tuay

= ”un - T((l -1+ CT)un” + &Lty — Tuy|.
It follows that

llotn — Tun||l <

7L ||u,, - T((l -0+ §T)u,,”.
Hence,

lim ||z, — Tut|| = 0.
n—00

By the demi-closedness of I — T, we immediately deduce x € Fix(T). d
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The third property is the quasi-nonexpansivity of the composite quasi-pseudo-contrac-

tive operator under some mild assumptions.

Property 3.3 (Quasi-nonexpansivity) Let H be a Hilbert space. Let T: H — H be an L-
Lipschitz quasi-pseudo-contractive operator. Then the operator (1-&)[+&£T((1-n)I+nT)
is quasi-nonexpansive when 0 < £ <5 < ﬁ That is,

’

||(1—$)x+§T((1—n)x+nTx) —uT“ < ||x—uT

forallx € H and u' e Fix(T).

Proof Since u' € Fix(T), we have from (2.1)
” T((l -mI + nT)x —u' ”2 < ”(1 - n)(x - u"') + n(Tx - uT) H2
+ ||(1—n)x+ nTx — T((l—n)x+ r]Tx) H2 (3.1)
and

| |* < || + 1 T - %)%, (32)

forallx € H.
Since T is L-Lipschitzian and x — ((1 — n)x + nTx) = n(x — Tx), we have

|7 = T((1 = n)x + nTx) | < nLllx - Tx|. (3.3)

From (2.2) and (3.2), we have

[ =m ') + (e —ul) |

=(1- n)Hx— MTHZ + r]|| Tx — uTHz -nl-n)x- Tx||?
<@=n)x—u' [P+ n(le—u']” + 172 —xI?)
-n(1-n)llx - Tx|?

= [ —ut | + 21T — )2 (3.4)
From (2.2) and (3.3), we get
”(1 —-mx+nTx - T((l —n)x+ nTx)

I

= || A-n)(x-T(A-nx+nTx)) +n(Tx - T((1-n)x+ 77Tx))||2
=(1- r])Hx— T((l —-n)x + nTx) ||2 + n” Tx — T((l— n)x + nTx) ||2
-0 -n)lx - Tx|

<A-p)|x-T(A-nx+nTx)|* = n(1-n-n*L?)|x - Tx|* (3.5)
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By (3.1), (3.4), and (3.5), we obtain

| T(@ =1+ nT)x—u|* < |x—uf | + PPllx— Tx|)?
+(L=n)|x—T(A-nax+nTx)|*
—n(l=n-n*L)llx - Tx|
=|x-u' HZ +(L=n)|x-T(A-nI+ nT)xH2

-n(1-2n-n"L%)|x - Tx|.
Since 1 < ﬁ we deduce
1-2n-n*L%*>0.
From (3.6), we deduce
| T( = n)x+nTx) — || > < = |* + A=) |x = T(A=m)x + nTx) |

for allx € H and u' e Fix(T).
Combine (2.2) and (3.7) to get
|- &)x+ET((L-mx+nTx)—u' |

=[-8 (x-u’) +&(T(L-n)x+nTx) —u’)

—(1=&)|x—ul | +&|T(A-n)x+ nTx) — |
—E1-8)| (- mx+ nTx) - x|’

<élla-u' "+ @ -m)x-T(@-mx+nTo) ]
(-8 |x-ut P -£Q -9 T(A - mx+nTx) x|

= ||9c—bﬂL||2 +&E(& - n)”T((l— n)x + nTx) —tz.

I

This together with & < n implies that

||(1—§)x+.§T((1—n)x+nTx)—u%” < ||x—uT

This completes the proof.

In the sequel, we introduce our algorithm and prove its strong convergence.

Page 9 of 19

(3.7)

Some assumptions on the underlying spaces and involved operators are listed below.

(R1) H; and H, are two real Hilbert spaces.

(R2) A:H; — H, is a bounded linear operator with its adjoint A* and B: H; — Hj isa

strong positive linear bounded operator with coefficient & > p.
(R3) f:H; — Hj isa p-contraction, S: Hy — H, is an L;-Lipschitzian
quasi-pseudo-contractive operator with L; >1 and 7': H; — H; is an

L,-Lipschitzian quasi-pseudo-contractive operator with L, > 1.
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Our object is to solve the following two-set split common fixed point problem:
find x* € Fix(T) suchthat Ax* € Fix(S). (3.8)
We use I' to denote the set of solutions of (3.8), that is,
I = {x* | x* € Fix(T),Ax" € Fix(5)}.

In the sequel, we assume I" # ¢.

Now, we present our algorithm for finding x* € T'.

Algorithm 3.4 Initialization: Let x, € H; be arbitrary.

Iterative step: For n > 0 let

Vi =Xy + SA[(1 = &) + 5, S((1 = n)] + 1, S) — 1] Ax,
uy = opf (x,) + ({ — a,B)vy, (3.9)
K1 = (1 - ﬁn)un + ﬂnT((l - Vn)un + Vn Tu,), neN,

where (&} uens {Butnens {Valunens {Snlnen, and {n,}uen are five real number sequences in

(0,1) and § is a constant in (0, W).

Theorem 3.5 Suppose T — I and S — I are demiclosed at 0. Assume that the following
conditions are satisfied:

(C1) lim,_ o, = 0;

(C2) Zoil oy = 00;

(C3) O<ay<Bp<ci<yn<b < —=

1241 :

S S

Vi

Then the sequence {x,} generated by algorithm (3.9) converges strongly to x* = Pr(f + I —
B)x*.

(C4) O<ay<lu<ca<n,<by<

Proof Let x* = Pr(f + I — B)x*. Then we have x* € Fix(T) and Ax* € Fix(S). From Prop-
erty 3.1 and Property 3.2, we get
1@ = &I+ £uS(@ =9I + 0,S) A, — Ax* ||2
= | [ = &) + uS(A = n)] +1uS) | A%,
~ [ = &I+ &S(( =0 +n,8)]Ax"?

<|Ax, - Ax*|*. (3.10)
From (2.1), we deduce

” T((l - Vn)un + Vn Tun) —-x" ”2

= ”Mn —x ||2 +(1- )/n)”un - T((l ~ Vn)ln + VnTun) ||2
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This together with (3.9) and (2.2) implies that

[ter =2 * = |0 = Bt + BT (L = vt + v Tit) —x*|°
= (U= B |tn = *|* + Bu|| T((U = vt + 7 Tt) — ¥
= Bal = B) | ttn = T((L= )ity + yuT) |
< [t =% = By = B) | T((L = v)tt + v Tit) — *|*
< Jan - . (3.1)

Note that

i~ = e (£~ B") + (U = uB) (=) |
< o, |[f () = Bx*|| + I = Bl | v — x|
< o [f ) =f () | + e[ (37) = Ba"| + A= cun) [ =27
< aup g —x*|| + o | f (6%) = Bx*|| + (1 = 00u) | v, — ¥ (3.12)

By (2.3), we have

v —a*| = 0 —x* + 8A*[A = &I + £uS(A = 0] + 0,S) = 1] Ax, ||2

= ||x,, —x* ||2 +82 ||A* [(1 -l + g“,,S((l =) +1,S) - I]Ax,, Hz

+28(x, — &, A*[(1 = ¢ + 6uS(( = 0] + 1,S) — I]Ax). (3.13)
Since A is a linear operator, with adjoint A*, we have

(pen — &, A*[(1 = ¢) + £uS(Q = nu)] +1,S) — I]Ax,)
= (A (%0 — &%), [ = 2 + 2uS((A = 0] + 1,S) — 1] Ax,)
= ([ = g + £,S(A = ) + 0,S) |Axy, — Ax™, [(1 = £,)]
+£,S((1 = )] + 0,S) — I]Axy,)

~ 1@ = &I + £,S(( =) +1,S) - I]Ax, | (3.14)
Again using (2.3), we obtain
([(1 =&l + {nS((l =)l + nnS)]Axn - Ax", [(1 — &)l + é.nS((l -l + nnS) _I]Axn>

= %(” [ =)+ £,S(A = )] + n,S) |Ax, — Ax* H2

+ | [@ = eI + £S((L = 0 + 0,uS) — I]Ax, ||2 - ||Ax, — Ax* ||2) (3.15)
From (3.10), (3.14), and (3.15), we get

(x,, —x* A" [(l = &) + 5,S(@ = ) +1,S) —I]Ax,,)

= %(H [ = &)1 + &,S(( = )] +0,S) JAx, - Ax*|*
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| [ = 2] + £S(A = 0 +1,S) = 1A%, || - | Ax, — Ax*|)?)
— L= 6+ &uS(( = n) + n,S) - T A%, |

< 2 (s — [P+ [+ 50S(@ =01+ 1,8) 1A
— | A%, — Ax*||*) = | [ = &I + £,S(A = )T +0,S) — 1A, |

1
= 2 1@ = 1 + (@ =0l + 748) - 1Az (3.16)
So,

[V = |” = [0 — &% + SA*[(1 = 0,01 + £,S(QA = )T +,S) — I Ax, ||
< S2AIP [ = & + &uS((X = ) +,S) — T]Ax, |
o0 =) * = 8] [(1 = 21 + €uS(( = 0 )T + ,S) — T]Ax, )
= =2 + (81417 - 8) [ [~ &)1
+ 8,:S((1 =) +n,8) - IAx, |

< [l =2 (317)
It follows that
o6 = ™ + SA*[(1 = &) + £uS(A = )] + 1aS) = TA%, | < |20 —x*]. (3.18)
Substituting (3.18) into (3.12), we deduce that

[ =% < ctmp a0 = "] + e[ () = B" || + (0 — ) e =7

= o, |[f (x*) = Bx*|| + [1= (€ = p)an ] [ — 2" (3.19)
From (3.11) and (3.19), we get

[ =" = Jlus =7

§a,,Hf(x) Bx* H+[ (& - pan]”xn_x ”

-1
E-p '

< max{ 200 -

’

The boundedness of the sequence {x,} yields the result.

Next, we focus our analysis on the fact that the real sequence {||x,, —x*||} is either mono-
tone decreasing at infinity (Case 1) or not (Case 2):

Case 1. There exists g such that the sequence {||x, — x*||},,>4, is decreasing.

Case 2. For any ny, there exists an integer m > ng such that ||x,, — x*| < |[%41 — x|

More precisely, regarding the situation when {||x, — x*||} is monotonous at infinity
(Case 1) and bounded (hence convergent), we prove that its only possible limit is zero.

In Case 1, we assume there exists some integer 7, > 0 such that {||x, —x*||} is decreasing
for all n > ny. In this case, we know that lim,_, « [|x, — x*|| exists. Returning to (3.12), we
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have

[ e e
< [otnp [ =" + cun[f (x7) = Bx* [ + (1 = ) [ v 5" []°
= (ol = + £ () = Bx"[)” + 20 (1 — ) (o 00 — "
+ () =B ) v = + A= ) v =27
< an(pan =" | + [f (57) = Bx"[[) (3w =27 + |[f (") — Bx"])
G I
< (1= 2,8) (2 1AI2 = 8) || [(1 = & + £uS((L = na)] +,S) — T A

+ Moty + (1 — ) | %, — &* H2

2

< Mo, + ||, —x*||", (3.20)

where M > 0 is a constant such that

sup{ (o oen = + [ (57) = B[} (3w =27 + £ (2) - Ba"[)} <.
Hence,

(1= ) (8 = 82 IAIP) [ [ = &) + &uS(( = m)l + 1,S) = []Ax, |

< (1= )| w = 2|2 = [0 — 2 |* + M.

Since lim,, o [, — x*|| exists and &, — 0, we obtain

Tim ([0 = &) + £xS((1 = )] + 1S) = T] A, | = 0. (3.21)

Therefore,
lim [|Ax, - S((1 - 0 + 1,S)Ax, | = 0.
n— o0

We have

l1Ax, — SAx,|| < ”Axn - S((l — ) + nnS)Axn ”
+ [ S(@ = n)I +0,S)Ax, — SAx, |

< A% = S((@ = 1] + 0uS) Ay | + L1l Ay — SAx, .

It follows that
lAx, — SAx,|| < A%, = S((L = 0] + 0uS)Axy .
1-Lin,
Hence,

lim [|Ax, — SAx,] = 0. (3.22)



Yao et al. Fixed Point Theory and Applications (2015) 2015:127 Page 14 of 19

Note that

2t = %l = [|SA*[(L = £ + £uS((A = 0 + 1uS) — I A%,
+ 0ty (B + SBA* (1 = &) + £uS((L = 0T + 0nS) — 1) A%y — f () |
<SIAN [ = &) + £uS(A = )] + 1,S) — I A,

+ 0ty || Boty + SBA*[(1 = &) + £uS((L = 0T + 0uS) — I] A%, — f () .-
This together with (3.21) implies that
nli)ﬁolo %n = unll = 0. (3.23)
From (3.10) and (3.20), we deduce

||xn+1 —-x" ||2 = ” Uy —x* ”2 = Bu(yn— ,Bn)”un - T((l ~ Vn)lUn + Vn Tun) ||2

< |l = 2))* + M = Buyis = B) |t = T((1 = yi)tt + v, T |
It follows that
BV = Bt — T = vi)tt + v Tt | * < o0 = %" = 01 = "|* + 0tuM.
Therefore,
im o, = T((1 = Yot + v Toa) | = 0. (3.24)

Observe that

llotn — Tuyll < ”un - T((l —= V) + Vn Tun) ” + H T((l — V)t + VnTun) — Tu, ”

= ”un - T((l ~= VYn)Un + Vn Tun) ” + Lyulluy — Tuy||.

Thus,

e | — T(Q = yi)ttn + yuTus) |-

n

This together with (3.24) implies that
lim ||u, — Tu,|| = 0. (3.25)
Now, we show that

lim sup(f(x*) — Bx*,u, —x*) <0.

n—00

Choose a subsequence {u,,} of {u,} such that

lim sup(f(x*) - Bx*,u, — x*) = lim (f(x*) - Bx*, u,, - x*) (3.26)

n—0o0 1— 00
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Since the sequence {u,,} is bounded, we can choose a subsequence {””z; } of {u,,,} such that

u,, — z. For the sake of convenience, we assume (without loss of generality) that u,, — z.

Consequently, we derive from the above conclusions that
X%y, =~z and Ax, — Az (3.27)

By the demi-closedness of T — I and S — I, we deduce Az € Fix(S) and z € Fix(T). That is
tosay,ze .
Therefore,

limsup(f (x*) — Bx*, u, — &%) = lim (f (x*) — Bx*, u,, — )

n—00 =00

= lim (f (x*) - Bx*,z — x*)

1—> 00

=<0. (3.28)
Using (2.4), we have

=" = | = 0uB) (v = %) + a (f ) — B") |
< (1= &) [V — || + 200{f () — Bx*, 14 — )
< (1 - @) | — & |* + 200, {f () - Bx*, s, — )
= (1= 0,8) |0 — ")) + 200{f () — £ (67), 1 — %)
+ 20, {f (5) - Ba ty — )
- - = 2t s = 1~
+ 20(f (x*) — Bx*, 1 — x*)
< A=) ="+ a2 + o [, ="

+ Za,,(f(x*) - Bx*,u, - x*) (3.29)
Therefore,

2 2
Jwnes =" = uen =27

%- Zp) n 2 n * * *
5[1 - ap“]” 2P ) - B (330)

Applying Lemma 2.8 and (3.28) to (3.30), we deduce x,, — x*.

In Case 2 above, we know that, for any integer 7y, there exists another integer p > ng
such that |lx, — x*|| < ||%,.1 — x*||. Let #p be such that [lx,, — x*|| < [[%y,41 —x*||. Set w, =
{ll%, —«*||}. Then we have

Wy = Wy +1-

Define an integer sequence {t,} for all n > ny as follows:

t(n)=max{{eN|ny <l <nw <w,}
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It is clear that 7 () is a non-decreasing sequence satisfying
lim 7(n) = 00
n—00

and
Wr(n) = Wr(n)+1>

for all n > ny.

By a similar argument to that of Case 1, we can obtain

lim ||SA%; () — A%z =0
n—0o0

and
lim | (s) = Ttz ()|l = 0.
n—00

This implies that
6l)w(uﬂc(;’l)) cr.

Thus, we obtain

limsup(f (x*) — Bx*, () — 5*) < 0. (3.31)

n—00

Since wy(y) < Wr(my+1, we have from (3.30)

2 2
wr(n) = a)r(n)+l

+ ———(f(x") — BX", thr(n) — ). (3.32)

(f(x*) —Bx* () — x*> (3.33)
Combining (3.31) and (3.33), we have

lim sup w;(,) <0,

n—o0

and hence

lim Wr(n) = 0. (3.34)

n—00

From (3.32), we deduce

: 2 : 2
lim sup w;,,; < limsup wy,,.
n—00 n— 00
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This together with (3.34) implies that

lim ;@1 = 0.

n—00

Applying Lemma 2.9 to get
0<w,= max{wt(n)» wr(n)ﬂ}'

Therefore, w, — 0. That is, x,, — «x*. This completes the proof. g

From Algorithm 3.4 and Theorem 3.5, we can deduce easily the following algorithms

and corollaries.

Algorithm 3.6 Initialization: Let x, € H; be arbitrary.
Iterative step: For n > 0 let

Vi =Xy + SA[(1 = &) + 5, S((L = 0] + 1, S) — 1] Ax,
Uy = opf (x,) + (L — )V, (3.35)
X1 = (1 - ﬁn)un + ﬂnT((l - Vn)un + Vn Tu,), neN,

where (&, }nens {Bulnens {(Vulnens {Enlnen, and {n,},en are five real number sequences in
(0,1) and § is a constant in (0, m).

Corollary 3.7 Suppose T — I and S — I are demiclosed at 0. Assume that the following
conditions are satisfied:
(Cl) lim,,_, c 0, = 05
(C2) Z:ozl o, = 00;
1 .
(C3) O<ar<Bu<cr<yn<b < m,
1
(C4) O<ay<lu<ca<n,<by< m
Then the sequence {x,} generated by algorithm (3.35) converges strongly to x* = Pr(f)x*.

Algorithm 3.8 Initialization: Let xo € H; be arbitrary.
Iterative step: For n > 0 let

Vi =%y + SA[(1 = 5 + £, S((A — ) + 1,S) — 1] Ax,
X1 = 1= B)A—an)vy + BuT(1 -y ) A — )V + v T(A —y)vy), neN,

(3.36)

where {0, }nen, {Bnlnens {Vatnens {Cnlnen, and {n,},en are five real number sequences in
(0,1) and § is a constant in (0, W).

Corollary 3.9 Suppose T — I and S — I are demiclosed at 0. Assume that the following
conditions are satisfied:

(C1) lim,— oy = 0;

(C2) Y2 =00

(C3) O<ar<Bu<ci<yn<b < 1

«/1+L%+1;
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(C4) O<ay<lu<ca<n,<by< m
Then the sequence {x,} generated by algorithm (3.36) converges strongly to x* = Pr(0)x*,

which is the minimum norm element in T".

Remark 3.10 From Remark 2.3, we know that if S and T are quasi-nonexpansive oper-
ators or directed operators or demicontractive operators, the above corollaries are still
valid.

Note that the pseudo-contractive operator satisfies the following demi-closedness prin-

ciple.

Lemma 3.11 ([30]) Let H be a real Hilbert space, C a closed convex subset of H. Let U :
C — C be a continuous pseudo-contractive operator. Then

(i) Fix(U) is a closed convex subset of C,

(ii) (I —U) is demiclosed at zero.

Corollary 3.12 Suppose that S : Hy — H, is an Ly-Lipschitzian pseudo-contractive oper-
ator with Ly >1 and T : Hy — H, is an Ly-Lipschitzian pseudo-contractive operator with
Ly > 1. Assume the following conditions are satisfied:

(Cl) lim,,_, o 0ty = 05

(C2) Y2 =005

1 .

(C3) O<ar<Bu<cr<yn<b < WL
N
1241

Then the sequence {x,} generated by algorithm (3.9) converges strongly to x* = Pr(f + I —
B)x*.

(C4) O<ay<lu<ca<n,<by<

Remark 3.13 Our algorithms and results provide a unified framework for the study of the

two-set split common fixed point problem.
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