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Abstract
The aim of this paper is to introduce a class of multivalued mappings satisfying a
Suzuki type generalized contractive condition in the framework of fuzzy metric
spaces and to present fixed point results for such mappings. Some examples are
presented to support the results proved herein. As an application, a common fixed
point result for a hybrid pair of single and multivalued mappings is obtained. We
show the existence and uniqueness of a common bounded solution of functional
equations arising in dynamic programming. Our results generalize and extend various
results in the existing literature.
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1 Introduction and preliminaries
One of the basic fixed point theorems with a wide range of applications in all types of anal-
yses is the Banach (or Banach-Cassioppoli) contraction principle due to Banach []. The
Banach contraction principle [] is a simple and powerful result including iterative meth-
ods for solving linear, nonlinear, differential, integral, and difference equations. Due to
its applications in mathematics and other related disciplines, this principle has been gen-
eralized in many directions. Banach contractions are continuous mappings. Kannan []
proved fixed point theorems for mappings which are not necessarily continuous. Kikkawa
and Suzuki [] further generalized Banach contractions and Kannan mappings. Suzuki []
obtained a variant of Banach contraction principle that characterizes metric completeness
by using a different type of contractive condition. There are multivalued generalizations
of Banach contraction principle (see [–]). Ðorić and Lazović [] extended a Suzuki type
fixed point theorem and obtained fixed points of a multivalued mapping. They also gave
applications of their results in dynamic programming.

On the other hand, the evolution of fuzzy mathematics commenced with an introduc-
tion of the notion of fuzzy sets by Zadeh [] in  as a new way to represent vagueness
in everyday life. There are different notions of fuzzy metric spaces. Kramosil and Michalek
[] introduced the notion of fuzzy metric space by using continuous t-norms, which gen-
eralizes the concept of probabilistic metric space to fuzzy situation. Moreover, George and
Veeramani [, ] modified the concept of fuzzy metric spaces and obtained a Hausdorff
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topology for this kind of fuzzy metric spaces. Recently, Gregori et al. [] gave applica-
tions of fuzzy metrics to color image process and used the concept of fuzzy metric to filter
noisy images and in other engineering problems of special interests. Fixed point theory
in fuzzy metric spaces has been studied by a number of authors (compare for details [–
]). Rodríguez-López and Romaguera [] introduced Hausdorff fuzzy metric on a set
of nonempty compact subsets of a fuzzy metric space.

In this paper, we obtain Suzuki type fixed point theorems for multivalued mappings in
fuzzy metric spaces. Our results extend the comparable results given in [, , ] to fuzzy
metric spaces.

The following definitions and well-known results will be needed in the sequel.

Definition . ([]) A binary operation ∗ : [, ] → [, ] is called a continuous t-norm
if

() ∗ is associative and commutative;
() ∗ : [, ] → [, ] is continuous (note that a t-norm is continuous if it is continuous

as a mapping under usual topology on [, ]);
() a ∗  = a for all a ∈ [, ];
() a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Some basic examples of continuous t-norms are ∧, · and ∗L, where, for all a, b ∈ [, ],
a ∧ b = min{a, b}, a · b = ab, and ∗L is the Lukasiewicz t-norm defined by a ∗L b = max{a +
b – , }.

It is easy to check that ∗L ≤ · ≤ ∧. In fact ∗ ≤ ∧ for all continuous t-norm ∗.

Definition . ([, ]) Let X be a nonempty set and ∗ be a continuous t-norm. A fuzzy
set M on X × X × (, +∞) is said to be a fuzzy metric on X if for any x, y, z ∈ X and s, t > ,
the following conditions hold:

(i) M(x, y, t) > ;
(ii) x = y if and only if M(x, y, t) =  for all t > ;

(iii) M(x, y, t) = M(y, x, t);
(iv) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s) for all t, s > ;
(v) M(x, y, ·) : (, +∞) → (, ] is continuous.

The triplet (X, M,∗) is called a fuzzy metric space. Each fuzzy metric M on X generates
Hausdorff topology τM on X whose base is the family of open M-balls {BM(x, ε, t) : x ∈
X, ε ∈ (, ), t > }, where

BM(x, ε, t) =
{

y ∈ X : M(x, y, t) >  – ε
}

.

Note that a sequence {xn} converges to x ∈ X (with respect to τM) if and only if
limn→∞ M(xn, x, t) =  for all t > .

It is well known that for each x, y ∈ X, M(x, y, ·) is a nondecreasing function on (, +∞)
(see []). Moreover, every fuzzy metric space X (in the sense of George and Veeramani
[]) is metrizable, that is, there exists a metric d on X which induces a topology that agrees
with τM (see []). Conversely if (X, d) is a metric space and Md : X × X × (, +∞) → (, ]
is defined as

Md(x, y, t) =
t

t + d(x, y)
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for all t > , then (X, Md,∧) is a fuzzy metric space called the standard fuzzy metric space
induced by the metric d (see []). The topologies induced by the standard fuzzy metric
and the corresponding metric are the same [].

A sequence {xn} in a fuzzy metric space X is said to be a Cauchy sequence if for each
ε ∈ (, ), there exists n ∈N such that M(xn, xm, t) >  – ε for all n, m ≥ n. A fuzzy metric
space X is complete [] if every Cauchy sequence converges in X. A subset A of X is
closed if for each convergent sequence {xn} in A with xn → x, we have x ∈ A. A subset A
of X is compact if each sequence in A has a convergent subsequence. We denote the set of
all nonempty compact subsets of X by K(X). Let T : X →K(X) be a multivalued mapping
and g be a self-mapping on X. Further a point x ∈ X is called: () a fixed point of T if and
only if x ∈ Tx, () a coincidence point of T and g if and only if gx ∈ Tx, () a common fixed
point of T and g if and only if x = gx ∈ Tx.

We denote the set of all fixed points of T by F(T) and the set of all coincidence points
(common fixed points) of mappings T and g by C(g, T) (F(g, T)). A mapping g is called
T-weakly commuting at some point x ∈ X if gx ∈ Tgx. The hybrid pair (T , g) is called
w-compatible if gTx ⊆ Tgx whenever x ∈ C(g, T) (see [] and the references therein).

Definition . ([]) A fuzzy metric M is said to be continuous on X × (,∞) if

lim
n→∞ M(xn, yn, tn) = M(x, y, t)

whenever {(xn, yn, tn)} is a sequence in X × (,∞) which converges to a point (x, y, t) ∈
X × (,∞).

Proposition . ([]) Let (X, M,∗) be a fuzzy metric space. Then M is a continuous func-
tion on X × X × (,∞).

Consistent with [], we recall the notion of Hausdorff fuzzy metric induced by a fuzzy
metric M as follows: For x ∈ X, A ∈K(X) and A, B ∈K(X) define

HM(A, B, t) = min
{

inf
a∈A

M(a, B, t), inf
b∈B

M(A, b, t)
}

for all t > , where M(x, A, t) = supa∈A M(x, a, t). Then HM is called the Hausdorff fuzzy
metric induced by the fuzzy metric M. The triplet (K(X), HM,∗) is called Hausdorff fuzzy
metric space.

Lemma . ([]) Let X be a fuzzy metric space. Then, for each a ∈ X, B ∈K(X) and t > ,
there is b ∈ B such that M(a, B, t) = M(a, b, t).

Lemma . ([]) Let g be a self-mapping on a nonempty set X. Then there exists a subset
E ⊆ X such that g(E) = g(X) and g : E → X is one-to-one.

Let � = {η : [, ] → [, ],η is continuous, nondecreasing and η(t) > t for t ∈ (, )}.
Note that η() =  and η() = , then η(t) ≥ t for all t ∈ [, ].
A sequence {tn} of positive real numbers is said to be s-increasing (for further details,

see []) if there exists n ∈N such that

tm+ ≥ tm + 
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for all m ≥ n. In a fuzzy metric space (X, M,∧), an infinite product (compare []) is
denoted by

M(x, y, t) ∧ M(x, y, t) ∧ · · · ∧ M(x, y, tn) ∧ · · · =
∞∏

i=

M(x, y, ti)

for all x, y ∈ X.

2 Fixed points of multivalued mappings in fuzzy metric space
Suppose that

ϕ(r) =

{
,  ≤ r < 

 ,
 – r, 

 ≤ r < .

In this section, we obtain several fixed point theorems for multivalued mappings satisfying
a Suzuki type contractive condition in the setup of fuzzy metric spaces. We start with the
following result.

Theorem . Let (X, M,∧) be a complete fuzzy metric space and T : X → K(X) be a
multivalued mapping. Suppose that there exists r in [, ) such that for each x, y ∈ X and
η ∈ �,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ NM
T (x, y),

where

NM
T (x, y) = η

(
min

{
M(x, y, t), M(x, Tx, t), M(y, Ty, t), M(x, Ty, t), M(y, Tx, t)

})
.

Then F(T) 
= φ provided that the following conditions hold:
(c-) For each ε >  and an s-increasing sequence {tn}, there exists n in N such that

∏∞
n≥n

M(x, y, tn) ≥  – ε for all n ≥ n.
(c-) If a sequence {un} converges to z in (X, M,∧), then there exists n in N such that

M(un, x, t) ≤ M(z, x, t) for all z 
= x, for all n ≥ n and for all t > .

Proof Let u be a given point in X. Since Tu ∈K(X), we can choose u ∈ Tu such that

M(u, Tu, rt) ≥ HM(Tu, Tu, rt).

As ϕ(r) < , so we have

M(u, Tu, t) ≥ M
(
u, Tu,ϕ(r)t

) ≥ M
(
u, u,ϕ(r)t

)
.



Saleem et al. Fixed Point Theory and Applications  (2015) 2015:36 Page 5 of 18

Then, by a given assumption, it follows that

M(u, Tu, rt)

≥ HM(Tu, Tu, rt)

≥ η
(
min

{
M(u, u, t), M(u, Tu, t), M(u, Tu, t), M(u, Tu, t), M(u, Tu, t)

})

≥ η
(
min

{
M(u, u, t), M(u, u, t), M(u, Tu, t), M(u, Tu, t), M(u, u, t)

})

≥ η
(
min

{
M(u, u, t), M(u, u, t), M(u, Tu, t), M(u, Tu, t)

})
.

Since Tu is compact, so by Lemma . there exists u ∈ Tu such that M(u, Tu, t) =
M(u, u, t). Note that

M(u, Tu, t) = M(u, u, t) ≥ M(u, u, t) ∧ M(u, u, t).

Hence we obtain that

M(u, u, rt) ≥ η
(
min

{
M(u, u, t), M(u, u, t)

})
.

If min{M(u, u, t), M(u, u, t)} = M(u, u, t), then

M(u, u, rt) ≥ η
(
M(u, u, t)

)

gives a contradiction. Thus we have

M(u, u, t) ≥ η

(
M

(
u, u,

t
r

))
.

Continuing this way, we can obtain a sequence {un} in X such that un+ ∈ Tun, which sat-
isfies

M(un, un+, t) ≥ M
(

un–, un,
t
r

)

≥ M
(

un–, un–,
t
r

)
≥ · · · ≥ M

(
u, u,

t
rn

)
.

Let t > , ε > , m, n ∈ N such that m > n and hi = 
i(i+) for i ∈ {n, n + , . . . m – }. As hn +

hn+ + · · · + hm– < , so we have

M(un, um, t)

≥ M
(
un, um, (hn + hn+ + · · · + hm–)t

)

≥ M(un, un+, hnt) ∧ M(un+, un+, hn+t) ∧ · · · ∧ M(um–, um, hm–t)

≥ M
(

u, u,
hn

rn t
)

∧ M
(

u, u,
hn+

rn+ t
)

∧ · · · ∧ M
(

u, u,
hm–

rm– t
)

= M
(

u, u,


n(n + )rn t
)

∧ M
(

u, u,


(n + )(n + )rn+ t
)

∧ · · ·
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∧ M
(

u, u,


m(m – )rm– t
)

≥
∞∏

n=

M
(

u, u,
t

n(n + )rn

)
=

∞∏

n=

M(u, u, tn),

where tn = t
n(n+)rn . Since limn→∞(tn+ – tn) = ∞, therefore {tn} is an s-increasing sequence.

Consequently, there exists n ∈ N such that for each ε > , we have
∏∞

n= M(u, u, tn) ≥
 – ε for all n ≥ n and hence we obtain M(un, um, t) ≥  – ε for all n, m ≥ n. Thus {un}
is a Cauchy sequence in X. As X is a complete, so there exists a point z in X such that
limn→∞ M(un, z, t) = . Now we show that

M(z, Tx, rt) ≥ η
(
min

{
M(z, x, t), M(x, Tx, t)

})

for all x in X \ {z}. Since limn→∞ un = z, so there exists a positive integer n ∈ N such that
for all n ≥ n, we have

M
(

z, un,
t


)
≥ M(z, x, t)

and by (c-) there exists n in N such that M(un, x, t) ≤ M(z, x, t) for all z 
= x, n ≥ n and
for all t > . Now if we take n = max{n, n}, then we obtain that

M(un, Tun, t) ≥ M
(

un, z,
t


)
∧ M

(
z, Tun,

t


)
≥ M

(
un, z,

t


)
∧ M

(
z, un+,

t


)

≥ M(z, x, t) ∧ M(z, x, t) = M(z, x, t) ≥ M(un, x, t)

≥ M
(
un, x,ϕ(r)t

)

for all n ≥ n. Thus, we have

M(un+, Tx, rt)

≥ HM(Tun, Tx, rt)

≥ η
(
min

{
M(un, x, t), M(un, Tun, t), M(x, Tx, t), M(un, Tx, t), M(x, Tun, t)

})

≥ η
(
min

{
M(un, x, t), M(un, un+, t), M(x, Tx, t), M(un, Tx, t), M(x, un+, t)

})
,

which on taking limit as n → ∞ gives

M(z, Tx, rt) ≥ η
(
min

{
M(z, x, t), M(x, Tx, t), M(z, Tx, t), M(x, z, t)

})

≥ η
(
min

{
M(z, x, t), M(x, Tx, t), M(z, Tx, t)

})

≥ η
(
min

{
M(z, x, t), M(x, Tx, t),

(
M(z, x, t) ∧ M(x, Tx, t)

)})

≥ η
(
min

{
M(z, x, t), M(x, Tx, t)

})
.

Hence

M(z, Tx, rt) ≥ η
(
min

{
M(z, x, t), M(x, Tx, t)

})
. ()

Now, we show that z ∈ Tz. For this, we consider the following cases:
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(a) Take  ≤ r < 
 . Assume on the contrary that z /∈ Tz. Let a ∈ Tz. Then a 
= z and it

follows that

M(a, z, t) ≥ M
(
a, Tz, ( – r)t

) ∧ M(z, Tz, rt)

≥ M
(
a, a, ( – r)t

) ∧ M(z, Tz, rt)

= M(z, Tz, rt).

Using () we have

M(z, Ta, rt) ≥ η
(
min

{
M(z, a, t), M(a, Ta, t)

})
. ()

Also,

M(z, Tz, t) ≥ M
(
z, Tz,ϕ(r)t

) ≥ M
(
z, a,ϕ(r)t

)
.

Thus, we have

HM(Tz, Ta, rt) ≥ η
(
min

{
M(z, a, t), M(z, Tz, t), M(a, Ta, t), M(z, Ta, t), M(a, Tz, t)

})

≥ η
(
min

{
M(z, a, t), M(a, Ta, t), M(z, Ta, t)

})

≥ η
(
min

{
M(z, a, t), M(a, Ta, t),

(
M(z, a, t) ∧ M(a, Ta, t)

)})

≥ η
(
min

{
M(z, a, t), M(a, Ta, t)

})
.

Now M(a, Ta, t) ≥ HM(Tz, Ta, t) implies that

HM(Tz, Ta, rt) ≥ η
(
M(z, a, t)

)
> M(z, a, t).

Hence

M(z, Ta, rt) > M(z, a, t).

Since η(t) > t for t ∈ (, ), so for a 
= z we have

M(z, Tz, rt) ≥ M(z, a, rt) ≥ M(z, Ta, rt) ∧ M(Ta, a, rt)

≥ M(z, Ta, rt) ∧ HM(Ta, Tz, rt)

> M(z, a, t) ∧ η
(
min

{
M(z, a, t), M(a, Ta, t)

})

≥ M(z, a, t) ∧ η
(
M(z, a, t)

)

> M(z, a, t) ∧ M(z, a, t)

= M(z, a, t) ≥ M(z, Tz, rt).

That is, M(z, Tz, rt) > M(z, Tz, rt), a contradiction. Consequently z ∈ Tz.
(b) Take 

 ≤ r < . We claim that

HM(Tx, Tz, rt)

≥ η
(
min

{
M(x, z, t), M(x, Tx, t), M(z, Tz, t), M(x, Tz, t), M(z, Tx, t)

})
()
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for all x. If x = z, then the above inequality is immediate. If x 
= z, then we have

M(x, Tx, t) ≥ M
(
x, z, ( – r)t

) ∧ M(z, Tx, rt)

≥ M
(
x, z,ϕ(r)t

) ∧ M(z, Tx, rt).

Using () we have

M(x, Tx, t) ≥ M
(
x, z,ϕ(r)t

) ∧ η
(
min

{
M(z, x, t), M(x, Tx, t)

})

≥ M
(
x, z,ϕ(r)t

) ∧ η
(
min

{
M(z, x, t), M(x, Tx, t)

})
.

If min{M(z, x, t), M(x, Tx, t)} = M(z, x, t), then

M(x, Tx, t) ≥ M
(
x, z,ϕ(r)t

) ∧ η
(
min

{
M(z, x, t), M(x, Tx, t)

})

≥ M
(
x, z,ϕ(r)t

) ∧ η
(
M(z, x, t)

)

≥ M
(
x, z,ϕ(r)t

) ∧ M(z, x, t) = M
(
x, z,ϕ(r)t

)
.

If min{M(z, x, t), M(x, Tx, t)} = M(x, Tx, t), then

M(x, Tx, t) ≥ M
(
x, z,ϕ(r)t

) ∧ η
(
min

{
M(z, x, t), M(x, Tx, t)

})

≥ M
(
x, z,ϕ(r)t

) ∧ η
(
M(x, Tx, t)

)
.

If M(x, z,ϕ(r)t) ∧ η(M(x, Tx, t)) = M(x, z,ϕ(r)t), then we obtain

M(x, Tx, t) ≥ M
(
x, z,ϕ(r)t

)
.

If not, then M(x, z,ϕ(r)t) ∧ η(M(x, Tx, t)) = η(M(x, Tx, t)) gives

M(x, Tx, t) ≥ η
(
M(x, Tx, t)

)
> M(x, Tx, t),

a contradiction. Hence

M(x, Tx, t) ≥ M
(
x, z,ϕ(r)t

)
.

Thus the claim follows. Using x = un in () we obtain that

M(z, Tz, t)

= lim
n→∞ M(un+,Tz, t) ≥ lim

n→∞ HM(Tun, Tz, t)

≥ lim
n→∞η

(
min

{
M(un, z, t), M(un, Tun, t), M(z, Tz, t), M(un, Tz, t), M(z, Tun, t)

})

≥ lim
n→∞η

(
min

{
M(un, z, t), M(un, un+, t), M(z, Tz, t), M(un, Tz, t), M(z, Tun, t)

})

≥ η
(
M(z, Tz, t)

)
.

Since η(t) ≥ t. Hence η(M(z, Tz, t)) = M(z, Tz, t) shows that M(z, Tz, t) = . Since Tz is com-
pact, consequently z ∈ Tz. �
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Problem . Does Theorem . hold for an arbitrary continuous t-norm?

Now we present an example of fuzzy metric space that satisfies all the conditions of
Theorem ..

Example . Let X = {, , } and d : X × X → R be a metric defined by

d(, ) = d(, ) = , d(, ) = d(, ) = .,

d(, ) = d(, ) = , d(, ) = d(, ) = d(, ) = .

The fuzzy metric M on X is given by

M(x, y, t) =
t

t + d(x, y)
.

Define T : X × X → CB(X) as

T(x) =

{
{} if x = ,
{, } if x 
= .

Let r =
√


 and η = t 

 ∈ �. Note that for all x, y ∈ X, except at x =  = y,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)
()

holds true. It is sufficient to check the validity of

HM(Tx, Ty, rt) ≥ NM
T (x, y) ()

for all x, y for which () holds true. For this, we consider the following cases:
(i) If x = y = , then we have

HM

(
T, T,

√



t
)

= .

So () holds in this case.
(ii) If x = , y =  or x = , y = , then

NM
T (x, y) = η

(
min

{
M(, , t), M(, T, t), M(, T, t), M(, T, t), M(, T, t)

})

= η
(
min

{
M(, , t), M

(
, {, }, t

)
, M

(
, {}, t

)
, M

(
, {}, t

)
, M

(
, {, }, t

)})

= η

(
min

{
t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )

})

= η

(
min

{
t

t + 
, ,

t

t + 
, ,

t

t + .

})

= η

(
t

t + 

)
,
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HM

(
T, T,




t
)

= min

{
inf

x∈T
M

(
x, T,

√



t
)

, inf
y∈T

M
(

T, T,
√




t
)}

= min

{
inf

x∈T
M

(
x, {},

√



t
)

, M
(

{, }, ,
√




t
)}

= min

{
inf

{
M

(
, ,

√



t
)

, M
(

, ,
√




t
)}

, M
(

, ,
√




t
)}

= min

{
inf

{
,


 t


 t + 

}
, 

}
=


 t


 t + 

.

Note that


 t


 t + 

≥
(

t

t + 

) 


>
t

t + 
.

(iii) If x = , y =  or x = , y = , then HM(T, T,
√


 t) =  and NM

T (x, y) = η( t

t+ ).
(iv) If x = , y =  or x = , y = , then

NM
T (x, y) = η

(
min

{
M(, , t), M(, T, t), M(, T, t), M(, T, t), M(, T, t)

})

= η
(
min

{
M(, , t), M

(
, {}, t

)
, M

(
, {, }, t

)
, M

(
, {, }, t

)
, M

(
, {}, t

)})

= η

(
min

{
t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )
,

t

t + d(, )

})

= η

(
min

{
t

t + .
,

t

t + 
, ,

t

t + .
,

t

t + 

})

= η

(
t

t + 

)
,

HM

(
T, T,

√



t
)

= min

{
inf

x∈T
M

(
x, T,

√



t
)

, inf
y∈T

M
(

T, y,
√




t
)}

= min

{
inf

x∈T
M

(
x, {, },

√



t
)

, inf
y∈T

M
(

{}, y,
√




t
)}

= min

{
M

(
, {, },

√



t
)

, inf
y∈T

{
M

(
, ,

√



t
)

, M
(

, ,
√




t
)}}

= min

{
, inf

{
,


 t


 t + 

}}
=


 t


 t + 

.

Note that


 t


 t + 

≥
(

t

t + 

) 


>
t

t + 
.
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Hence, for all x, y ∈ X,

HM

(
Tx, Ty,




t
)

≥ η
(
NM

T (x, y)
)

> NM
T (x, y).

Moreover, for any s-increasing sequence {tn},
∏∞

n= M(x, y, tn) is convergent (see [], Ex-
amples . and .), that is, (c-) is satisfied. Since only convergent sequences in X are
constant sequences {un}, where un = c and c ∈ X, therefore (c-) holds true. Thus all the
conditions of Theorem . are satisfied.

Remark . If we consider the standard fuzzy metric Md(x, y, t) = t
t+d(x,y) in the example

above, then all the conditions in Theorem . are satisfied except (c-). Indeed, for any
s-increasing sequence {tn} with tn = n,

∏∞
n= Md(x, y, tn) converges to  (see [], Exam-

ple .).

Remark . Let (X, M,∧) be a complete fuzzy metric space and T : X →K(X) be a mul-
tivalued mapping. We modify condition (c-) in Theorem . as follows:

(c-) For each ε >  and an s-increasing sequence {tn}, there exist n ∈N, u ∈ X and
u ∈ Tu such that

∏∞
n= M(u, u, tn) ≥  – ε.

If we replace condition (c-) with (c-) in Theorem . and start the proof of the theo-
rem with initial points u ∈ X and u ∈ Tu for which (c-) holds, then the conclusion of
Theorem . remains the same.

Example . Let X = N and P : X × X × (,∞) → (, ] be a fuzzy metric defined by

P(x, y, t) =

{
 if x = y,

 if x 
= y.

Note that (X, P,∧) is a complete fuzzy metric space which induces the discrete topology
on X and there does not exist any metric d on X satisfying

P(x, y, t) =
t

t + d(x, y)
.

Moreover, for an s-increasing sequence {tn = n},
∏∞

n= P(x, y, tn) converge to  (see [],
Examples . and .). Hence P does not satisfy condition (c-) of Theorem .. Define
T : X → CB(X) as

T(x) =

{
{} if x = ,
{, } if x 
= .

If u =  and u =  ∈ Tu, then for any s-increasing sequence {tn},
∏∞

n= M(u, u, tn) con-
verges to . That is, P satisfies condition (c-) in Remark .. Note that for any r ∈ [, )
and x 
= y,

P(x, Tx, t) ≥ 


= P
(
x, y,ϕ(r)t

)

is satisfied, whereas

HP(Tx, Ty, rt) ≥ 


= NP
T (x, y)
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holds true for all x, y in X. Moreover, conditions (c-) and (c-) are satisfied. Hence all the
conditions of the variant of Theorem . are satisfied in the setup of (X, P,∧).

Corollary . Let (X, M,∧) be a complete fuzzy metric space and T : X →K(X) be a mul-
tivalued mapping. Suppose that there exists r in [, ) such that for each x, y ∈ X and η ∈ �,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ η
(
M(x, y, t)

)
. ()

Then there exists a point z ∈ X such that z ∈ Tz provided that conditions (c-) and (c-) in
Theorem . hold.

Corollary . Let (X, M,∧) be a complete fuzzy metric space and T : X →K(X) be a mul-
tivalued mapping. Suppose that there exists r in [, ) such that for each x, y ∈ X and η ∈ �,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ η
(
min

{
M(x, y, t), M(x, Tx, t), M(y, Ty, t)

})
. ()

Then there exists a point z ∈ X such that z ∈ Tz provided that conditions (c-) and (c-) in
Theorem . hold.

Corollary . Let (X, M,∧) be a complete fuzzy metric space and T : X → K(X) be a
multivalued mapping. Suppose that there exists r in [, ) such that for each x, y ∈ X and
η ∈ �,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ η
(
min

{
M(x, y, t), M(x, Tx, t), M(y, Tx, t)

})
.

Then there exists a point z ∈ X such that z ∈ Tz provided that conditions (c-) and (c-) in
Theorem . hold.

Corollary . Let (X, M,∧) be a complete fuzzy metric space and T : X →K(X) be a mul-
tivalued mapping. Suppose that there exists r in [, ) such that for each x, y ∈ X and η ∈ �,

M(x, Tx, t) ≥ M
(
x, y,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ η
({

αM(x, y, t) + αM(x, Tx, t) + αM(y, Ty, t)
})

,
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where
∑

i= αi =  and η ∈ �. Then there exists a point z ∈ X such that z ∈ Tz provided that
conditions (c-) and (c-) in Theorem . hold.

Now, in the next theorem, we prove the existence of coincidence and common fixed
points of a hybrid pair of single and multivalued mappings.

Theorem . Let (X, M,∧) be a complete fuzzy metric space, T : X → K(X) and g be a
self-mapping on X such that T(X) ⊆ g(X). Suppose that there exists r in [, ) such that for
each x, y ∈ X, t >  and η ∈ �,

M(gx, Tx, t) ≥ M
(
gx, gy,ϕ(r)t

)

implies

HM(Tx, Ty, rt) ≥ η
(
min

{
M(gx, gy, t), M(gx, Tx, t), M(gy, Tx, t)

})
.

Then C(g, T) 
= φ provided that the following conditions hold:
(c-) For each ε >  and an s-increasing sequence {tn}, there exists n in N such that

∏∞
n≥n

M(gx, gy, tn) ≥  – ε.
(c-) If a sequence {gun} converges to gz in X , then M(gun, gx, t) ≤ M(gz, gx, t) for all

z 
= x.

Further, if one of the following conditions holds:
(a) T and g are w-compatible, limn→∞ gnx = y for some x ∈ C(g, T), y ∈ X and g is

continuous at y.
(b) g is T-weakly commuting for some x ∈ C(g, T) and gx is a fixed point of g , that is,

gx = gx.
(c) g is continuous at x for some x ∈ C(g, T) and for some y ∈ X , limn→∞ gny = x.
Then F(g, T) 
= φ.

Proof By Lemma ., there exists E ⊆ X such that g : X → X is one-to-one and g(E) = g(X).
We define A : g(E) → K(X) by

A(gx) = T(x) for gx ∈ g(E).

As g is one-to-one on E, so A is well defined. Further

M
(
gx, A(gx), t

)
= M(gx, Tx, t) ≥ M

(
gx, gy,ϕ(r)t

)

implies

HM
(
A(gx), A(gy), rt

)
= HM(Tx, Ty, rt)

≥ η
(
min

{
M(gx, gy, t), M

(
gx, A(gx), t

)
, M

(
gy, A(gx), t

)})
.

Thus, A satisfies () and all the conditions of Corollary .. It follows that A has a fixed
point u ∈ g(E). Now we show that T and g have a coincidence point. Since A has a fixed
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point u in g(E) and T(X) ⊆ g(X), so there exists v ∈ X such that gv = u. Hence

u = gv ∈ A(u) = A(gv) = T(v).

That is, v ∈ X is a coincidence point of T and g . Hence C(g, T) is nonempty. If (a) holds,
then, for some x ∈ C(g, T), limn→∞ gnx = y, where y ∈ X. Since g is continuous at y, so y is
a fixed point of g . As T and g are w-compatible, so gnx ∈ C(g, T) for all n ≥ . That is, for
all n ≥ , gnx ∈ T(gn–x). Now

M(gy, Ty, t)

≥ M
(

gy, gnx,
t


)
∧ M

(
gnx, Ty,

t


)

≥ M
(

gy, gnx,
t


)
∧ HM

(
T

(
gn–x

)
, Ty,

t


)

≥ M
(

gy, gnx,
t


)
∧ HM

(
T

(
gn–x

)
, Ty, r

t


)

≥ M
(

gy, gnx,
t


)

∧ η

({
M

(
gnx, gy,

t


)
, M

(
gnx, T

(
gn–x

)
,

t


)
, M

(
gy, T

(
gn–x

)
,

t


)})

≥ M
(

gy, gnx,
t


)
∧ η

({
M

(
gnx, gy,

t


)
, M

(
gnx, gnx,

t


)
, M

(
gy, gnx,

t


)})

≥ M
(

gy, gnx,
t


)
∧ η

({
M

(
gnx, gy,

t


)
, M

(
gy, gnx,

t


)})

≥ M
(

gy, gnx,
t


)
∧ η

({
M

(
gnx, gy,

t


)})
.

On taking limit as n → ∞, we get that

M(gy, Ty, t) ≥ M
(

y, y,
t


)
∧ η

(
M

(
y, y,

t


))

≥  ∧ η

(
M

(
y, Ty,

t


))
≥ M

(
y, y,

t


)
= .

Hence gy ∈ T(y). Consequently, y = gy ∈ Ty and y is a common fixed point of T and g . If (b)
holds, that is, for some x ∈ C(g, T), g is T-commuting and gx = gx, then gx = gx ∈ T(gx).
Hence, gx is a common fixed point of T and g . If (c) holds, then, by the continuity of g at
x, we obtain that x = gx ∈ T(x). Hence, x is a common fixed point of T and g . �

Corollary . Let (X, M,∧) be a complete fuzzy metric space, T : X → K(X) and g be a
self-mapping on X such that T(X) ⊆ g(X). Suppose that there exists r in [, ) such that for
each x, y ∈ X, t >  and η ∈ �,

M(gx, Tx, t) ≥ M
(
gx, gy,ϕ(r)t

)
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implies

HM(Tx, Ty, rt) ≥ η
(
M(gx, gy, t)

)
.

Then T and g have a coincidence point provided that conditions (c-) and (c-) in Theo-
rem . are satisfied. Moreover, F and g have a common fixed point if conditions (a)-(c) in
Theorem . hold.

Now we prove the following corollary for a pair of single-valued self-mappings.

Corollary . Let (X, M,∧) be a complete fuzzy metric space, T , g : X → X such that
T(X) ⊆ g(X). Suppose that there exists r in [, ) such that for each x, y ∈ X, t >  and
η ∈ �,

M(gx, Tx, t) ≥ M
(
gx, gy,ϕ(r)t

)

implies

M(Tx, Ty, rt) ≥ η
(
M(gx, gy, t)

)
.

Then T and g have a coincidence point provided that conditions (c-) and (c-) in Theo-
rem . hold. Further, if T and g commute at x for x ∈ C(g, T), then F and g have a unique
common fixed point.

Proof By Corollary ., C(g, T) is nonempty. Let x ∈ C(g, T). Now, we claim that gx =
Tgx. To prove the result, we need to show that gx = gx. If gx 
= gx, then M(gx, Tx, t) =  ≥
M(gx, gy,ϕ(r)t). Note that

M
(
gx, gx, t

)
> M

(
gx, gx, rt

)
= M(Tx, Tgx, rt)

≥ η
(
M

(
gx, gx, t

))
> M

(
gx, gx, t

)
,

a contradiction. Hence gx = gx = Tgx implies that gx ∈ F(g, T). To prove the uniqueness,
assume on the contrary that there exist u and w such that u = gu = Tu, w = gw = Tw and
u 
= w. Since M(gu, Tu, t) =  ≥ M(gu, gw,ϕ(r)t), by a given assumption we have

M(gu, gw, t) = M(Tu, Tw, t) ≥ M(Tu, Tw, rt)

≥ η
(
M(gu, gw, t)

)
> M(gu, gw, t),

a contradiction. Hence F(g, T) is singleton. �

3 Application in dynamic programming
Now we present an application of our result in solving functional equations arising in
dynamic programming.

Let U and V be Banach spaces, W ⊆ U be a state space and D ⊆ V be a decision space.
A set of all feasible states or situations is the state space and a decision space is the re-
sultant network formed by the nodes of feasible states and all the feasible decisions. It
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is desirable to find an optimal decision in the given state space using dynamic program-
ming. Dynamic programming provides useful tools for mathematical optimization and
computer programming as well. In particular, the problem of dynamic programming re-
lated to multistage process reduces to the problem of solving the functional equation

⎧
⎪⎨

⎪⎩

p(x) = supy∈D{g(x, y) + 	(x, y, p(τ (x, y)))} for x ∈ W ,
q(x) = supy∈D{h(x, y) + 
(x, y, q(τ (x, y)))} for x ∈ W ,

where τ : W × D → W , g, h : W × D →R and 	,
 : W × D ×R →R.
()

However, for detailed background of the problem, we refer to [–].
Now, we study the existence and uniqueness of a bounded solution of the functional

equation. For this we proceed as follows.
Let B(W ) be the set of all bounded real-valued functions on W . For h, k ∈ B(W ), define

M(h, k, t) = e– d(h,k)
t ,

where

d(h, k) = sup
x∈W

∣∣h(x) – k(x)
∣∣ = ‖h – k‖.

Then (B(W ), M, ·) is a complete fuzzy metric space. For every (x, y) ∈ W × D, h, k ∈ B(W )
and x ∈ W , define

Th(x) = sup
y∈D

{
g(x, y) + 	

(
x, y, h

(
τ (x, y)

))}
,

Sh(x) = sup
y∈D

{
h(x, y) + 


(
x, y, h

(
τ (x, y)

))}
.

Suppose that the following conditions hold:
(D-) 	, 
 , g and h are bounded.
(D-) There exist r ∈ [, ) and η ∈ � such that for every (x, y) ∈ W × D, h, k ∈ B(W )

and x ∈ W , we have

e–( d(	(x,y,h(τ (x,y))),	(x,y,k(τ (x,y))))
rt ) ≥ η

(
e–( d(Sh(x),Sk(x))

t )).

(D-) For any h ∈ B(W ) and x ∈ W , there exists k ∈ B(W ) such that Th(x) = Sk(x).
(D-) There exists h ∈ B(W ) such that Th(x) = Sh(x) implies that STh(x) = TSh(x).

Theorem . If conditions (D-)-(D-) are satisfied, then the system of functional equa-
tions () has a unique bounded and common solution in B(W ).

Proof Note that T is a self-map on B(W ) and (B(W ), M, ·) is a complete fuzzy metric space.
If h, k ∈ B(W ), then for every real number α and x ∈ W ,there exist y, y ∈ D such that

T
(
h(x)

)
< g(x, y) + 	

(
x, y, h(τ)

)
+ α and ()

T
(
k(x)

)
< g(x, y) + 	

(
x, y, k(τ)

)
+ α, ()

where τ = τ (x, y) and τ = τ (x, y).
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Then we have

T
(
h(x)

) ≥ g(x, y) + 	
(
x, y, h(τ)

)
, ()

T
(
k(x)

) ≥ g(x, y) + 	
(
x, y, k(τ)

)
. ()

Thus, from () and (), we obtain

T
(
h(x)

)
– T

(
k(x)

)
< 	

(
x, y, h(τ)

)
– 	

(
x, y, k(τ)

)
+ α

≤ ∣∣	
(
x, y, h(τ)

)
– 	

(
x, y, k(τ)

)∣∣ + α.

Also, from () and (), we have

T
(
k(x)

)
– T

(
h(x)

)
< 	

(
x, y, k(τ)

)
– 	

(
x, y, h(τ)

)
+ α

≤ ∣∣	
(
x, y, k(τ)

)
– 	

(
x, y, h(τ)

)∣∣ + α.

Since α >  was taken as an arbitrary number, we obtain

d
(
T

(
h(x)

)
, T

(
k(x)

))
=

∣∣T
(
h(x)

)
– T

(
k(x)

)∣∣

≤ ∣∣	
(
x, y, k(τ)

)
– 	

(
x, y, h(τ)

)∣∣.

Thus

e– d(T(h(x)),T(k(x)))
rt ≥ e– |	(x,y,k(τ))–	(x,y,h(τ))|

rt

≥ e–( d(	(x,y,k(τ)),	(x,y,h(τ)))
rt )

≥ η
(
e– d(Sh(x),Sk(x))

t
)
.

Then it follows that

M
(
T

(
h(x)

)
, T

(
k(x)

)
, rt

) ≥ η
(
M

(
Sh(x), Sk(x), t

))
.

Therefore all the conditions of Corollary . are satisfied for mappings T and S. Hence
the system of functional equations () has a unique bounded and common solution. �
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