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Abstract
In the paper, we introduce a new hybrid algorithm which is not based on the
modification to weak convergence algorithms. The strong convergence theorem of
the proposed algorithm is presented. Finally, the numerical experiments suggest that
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1 Introduction
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖ and C be
a nonempty closed convex subset of H . Recall that a mapping T : C → C is said to be
nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ holds for all x, y ∈ C. We denote by Fix(T) the set of
fixed points of T , i.e., Fix(T) = {x ∈ C : Tx = x}.

Recently, a great deal of literatures on iteration algorithms for approximating fixed
points of nonexpansive mappings have been published since they have a variety of ap-
plications in inverse problem, image recovery, and signal processing; see [–]. Mann’s
iteration process [] is often used to approximate a fixed point of the operators, but it
has only weak convergence (see [] for an example). However, strong convergence is of-
ten much more desirable than weak convergence in many problems that arise in infinite
dimensional spaces (see [] and references therein). So, attempts have been made to mod-
ify Mann’s iteration process so that strong convergence is guaranteed. Let T : C → C be a
nonexpansive mapping such that Fix(T) �= ∅. Nakajo and Takahashi [] firstly introduced
the following hybrid algorithm.

Algorithm 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,
yn = αnxn + ( – αn)Txn,
Cn = {z ∈ C : ‖yn – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x,

()
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where PK denotes the metric projection onto the set K , {αn} ⊂ [,σ ] for some σ ∈ (, ].
Thereafter, many hybrid algorithms have been studied extensively since they have strong
convergence, see [–]. As far as we know, most hybrid algorithms can be seen as the
modification for weak convergence algorithms.

Inspired by the recent work of Malitsky and Semenov [], we propose the following
algorithm.

Algorithm 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x, z ∈ C chosen arbitrarily,
zn+ = αnzn + ( – αn)Txn,
Cn = {z ∈ C : ‖zn+ – z‖ ≤ αn‖zn – z‖ + ( – αn)‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x,

()

where {αn} ⊂ [,σ ] for some σ ∈ [, 
 ). It is easy to see that Algorithm  is not a modifi-

cation of any weak convergence algorithm.

The paper is organized as follows. In the next section, we present some lemmas which
will be used in the main results. In Section , strong convergence theorem and its proof
are given. In the final section, Section , some numerical results are provided, which show
advantages of our algorithm.

2 Preliminaries
We will use the following notation:

() ⇀ for weak convergence and → for strong convergence.
() ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.
We need some facts and tools in a real Hilbert space H which are listed as lemmas below.

Lemma . The following identity in a real Hilbert space H holds:

‖u – v‖ = ‖u‖ – ‖v‖ – 〈u – v, v〉, u, v ∈ H .

Lemma . (Goebel and Kirk []) Let C be a closed convex subset of a real Hilbert
space H , and let T : C → C be a nonexpansive mapping such that Fix(T) �= ∅. If a sequence
{xn} in C is such that xn ⇀ z and xn – Txn → , then z = Tz.

Lemma . Let K be a closed convex subset of a real Hilbert space H , and let PK be the
(metric or nearest point) projection from H onto K (i.e., for x ∈ H , PK x is the only point in
K such that ‖x – PK x‖ = inf{‖x – z‖ : z ∈ K}). Given x ∈ H and z ∈ K . Then z = PK x if and
only if the following relation holds:

〈x – z, y – z〉 ≤  for all y ∈ K .

Lemma . (Matinez-Yanes and Xu []) Let K be a closed convex subset of H . Let {xn} be
a sequence in H and u ∈ H . Let q = PK u. If {xn} is such that ωw{xn} ⊂ K and satisfies the
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condition

‖xn – u‖ ≤ ‖u – q‖ for all n,

then xn → q.

Lemma . Let {an} and {bn} be nonnegative real sequences, α ∈ [, ), β ∈R
+, and for all

n ∈N the following inequality holds:

an+ ≤ αan + βbn. ()

If
∑∞

n= bn < +∞, then limn→∞ an = .

Proof Using inequality () for n = , , . . . , N – , we obtain

a ≤ αa + βb,

a ≤ αa + βb,

...

aN ≤ αaN– + βbN–.

Adding all these inequalities yields

N∑

n=

an ≤ 
 – α

(

a – αaN + β

N–∑

n=

bn

)

≤ 
 – α

(

a + β

∞∑

n=

bn

)

.

Since N is arbitrary, we see that the series
∑∞

n= an is convergent and hence an → . �

3 Algorithm and its convergence
In this section, we present strong convergence theorem and its proof for Algorithm .

Theorem . Let C be a closed convex subset of a Hilbert space H , and let T : C → C be
a nonexpansive mapping such that Fix(T) �= ∅. Assume that {αn} ⊂ [,σ ] holds for some
σ ∈ [, 

 ). Then {xn} and {zn} generated by Algorithm  converge strongly to PFix(T)x.

Proof It is easy to know that Cn is convex (see Lemma . in []). Next we show that
Fix(T) ⊂ Cn for all n ≥ . To observe this, taking p ∈ Fix(T) arbitrarily, we have

‖zn+ – p‖ =
∥
∥αnzn + ( – αn)Txn – p

∥
∥

≤ αn‖zn – p‖ + ( – αn)‖xn – p‖,

which implies Fix(T) ⊂ Cn for all n ≥ . Next we show

Fix(T) ⊂ Qn for all n ≥  ()
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by induction. For n = , we have Fix(T) ⊂ C = Q. Assume Fix(T) ⊂ Qn. Since xn+ is the
projection of x onto Cn ∩ Qn, by Lemma . we have

〈xn+ – z, xn+ – x〉 ≤  ∀z ∈ Cn ∩ Qn.

As Fix(T) ⊂ Cn ∩ Qn, by the induction assumption, the last inequality holds, in particular,
for all z ∈ Fix(T). This together with the definition of Qn+ implies that Fix(T) ⊂ Qn+.
Hence () holds for all n ≥ .

Since Fix(T) is a nonempty closed convex subset of C, there exists a unique element q ∈
Fix(T) such that q = PFix(T)x. From xn = PQn x (by the definition of Qn) and Fix(T) ⊂ Qn,
we have ‖xn – x‖ ≤ ‖p – x‖ for all p ∈ Fix(T). Due to q ∈ Fix(T), we get

‖xn – x‖ ≤ ‖q – x‖, ()

which implies that {xn} is bounded.
The fact that xn+ ∈ Qn implies that 〈xn+ –xn, xn –x〉 ≥ . This together with Lemma .

implies

‖xn+ – xn‖ ≤ ‖xn+ – x‖ – ‖xn – x‖. ()

From () and () we obtain

N∑

n=

‖xn+ – xn‖ ≤
N∑

n=

(‖xn+ – x‖ – ‖xn – x‖)

= ‖xN+ – x‖ – ‖x – x‖

≤ ‖q – x‖ – ‖x – x‖.

So it follows that
∑∞

n= ‖xn+ – xn‖ is convergent and thus ‖xn+ – xn‖ →  as n → ∞. The
fact that xn+ ∈ Cn implies that

‖zn+ – xn+‖ ≤ αn‖zn – xn+‖ + ( – αn)‖xn – xn+‖

= αn
(‖zn – xn‖ + 〈zn – xn, xn – xn+〉 + ‖xn – xn+‖)

+ ( – αn)‖xn – xn+‖

≤ αn
(‖zn – xn‖ + ‖xn – xn+‖) + ( – αn)‖xn – xn+‖

≤ σ‖zn – xn‖ + ‖xn – xn+‖,

where the second inequality follows from the AM-GM and the Cauchy-Schwarz inequal-
ities, and the last inequality follows from αn ≤ σ . From Lemma . and σ ∈ (, 

 ), we
obtain

‖zn – xn‖ → . ()

For this reason, we have

‖zn+ – xn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖ → . ()
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Noting that ( – αn)(Txn – xn) = (zn+ – xn) + αn(xn – zn), we obtain

‖Txn – xn‖ ≤ 
 – αn

‖zn+ – xn‖ +
αn

 – αn
‖xn – zn‖.

Since αn ≤ σ and by () and (), we get

‖Txn – xn‖ → . ()

By Lemma ., we obtain that ωw(xn) ⊂ Fix(T). This, together with () and Lemma .,
guarantees strong convergence of {xn} to PFix(T)x. From (), strong convergence of {zn} to
PFix(T)x is obtained. �

Changing the definitions of zn+ and Cn in Algorithm , we get the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x, z ∈ C chosen arbitrarily,
zn+ = αnxn + ( – αn)Tzn,
Cn = {z ∈ C : ‖zn+ – z‖ ≤ αn‖xn – z‖ + ( – αn)‖zn – z‖},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = PCn∩Qn x,

()

where {αn}∞n= ⊂ [a, b] for some a, b ∈ ( 
 , ). Using the process of proof of Theorem ., we

can show the following theorem.

Theorem . Let C be a closed convex subset of a Hilbert space H , and let T : C → C be
a nonexpansive mapping such that Fix(T) �= ∅. Assume {αn} ⊂ [a, b] for some a, b ∈ ( 

 , ).
Then {xn} and {zn} generated by the iteration process () strongly converge to PFix(T)x.

4 Numerical experiments
In this section, we firstly present specific expression of PCn∩Qn x in Algorithm  and then
compare Algorithms  and  through numerical examples.

He et al. [] pointed out that it is difficult to realize the hybrid algorithm in actual
computing programs because the specific expression of PCn∩Qn x cannot be got, in general.
For a special case C = H , where Cn and Qn are two half-spaces, they obtained the specific
expression of PCn∩Qn x and realized Algorithm .

In the case C = H , following the ideas of He et al. [], we obtain the specific expression
of PCn∩Qn x of Algorithm  as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, z ∈ H chosen arbitrarily,
zn+ = αnzn + ( – αn)Txn,
un = αnzn + ( – αn)xn – zn+,
vn = (αn‖zn‖ + ( – αn)‖xn‖ – ‖zn+‖)/,
Cn = {z ∈ C : 〈un, z〉 ≤ vn},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = pn, if pn ∈ Qn,
xn+ = qn, if pn /∈ Qn,

()
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Table 1 Comparison of Algorithms 1 and 2 with different initial values

x0(z0) Algorithm 1 Algorithm 2

Iter. Sec. Iter. Sec.

(5, 2) 1066 0.1248 982 0.1092
(1, –3) 299 0.0468 111 0.0156
(–3, –4) 1616 0.1560 394 0.0312
(–2, 5) 901 0.0780 442 0.0468

where

pn = x –
〈un, x〉 – vn

‖un‖ un,

qn =
(

 –
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉

)

pn +
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉wn,

wn = xn –
〈un, xn〉 – vn

‖un‖ un.

Let R be a two-dimensional Euclidean space with the usual inner product 〈v(), v()〉 =
v()

 v()
 + v()

 v()
 (∀v() = (v()

 , v()
 )T , v() = (v()

 , v()
 )T ∈ R) and the norm ‖v‖ =

√
v

 + v
 (v =

(v, v)T ∈ R). He et al. [] defined a mapping

T : v = (v, v)T �→
(

sin
v + v√


, cos

v + v√


)T

, ()

and showed it is nonexpansive. It is easy to get that T has a fixed point in the unit disk
which is difficult to calculate.

Next, we compare Algorithms  and  with the nonexpansive mapping T defined in ().
In the numerical results listed in Table , ‘Iter.’ and ‘Sec.’ denote the number of iterations
and the cpu time in seconds, respectively. We took E(x) < ε as the stopping criterion and
ε = –. We set x = z in Algorithm  and took αn = . for Algorithms  and . The
algorithms were coded in Matlab . and run on a personal computer.

Table  illustrates that in our examples Algorithm  has a competitive performance. We
caution, however, that this study is a very preliminary one.
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