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Abstract

In this paper, we present a new iterative algorithm with errors to solve the problems
of finding zeros of the sum of finitely many m-accretive operators and finitely many
a-inversely strongly accretive operators in a real smooth and uniformly convex
Banach space. Strong convergence theorems are established, which extend the
corresponding works given by some authors. Moreover, the relationship among the
zero of the sum of m-accretive operator and a-inversely strongly accretive operator,
the solution of one kind variational inequality, and the solution of the capillarity
equation is investigated.
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1 Introduction and preliminaries
Let E be a real Banach space with norm || - || and let E* denote the dual space of E. We use
‘-’ and ‘—’ to denote strong and weak convergence either in E or in E*, respectively. We
denote the value of f € E* at x € E by (x,f).

A Banach space E is said to be uniformly convex if, for each ¢ € (0, 2], there exists § > 0
such that

xX+y
%l = llyll =1, le=ylze = |—=]=<1-6

A Banach space E is said to be smooth if

t —
lim %+ eyl = llxll
t—0 t
exists for each x,y e {z€ E: ||z|| =1}.
In addition, we define a function pf : [0, +00) — [0, +00) called the modulus of smooth-

ness of E as follows:

1
PE(t) = sup{ E(le +yl+llx=yl)-1:xy€E |xll =1, [yl < t}.
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It is well known that E is uniformly smooth if and only if "ET(” — 0,ast—> 0.Letg>1
be a real number. A Banach space E is said to be g-uniformly smooth if there exists a
positive constant C such that pg(¢) < Ct9. It is obvious that g-uniformly smooth Banach
space must be uniformly smooth.

The normalized duality mapping J : E — 2" is defined by

o= {f €E s nf) = lal = IfIP}, x<E.

It is well known that J is single-valued and norm-to-norm uniformly continuous on each
bounded subsets of E if E is a real smooth and uniformly convex Banach space; see [1].
Moreover, J(cx) = cJx, for all x € E and ¢ € R'. In what follows, we still denote by J the
single-valued normalized duality mapping. If, E is reduced to the Hilbert space H, then
J =1 is the identity mapping. The normalized duality mapping / is said to be weakly se-
quentially continuous if {x,} is a sequence in E which converges weakly to x it follows that
{Jx,} converges in weak™ to Jx. J is said to be weakly sequentially continuous at zero if {x,}
is a sequence in E which converges weakly to 0 it follows that {Jx,} converges in weak*
to 0.

Let C be a nonempty, closed, and convex subset of E and let Q be a mapping of E onto C.
Then Q is said to be sunny [2] if Q(Q(x) + t(x — Q(x))) = Q(x), for all x € E and ¢ > 0.

A mapping Q of E into E is said to be a retraction [2] if Q*> = Q. If a mapping Q is a
retraction, then Q(z) = z for every z € R(Q), where R(Q) is the range of Q.

For a mapping U : C — C, we use Fix(U) to denote the fixed point set of it; that is,
Fix(U) :={x € C: Ux = x}.

For an operator A : D(A) C E — 2F, we use A710 to denote the set of zeros of it; that is,
A710:= {x € D(A) : Ax = 0}.

Let T: C — E be a mapping. Then T is said to be

(1) nonexpansive if

|Tx - Ty|| < |lx—yl, forVx,yeC;
(2) k-Lipschitz if there exists k > 0 such that
|Tx — Ty|| < kllx—y|, forVx,yeC.
In particular, if 0 < k <1, then T is called a contraction and if k = 1, then T reduces
to a nonexpansive mapping;
(3) accretive if for all x,y € C, there exists j(x — y) € J(x — y) such that
<Tx - Ty, jlx— y)) >0,
where J is the normalized duality mapping;
(4) a-inversely strongly accretive if for all %,y € C, there exists j(x — y) € J(x — y) such
that

(Tx - T,j(x ~ ) = @l Tx - Ty|1%,

for some « > 0;



Wei and Duan Fixed Point Theory and Applications (2015) 2015:25 Page 3 0of 19

(5) m-accretive if T is accretive and R(I + AT) = E, for VA > 0;
(6) strongly positive (see [3]) if E is a real smooth Banach space and there exists 7 > 0
such that

(T, Jx) > 7 |x||?, forVx e C.
In this case,

’

lal - bT| = sup |((al - bT)x,] (x))
llxll <1

where [ is the identity mapping and 4 € [0,1], b € [-1,1].

We denote by /4 (for r > 0) the resolvent of the accretive operator 4; that is, /& := (I +
rA)7L. It is well known that J# is nonexpansive and Fix(J4) = A™0.

A subset C of E is said to be a sunny nonexpansive retract of E if there exists a sunny
nonexpansive retraction of E onto C.

Many practical problems can be reduced to finding zeros of the sum of two accretive op-
erators; that is, 0 € (A + B)x. Forward-backward splitting algorithms, which have recently
received much attention to many mathematicians, were proposed by Lions and Mercier
[4], by Passty [5], and, in a dual form for convex programming, by Han and Lou [6].

The classical forward-backward splitting algorithm is given in the following way:

Knsl = (1 + rnB)il(I - rnA)xnr n>0. (1)

Based on iterative algorithm (1), much work has been done for finding x € H such that
x € (A +B)™0, where A and B are a-inversely strongly accretive operator and m-accretive
operator defined in the Hilbert space H, respectively. However, most of the existing work
are undertaken in the frame of Hilbert spaces; see [4—-10], etc.

Recently, Qin et al., presented the following iterative algorithm in the frame of g-uni-
formly smooth Banach spaces E in [11]:

x0 € C,  xpy1=0uf(x,) + B(I + rnB)_l[(l— reA)x, + e,,] +Yufw» n>0, (2)

where {e,} is the error sequence, f is a contraction, A and B are a-inversely strongly accre-
tive operator and m-accretive operator, respectively. If (4 + B) 10 # @, they proved that {x,,}
converges strongly to x = Q4. p)-1of (x), where Q4. g)-1¢ is the unique sunny nonexpansive
retraction of E onto (A + B)~'0, under some conditions.

On the other hand, there are some excellent work done on approximating fixed points of
nonexpansive mappings. For example, in 2009, Yao et al. presented the following iterative
algorithm in the frame of Hilbert space in [12]:

X0 € C,
Yn = PC[(I - O‘n)xn], (3)
Xntl = (1 - ,Bn)xn + ,Bn Tyn; n>0,

where Pc is the metric projection from H onto C and T : C — C is a nonexpansive map-

ping with Fix(T) # @. They proved that {x,} constructed by (3) converges strongly to a
fixed point of T'.
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In 2006, Marino and Xu, presented the following iterative algorithm in the frame of
Hilbert spaces in [13]:

X0 € C’ Xn+l = anyf(xn) + (1 - anA)Txm n>0, (4‘)

where f is a contraction, A is a strongly positive linear bounded operator, and T is nonex-
pansive. If Fix(T) # 0, they proved that {x,} converges strongly to p € Fix(T'), which solves
the variational inequality ((yf — A)p,z—p) <0, for Vz € Fix(T), under some conditions.

Our paper is organized in the following way: in Section 2, inspired by the work in [11-
13], we shall present the following iterative algorithm with errors in a real smooth and
uniformly convex Banach space:

x9 € C,

In = Qcl(l — ) (xy + €4)],

2 = (L= B + Bulaoyn + X0y @il O = ruiBiyw)),
Xns1 = Yuff @) + U = yuT)ze, n>0,

(A)

where C is a nonempty, closed, and convex sunny nonexpansive retract of E, Qc is the
sunny nonexpansive retraction of E onto C, {e,} C E is the error sequence, {Ai}ﬁ\:[ L isafi-
nite family of m-accretive operators and {B;}Y, is a finite family of a-inversely strongly
accretive operators. T : E — E is a strongly positive linear bounded operator with coef-
ficient ¥ and f : E — E is a contraction with coefficient k € (0,1). ]f;fi = (I + ryA)7Y for
i=12,...,N, szo an=1,0<a,<1,form=0,1,2,...,N. More detail of iterative al-
gorithm (A) will be presented in Section 2. Then {x,} is proved to converge strongly to
Po € ﬂﬁ\il(A,- + B;)™10, which is also a solution of one kind variational inequality.

Our main contributions in Section 2 are:

(i) the discussion is undertaken in the frame of real smooth and uniformly convex
Banach space, which is more general than that in Hilbert space or in g-uniformly
smooth Banach space;

(ii) the assumption that ‘the normalized duality mapping J is weakly sequentially
continuous’ in most of the existing related work is weaken to J is weakly
sequentially continuous at zero’;

(ili) a new path convergence theorem (Lemma 8) is obtained which is a direct extension
of the corresponding result in [13] from Hilbert space to real smooth and uniformly
convex Banach space;

(iv) the connection between zeros of the sum of m-accretive operators and «-inversely
strongly accretive operators and the solution of one kind variational inequalities is
being set up.

In Section 3, one kind capillarity equation is discussed, from which we can see the con-
nection among the unique solution of this equation, the unique solution of one kind vari-
ational inequality and the iterative algorithm presented in Section 2.

Next, we list some results we need in sequel:

Lemma 1 (see [1]) Let E be a Banach space and f : E — E be a contraction. Then f has a
unique fixed point u € E.
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Lemma 2 (see [14]) Let E be a real uniformly convex Banach space, C be a nonempty,
closed, and convex subset of E and T : C — E be a nonexpansive mapping such that
Fix(T) # @, then I — T is demiclosed at zero.

Lemma 3 (see [15]) In a real Banach space E, the following inequality holds:
e+ 1% < 1211 +2(,j(x + 9)), w9 €E,
where j(x + y) € J(x + y).
Lemma 4 (see [16]) Let {a,} and {c,} be two sequences of nonnegative real numbers satis-
Jying
anit = (1= tp)an + by + ¢y, V20,

where {t,} C (0,1) and {b,} is a number sequence. Assume that Yy .. t, = +00,
limsup,,_, o IZ—Z <0, and Ziozo ¢, < +00. Then lim,_, o a,, = 0.

Lemma 5 (see [17]) Let E be a Banach space and let A be an m-accretive operator. For
A>0,u>0,andx € E, one has

Jx :/,L(%x + (1 - %)L\x),

where J, = (I + M) and ], = (I + pA)™.

Lemma 6 (see [18]) Let E be a real Banach space and let C be a nonempty, closed, and
convex subset of E. Suppose A : C — E is a single-valued operator and B : E — 2F is

m-accretive. Then
Fix(([ +rB) (I - rA)) =(A+B)0, forVr>o0.

Lemma?7 (see [19]) Assume T is a strongly positive bounded operator with coefficienty > 0
on a real smooth Banach space E and 0 < p < | T||™}. Then |I - pT| <1-py.

2 Strong convergence theorems

Lemma 8 Let E be a real smooth and uniformly convex Banach space and C be a
nonempty, closed, and convex sunny nonexpansive retract of E, and let Qc be the sunny
nonexpansive retraction of E onto C. Let f : E — E be a fixed contractive mapping with
coefficient k € (0,1), T : E — E be a strongly positive linear bounded operator with coef-
ficient y and U : C — C be a nonexpansive mapping. Suppose that the duality mapping
J : E — E* is weakly sequentially continuous at zero, 0 < n < % and Fix(U) # . If for each
t€(0,1),define T, : E — E by

Tx = tnf (x) + (I — tT)UQcx, (5)

then Ty has a fixed point x;, for each 0 < t < | T||™}, which is convergent strongly to the fixed
point of U, as t — 0. That is, lim;_.o x; = po € Fix(U). Moreover, p, satisfies the following
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variational inequality: for Vz € Fix(U),

(T = nf)po,] (po — 2)) < 0. (6)

Proof Step 1. T, is a contraction, for 0 < £ < || T|| L.
In fact, noticing Lemma 7, we have

I Tex = Toyll < tn[f () =f )| + | (I = £T)(UQcx — UQcy)
< kenllx =yl + (1 = £7)llx - yll
= [1- 2@ ~kn)]lx -yl
which implies that T} is a contraction since 0 < 1 < 27—](
Then Lemma 1 implies that T; has a unique fixed point, denoted by x;, which uniquely
solves the fixed point equation x; = tnf(x;) + (I — tT)UQcx;.

Step 2. {x;} is bounded, for t € (0, | T|| ).
For p € Fix(U) C C, we have p = UQcp, then

= pll = | (I = ¢T)(UQcx: - p) + t(nf () — Tp) |
< (=)l —pl +t|nf () - Tp |
= (L= P)lxe - pll + £ n(f @) —f ) + (f (0) - ) |
< (1 -t9)llx - pll + t(knllx: = pll + | nf (o) - Tp]))
= [1- 2 - kn)]llx: - pll + [ nf () - T |-

This ensures that

Inf (p) - Tpl

lx; — pl| < ———.
' Y —kn

Thus {x,} is bounded, which implies that both {f(x;)} and {TUQcx;} are bounded.
Step 3. %, — UQcx; — 0,as t — 0.
Noticing the result of Step 2, we have ||x; — UQcx:|| = t|Inf (x;) — TUQcx:|| — 0,ast — 0.
Step 4. (T = nf)x — (T = nf)y,J(x - y)) = (7 — kn)|lx - y|*, for ¥x,y € E.

In fact,
(T =nf)x=(T = nf)y.J (x - 9))
=(Tx - Ty, ] (x - y)) — n{f (¥) = f ), ] (x - y))
> 7l = yI* = knlle = yII* = (7 — kn) lx — yII*.
Step 5. If the variational inequality (6) has a solution, then the solution must be unique.

Suppose both u, € Fix(U) and v € Fix(U) are the solutions of the variational inequality
(6). Then we have

(T = nf)vo,J(vo — o)) <0 (7)
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and
(T = nf)uo, ] (uo — vo)) < 0. 8)
Adding up (7) and (8), we obtain
(T = nf)uo — (T = nf)vo, J (uo — v)) < 0.

In view of the result of Step 4, we have uy = vy.

Step 6. x; — po € Fix(U), as t — 0, which satisfies the variational inequality (6).

For Vz € Fix(U), x; —z = t(nf (x;) — Tz) + (I — tT)(UQcx; — z). Thus Lemma 3 implies that
llace — zl|* < [l = ¢T|* | UQcx: — UQcz|* + 2t{nf (x:) — Tz, J (%, — 2))

<@ -Y)llxe —zl* + 2t{nf (%) — Tz, ] (% — 2)).

Then
lle — 21> < i(nf(xt) - Tz,] (%, 2))
== [l ) /@ 52~ 2) + /@) - T T =)
< %[nkllx:—ZIIZ + (@) - To T~ 2)].

Therefore, for Vz € Fix(U), we have

(rzf (2) — Tz, ] (% — 2)). 9)

2
ll: — zll S

Since {x;} is bounded as t — 0%, we can choose {t,} C (0,1) such that £, — 0* and
x¢, — po. From Lemma 2 and the result of Step 3, we see that po = UQcpo = Upy. Thus
po € Fix(U). Substituting z by py in (9), then we can deduce that x,, — py since J is weakly
sequentially continuous at zero. Next, we shall prove that py solves the variational inequal-

ity (6).
Since x; = tnf(x;) + ([ — tT)UQcxy,

1
(T —nf)x: = _E(I =TI - UQc)x:.
For Vz € Fix(U), since U is nonexpansive,

<(T = nf)xe, J (% — Z)>

(-1 - UQc)w (w2
(1= UQe)w ~ (I~ UQc)= (w ~ 2) + (T ~ UQc)w 2

= —%[let —z|* = (UQcx: — UQcz,] (x: — 2))] + (T - UQC)xs,] (% — 2))

<(TU - UQc)x1, ] (% - 2)). (10)
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Since x;, — po, we have (I — UQc)x;,, — (I — UQc)po = 0, as n — oo. Since {x; } is
bounded, (T — nf)x:, — (T — nf)po and J is uniformly continuous on each bounded sub-
set of E, taking the limits on both sides of (10) we have ((T - nf)po,J(po — 2)) < 0, for
z € Fix(U). Thus py satisfies (6).

In a summary, we infer that each cluster point of {x;} is equal to po, which is the unique
solution of the variational inequality (6).

This completes the proof. O

Remark 9 Lemma 8 is a direct extension of Theorem 3.2 in [13] from Hilbert space to
real smooth and uniformly convex Banach space.

Theorem 10 Let E be a real smooth and uniformly convex Banach space and C be a
nonempty, closed, and convex sunny nonexpansive retract of E, and let Q¢ be the sunny
nonexpansive retraction of E onto C. Let f : E — E be a fixed contractive mapping with
coefficient k € (0,1), T : E — E be a strongly positive linear bounded operator with coeffi-
cient 'y . Suppose that the duality mapping ] : E — E* is weakly sequentially continuous at

zero,and 0 < n < %.LetAi : C — 2F be m-accretive operator and B; : C — E be a-inversely
strongly accretive operator, where i = 1,2,...,N. Suppose that, forNr >0 and i=1,2,...,N,

(Bix — By, J[(I - rB)x — (I - rB))y]) = 0.

Let {x,} be generated by the iterative algorithm (A), 0 < a,, <1, for m =0,1,2,...,N,
ZZ:O am = 1. Suppose {e,};2, C E, {a,}, {Bn}, and {y,} are three sequences in (0,1) and
{rni} C (0, +00) satisfying the following conditions:

(i) Yo Vn=00,¥—0, %el,ﬁnel,anao,asnaoo;
(i) Yon2g ot — @l < +00, 3020 1Bt = Bul < +00, 3020 (1= yu¥ ) By < +00;

(i) Yoo 1Pusri — Fuil < +00 and ry; > € >0, forn > 0andi=1,2,...,N;

() Y% llexll < +oo.

Ifﬂﬁl(Ai +B,)710 # 0, then {x,,} converges strongly to a point py € ﬂZI(A,» +B;)7'0, which
is the unique solution of the following variational inequality: for Vz € ﬂﬁl(A,' +B)710,

(T = nf)po,] (o - 2)) < 0. (%)

Proof Let uy; = (I — ryiBi)yn, Vu = GoYn + Zﬁl a,-];tfiu,,,i, for n >0, wherei=1,2,...,N.
We shall split the proof into five steps:
Step 1. {x,,}, {1} (i=1,2,...,N), {9}, {vs}, and {2z,,} are all bounded.
From the assumptions on B;, in view of Lemma 3, we have, for Vx,y € C,

|t = rBy)x— (I = rB)y|” < llx = yII> = 2r{Bix ~ By, [(I - rB)x — (I - rBy)y])

2
<l -l%

which implies that (I — 7B;) is nonexpansive, for r > 0.
Then noticing the facts that both (I - r,,;B;) and ]flfi are nonexpansive, fori =1,2,...,N,
we have, for Vp e Y, (4; + B) 0 C C,

lyn =PIl = (= an)llxn —pll + lleall +anllen + pll. (11)
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Using Lemma 6, we have, for p € ﬂﬁl(Ai +B)71o,

N

2 = pll < (L= Bu) %0 =PIl + Bu <ao||)’n —pll+ ) ai

i=1

Tn,i

J2 (I = 1,:B1) (¥ —P)”)

N
< = B)ln =2l + Budollyn = pll + B Y aillyn - pl

i=1

= (1= Bu)lxn = pll + Bullyn - pII. 12)

Then Lemma 7 implies that for n > 0,

%01 =PIl < v | 0f @) = T || + | (T = v T)(zn - )|

< yunkllxn = pll + va| f ) = Tp| + A = yu¥)llzu - pII. (13)

Noticing (11)-(13), we have, for n > 0,

%51 -
< Yuntkl%, = pll + vu||0f (p) - Tp |
+ (L= v [ = Bl — Il + Bullyn — pll]
< [yank + (1= v, 7)A = Ba) + (1 = V)L = @) B xn =PIl + || nf (0) - Tp||
+ (L= yuP)Bullenll + (1 = vu¥)Buctullen + p
= [1=auBu = vu¥) = vul¥ = k)]s = pll + v | 0f (0) - Tp |
+ (L= vu¥)Bullenll + (1 = vu¥)tnBullen + p
< [1=vu@ = km)]llxs = pll + v () = Tp || + 2llenll + (1 = v V) Balp
< max{ R ”"f;p ) kn" ” } +2)leall + (1= yu¥)tuBullpll. (14)

By using the inductive method, we can easily get the following result from (14):
Inf(p) - Tpll
%1 = pll < max{ llxo - pll, qu +2 Z lexll + lpll Z (1 - i) B

Therefore, from assumptions (ii) and (iv), we know that {x,} is bounded.

For Vp € (1, (A; + B)™0, since [ly, = pll < II(L = ) (& + €) = pll < 1%l + lleall + 11l
{y,.} is bounded, which implies that {«,;} is bounded in view of the fact that I —r,;B; is
nonexpansive, for each i=1,2,...,N.

Moreover, {];z il (I —ry,;B;)y,} is bounded since ]f}jl isnonexpansive, fori =1,2,...,N. Thus
{v,,} is bounded, which ensures that {z,} is bounded. Since r,,; > ¢ > 0, Bly,, = y”r "l’“
bounded, forn >0andi=1,2,...,N.

Set My = sup{llnill, Wi ttnill 1Bl 1l 19l U2l 1 201, L G 2 1 = 0, = 1,2,

..,N}.
Step 2. limy— o0 X1 — %] =0

is
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. . Aj Y
First, we shall discuss [|/;,; 44, — /.| ;#n-1,ill, for m > 1.

If r,_1; < 1y, then by using Lemma 5, we have

” Vnzunl anlru"_l’i”
n-1,i Ty 1,i A
. . —_ 1 .
]y'n 1[( - Up,i + ( o )] ,> ]ynil,iun—l,l
rn—l,i Yy 1,i
= un,z’"’ 1-—= ] Mnt Up-1,i
rn,i rn,z
Tn-1,i
S ”Mru un—l,i” + 1_ || ,«nlunz_un 11”
T'n,i
=

Vni — Fu-1,i .
1ot = o ill + ——"—= “]f:fiun,i = i (15)

If r,; <7y-1,;, then imitating the proof of (15), we have

7t = T e | < Wt =t + P = 0. (16)
Combining (15) and (16), we have, for n > 1,
” rn,u”l rn 1,”” 11”
< ot — sty g gl + T )
< Nt — il + Mﬁﬁ
< | = rniB) G = Y1) | + 17 = Pucil By || + Mﬂ/h
<y = Yl 1mi = Pt il 1By | + um (17)

Let M, = (% +1)M;, and using (17), we have, for n > 1,

Aj
1V = Vuca || < @ollyn = yua |l + Zal 7k s~ J

nl:u” 11”
i=1

N
S Myn = yuall + Mz Zﬂim,z‘ — Tu-1,il- (18)

i=1

Using (18), we have, for n > 1,

1zn — Zu-1ll < A= B)l%n —%p1ll + 1Bn — Bualll%n-1 |l
+ Bullvie = Via | + 1B = Bua Vil

< = B)llxn =Xl + 18n = Bu-al I |l + Bullyn — yuall

N
+ BuMa Y il = rucril + 1By = Bual Vil (19)

i=1
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Noticing that for n > 1,

lyn = yn-1ll < (I — o) ln — Xl + |ty — ety |16y |

+ (1 —ay)lle, — enll + lay — apalllenll (20)
Using (19) and (20), we have, for n > 1,

141 = %
< yun|[f Gen) = FGen-1) | + 01 = Vit | [f @u) | + 11 = ¥u TN 120 — Zaca
+ Vi = V1| Tz |l
< Yukll% = %01 |+ 01V = Yucr | |[f 1) | + L= vz = 20a |
+Vn = Vua | Tz |

= [(1 = V)1 —aufy) + Vnnk] ¢y = xpall + 2M1 |y = Vil

N
+ 2My (1= ¥, 9) | Bu = Bual + (L= V)Mo Y il = T

i=1
+ (L= v ¥)Bulon — Ot,,,_1|(M1 + ||en—l||) + (1= yu¥)Bu(l —ay)llen — el

= [1 - yn(? - nk)] ”xn - xn—l” + 2M1|J/n - Vn—1|

N
+ 2My (1= ¥, 9) | Bu = Bual + (L= vV )Mo ) il = T
i=1
+ (L=, ¥)Bulon — Oln—1|(1\/11 + ”en—lH) + (1= yu¥) Bl —a)llen — el (21)

From the assumptions on {a,}, {B,}, {Vx}, {rs:}, and {e,}, in view of (21), and Lemma 4,
we have lim,,_, o [|%,+1 — %] =0

Step 3. Set W, = [aol + ZZI a,-]flfi (I = ry;B;)], then W, : C — C is nonexpansive and
Fix(W,,) = Y, (A4; + B)™0.

It is obvious that W), is nonexpansive and ﬂfil(Ai + B;)™'0 c Fix(W,). So we are left to
show that Fix(W,,) € (Y, (4; + B,)™0.

In fact, if p € Fix(W,,), then W, p = p. For Vq € ﬂﬁ.\il(A,» + B;)™10 C Fix(W,), we have

lp—qll < aollp - qll + a2 T = ruaB)p — g +- -+ an TN (I - runBr)p - 4|

<(ag+ar+---+ana)l|p—ql +an |2, (- runBn)p — 4|

= (L=an)llp - qll +an [/, (I = runBy)p 4|
<lp-4l.

Therefore, |p — gl = 1 —an)llp — gl + aN||]2§[(1 — ranBn)p — g, which implies that ||p —

qll = 5% = runBy)p - q. Similarly, lIp - qll = 754 (I = ruaBi)p - qll = -+ = X4 (U -
raN-1Bn-1)p = 4.
Then lip — 41l = lIsx- = raaBOp — q) + S (A5 = rupBo)p = q) + -+ +

ZZY (],n v — rnBn)p — g)|l, which implies from the strictly convexity of E that p — g =

]r,,,l U-ruB)p—q= /ﬁ?z U=rupB))p—q=---= ]ﬁiﬁ{, (I -r.NnBN)p—q.
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Therefore, ]f:fl.([ — rBi)p = p, for i =1,2,...,N. Then p € ﬂﬁl(A,v + B;)7'0. Thus
Fix(W,) € MY, (A; + B)™0.
Step 4. W,y — y» — 0, as n — oo, where W), is the same as that in Step 3.

In fact, since both {x,} and {W,y,} are bounded and 8,, — 1, as n — +00,
zy— Wyyn =1 - Bn)xy — Wyy,) > 0, asn— +o0.

Since both {f(x,)} and {7%,} are bounded and y,, — 0, as n — +00,
Xyl — 2y = y,,[nf(x,,) - Tzn] — 0, aswn— +00.

Therefore
%p = Windn = (0 = Xna1) + (Xna1 = 2n) + (20 = Wiyn) = 0,

as n — +09, in view of the fact of Step 2.

Since Y o2, e, < +oo and o, — 0, as 1 — 00,

IWoyn = yull = H QcWyyn - QC[(1 — ) (%, + en)] ”

< |IWuyn —xull + anllxall + (I—ay)lleqll = 0, asn— oo.

Moreover, x,,,1 —y, — 0, as 1 — 0.

Step 5. limsup,,_, , . (nf ®o) — Tpo,J(%u+1 — po)) < 0, where p, € ﬂf\il(A,- + B;)™10, which
is the unique solution of the variational inequality (x).

Noticing the result of Step 3 and using Lemma 8, we know that there exists z; such that
z: = tnf (z;) + U -t T)W,Qcz; for t € (0,1). Moreover, z; — po € Fix(W,,) = ﬂf\il(Ai +B)710,
as t — 0. And, py is the unique solution of the variational inequality (x).

Since ||z¢|| < ||zt — poll + llpoll, then {z;} is bounded, as ¢ — 0. Using Lemma 3, we have

lze = yull* = I2e = Wiy + Wodn = yull®
< llze = Wouyull® + 2{Woyn — ¥ J (2 = yu))
= |enf @) + U = tTI)WoQczi = Woga | + 2{ Wy = ¥ T (2 = 3))
< | WaQcz = Wiyull* + 28(nf (z0) = TW,Qczi J (2t = Winyn))
+ 2 Wiy = Y J (20 = yn))
< llze = yull® + 2¢(nf (z) — TW,Qcze J (2 — Winyn))

+ 2l Woyn — yullllze = yull,
which implies that
t(TWnQCZt - rlf(zt)r](zt - Wn}’n)) = ” Wnyn _yn” ”Zt _yn”'

So, limg_,o limsup,,_, , .. (TW,,Qcz: — nf(z:),J (zt — Wuyn)) < 0 in view of Step 4.
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Since z; — po, W,Qcz: — W, Qcpo = po, as t — 0 in view of Step 3. Noticing the fact
that
(Tpo = nf (o), T (o — Winyn))
= (Tpo - nf(Po)J(Po nyn) ](Zt nyn > + <TP0 - 77f(190),](2t - Wnyn))
(Tpo - ﬂf(Po ](Po - nyn ](Zt - Wn}’n))
+(Tpo — nf (po) = TWuQcz: + nf (20),] (2 — Wiyn)
+ (TWnQCZt —-nf(z), ) (z - Wnyn)),
we have limsup,,_, , . (Tpo — nf (po),J (o — Woyu)) <
Since (Tpo — nf (po),J (Po — *ns1)) = (Tpo — nf (Po) ](190 = %ne1) = J(Po — Wayn)) + (Ipo —
nf (po),J(po— Wiyn)) and x40 — Wy, — 0, then limsup,,_, o (nf (po) — Tpo,J (441 —po)) < 0.

Step 6. x, — po, as n — +00, where pg € ﬂf\il(Ai + B;)710 C C is the same as that in
Step 5.

Let M3 = sup{||(1 — o,)(%, + €,1) — po|| : > 0}. By using Lemma 3 again, we have
lyn —P0||2 <Q1- Oln)zllxn —Po ”2 + 2((1 — e, — anpo:][(l =) (% + ) —Po])' (22)

Using (22) and the result of Step 3, we have

”Zn _170”2 = (1 - ﬂn)”xn —P0||2 + ﬁn” Wnyn - VVnPOH2
< (1-B)lx, _}70”2 + Bullyn _}70”2
<@1- anﬁn)”xn —Po ”2

+ 2,3n<(1 — )y — O‘npOr][(l =) (% + ) _pO])~ (23)

Using (23) and Lemma 3, we have, for n > 0,

%1 = poll®
= | vu(f @) = Tpo) + (I = v T)zn - po) |
< (L= ya7)*12n = o> + 2¥u(nf (1) — Tpo,] (1 — po))
< (1= 77> = B2 = poll? + 2vunlf () —f B0), ] (%na1 — po) = J (% — po))
+ 2¥un{f (%) = f (P0): ] (% = Po)) + 2¥u{nf (P0) = TP0,] (%41 — Po))
+2(1 = ¥ ¥)2Bn(L — a)en, J[(1 — ) (v + €4) = po])
= 20,Bu(1 = ¥ V)P0, J[(1 = ) (% + €4) = po])
< [1=yu (¥ = 20K)] 120 — po > + 2Ms[ lewll + ctuBu(1 = v ¥)lIpoll]
+ [ 2(nf (o) = Tpo,J (1 = o)) + 20112 = poll %1 — % ]- (24)
Let 8 = 7 = 20K), 8 = yul201f ©0) — TP, J (hns1 — P0)) + 211l1%n — Poll | %s1 — %],

81 = 2Mslllenll + ¢tuBu(1 — ¥47)lIpoll]. Then (24) can be simplified as [[x1 — poll? < (1 -
(1) 2 (2 ®3)
n )”xn —POH +5n +8n
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Using the assumptions (ii) and (iv), the results of Steps 1, 2, and 5 and by using Lemma 4,
we know that x,, — po, as n — +o0.

This completes the proof. O

Remark 11 The assumption that ‘the «-inversely strongly accretive operator B; : C — E
satisfies for Vr >0 and i = 1,2,...,N, (Bix — B;y,J[(I — rB;)x — (I — rB;)y]) > 0’ is valid, and

we can find an example in Section 3 (Remark 26).

Lemma 12 (see [11]) Let E be a real q-uniformly smooth Banach space with constant K,
and C be a nonempty, closed, and convex subset of E. Let A : C — E be an a-inversely

1
strongly accretive operator. Then for Vr < (%)‘F1 , (I = rA) is nonexpansive.

Corollary 13 Let E be a real g-uniformly smooth Banach space with constant K, and also
be a uniformly convex Banach space. Let C, Qc, f, k,n, T, ], A;, a,, (im=0,1,2,...,N), ¥,
{en}, {an), {Bu}s {vn}, and {r,;} satisfy the same conditions as those in Theorem 10. Let B; :
C — E be a-inversely strongly accretive operator, where i =1,2,...,N. Let {x,} be generated
by the iterative algorithm (A). Suppose further that

V) 1 < (Z—‘;)ﬁ,forn >0andi=12,...,N.

IFNY,(A; +B)™'0 # @, then {x,,} converges strongly to a point po € (X, (A; + B;)™'0, which
is the unique solution of the variational inequality ().

Proof Lemma 12 ensures that (/ —r,,;B;) is nonexpansive, forn > 0 and i =1,2,...,N. Then
copy the proof of Theorem 10, the result follows.
This completes the proof. O

Corollary 14 Ifi=1, then iterative algorithm (A) becomes the following one:

xo € E,

In = Qcl(l —ay)(xn +e€4)], n>0,

2y = (1= Bu)%n + Bulaoy, + A = ao)Jjs v = 1uByn)l, 1 =0,
Xns1 = Vullf ®n) + [ = v T)zn, n>0.

Let E, C, Qc, f, k, n, T, J, v, {en}, {au}, {Bu), and {y.} satisfy the same conditions as
those in Theorem 10. Let A : C — E be m-accretive operator and B : C — E be a-inversely

strongly accretive operator satisfying that
(Bx - By,][(] —rBx— (I - rB)y]) >0, forVr>0,Vx,yeC.

Suppose that 0 < ag < 1, {r,} C (0, +00) such thaty oo, |Fus1 — 1yl < +00 and r, > € > 0 for
n=>0.

If (A + B)7L0 # 0, then {x,} generated by the iterative algorithm (B) converges strongly
to po € (A + B)™10, which is the unique solution of the following variational inequality: for
Vz e (A +B)0,

(T =nf)po,J(po - 2)) < 0. ()
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Corollary 15 If B; =0, then iterative algorithm (A) becomes the following one for approx-
imating common zeros of finitely many m-accretive operators:

x9 € E,

Vn=Qcll—ay)(xy +€4)], n=0,

2y = (L= By + Bul@oyn + Xy aidiyyn), n=0,
X1 = Yultf @n) + U= yu T2y, n>0.

(©

LetE,C,Qc, [, k,n, T,], v, am (m=1,2,...,N), {en}, {au}, {Bu}, and {y,}, {ra;} satisfy
the same conditions as those in Theorem 10. Let A; : C — E be m-accretive operator, i =
1,2,...,N.

If ﬂf\:[l A7'0 # 0, then {x,} generated by (C) converges strongly to a point py € ﬂﬁlAi’lO,
which is the unique solution of the following variational inequality: for Vz € ﬂf\ilAi‘IO,

(T =nf)po,J(po - 2)) < 0. (skox)

Corollary 16 If A; = 0, then iterative algorithm (A) becomes to the following one for ap-

proximating common zeros of finitely many a-inversely strongly accretive operators:

xo € E,

In = Qcl(l —ay)(xy +e4)], n>0,

2w = (U= Bu)tn + Buldoyn + Y1ty @iy — uiBiyn)l, 1>0,
Tni1 = Yullf ®n) + (L =y 1)z, 12> 0.

(D)

LetE,C,Qc.f, k,n, T,],V, am (m=1,2,...,N), (e}, (s}, {Bu}, and {y,}, {r,} satisfy the
same conditions as those in Theorem 10. Let B; : C — E be an a-inversely strongly accretive
operator satisfying forVr>0and i=1,2,...,N,

(Bx — Biy, J[U - rBi)x — (I - rBy)y]) = 0.

Ifﬂf\il B;'0 # 0, then {x,} generated by (D) converges strongly to a point py € ﬂf\il B0,
which is the unique solution of the following variational inequality: for Vz € ﬂﬁl B'o,

(T = nf)po,J (o —2)) < 0. (k)

3 Connection with nonlinear capillarity equation

Remark 17 In the next of this paper, we have four purposes: (1) give a new example to
show that the assumption that ‘the set of zeros of the sum of an m-accretive operator
and an a-inversely strongly monotone operator is nonempty’ is valid; that is, (A + B)™10 #
@ is meaningful; (2) set up the relation between the solution of the capillarity equation
and the zero of the sum of an m-accretive operator and an a-inversely strongly accretive
operator; (3) apply the iterative algorithm studied in Section 2 to approximate the solution
of the capillarity equation; (4) set up the relationship between the solution of the capillarity
equation and the solution of one kind variational inequality.
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Remark 18 In the following, assume % <p<+00,1<gq,r<+o0ifp>N,and1<q,r <
1\11\[__1; if p <N, where N > 1. | - ||, denotes the norm in L?(£2). Let }7 + 1% =1

We shall examine the following capillarity equation, which is a special case in [20]:

—div[1 + — 22 VP2 Vu] + A(|ulT 2 + u)"2u) + ux) =0, ae. in Q,

1+ Vul2 (E)

—0,1+ 2 )| VuP2Vu) =0, ae.onT,

A 1+ Vul2P

where Q is a bounded conical domain of a Euclidean space RN with its boundary I" € C!
(cf. [21]). | - | denotes the Euclidean norm in RV, (-,-) the Euclidean inner-product and
the exterior normal derivative of I'. A is a nonnegative constant.

Theorem 19 (see [20]) The capillarity equation (E) has a unique solution u(x) € L?(2).

Lemma 20 (see [20]) Define the mapping By, : WP (Q) — (W (Q))* by

[Vul? 2
(v, By g rtt) = /<(1+ 7>|Vu|p Vu, Vv>dx
o Q V1+|Vul|?
+ 4 / |4(2) |7 (@) v(x) dix
Q

+A/ |u(x)|r72u(x)v(x)dx,
Q

for any u,v € W*P(Q). Then By, is everywhere defined, strictly monotone, hemi-contin-

uous and coercive.
Lemma 21 (see [20]) Define a mapping A : L7 (Q2) — 2 as follows:
D(A) = {u € LP(Q2)|there exists an f € LP (), such that f € Bp,q,,u}.

Foru € D(A), let Au = {f € LP(Q)|f € By,q,ru}.
Then A : 17(Q) — 2Y¥ @ s m-accretive.

Lemma 22 Define a mapping C : LP(Q2) — L7 (2) by Cu = u(x), for Vu(x) € LP(S2).
Then C is 1-inversely strongly accretive.

Proof Let J, : [P(Q2) — L7 (Q2) denote the normalized duality mapping. Then it is easy to
check that J,u = |/’ sgn u||u||}2,_p, Yu e L# ().

Thus for Vu(x), v(x) € LP(Q), (Cu — Cv,J,(u - v)) = [o lu—vIP|lu - vllffp dx = ||lu—v|?,
which implies that C is 1-inversely strongly accretive.

This completes the proof. O

Theorem 23 u(x) € LP(RQ) is the unique solution of (E) if and only if u(x) € (A + C)10.

Proof If u(x) is the solution of (E), then

VulP
—div[(l + ¥> |Vu|p_2Vu:| + A(|u|q_2u + |u|’_2u) +u(x)=0, a.e. inQ.

1+ |Vu|?
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Thus for Yo € C3°(£2), by using the property of generalized functions, we have

. |Vu|19 -2 —2 r-2
0={¢,—div|[1+ ——— | |Vul*Vu +A(|u|q u+ |ul| u)+u(x)

V14 |Vu|%
. [Vul? ) 2
= | —div|[1+ —— | |Vul"Vulpdx
/sz |:( V1+|Vul|?

+ / [A(|u|q_2u + |u|r_2u) + u(x)]go dx
Q

= /<<1+ ﬂ)WuV‘”VM V¢>dx
o J1+ [Vul> '
+/[A(|u|q’2u+ ul"u) + u(x)]p dx
Q

= (@, Bpgrut + Cu) = (9, Au + Cu).

Then u(x) € (A + C)~0.
On the other hand, if u(x) € (A + C)™0, then for V¢ € C(R),

0 = (p,Au + Cu) = (¢, By 4,u + Cu)

= /<(1+ ﬂ)WzAP’ZVu Vgo>dx
Q V1+ [Vul? '

+A/(|u|q’2u+|u|’_2u)(pdx+/ u(x)p dx
Q Q

VulP
= <<p,—div|:(1 + $> |Vu|p‘2Vu:|
V1+|Vu|?

+ A(|u|‘1_2u + |u|”2u) + u(x)>.

Then — div[(1 + — 4 ) | VulP2Vu] + A(|u|2u + |ul"2u) + u(x) = 0, a.e. x € Q. By using

14| Vu|2p

the Green’s formula, we know that for any v € W (Q),

/<z9 (1+ ﬂ)qu|p_2Vu>v|rdF(x)
e\ V1+|Vul?
(1 e e
= [ div| 1+ ———— |IVulP*Vu |vdx
/Q [( 1+ |Vul?
oo ")
+ 1+ ——— )|VulP*Vu, Vv)dx
/sz<( 1+ |Vu|?
= / (A1 720 + |ul " u) + u(x)] dx + (v, Bygr1)
Q

—/ )L(Iu|q_2u+ |u|"2u)dx
Q

= (v,Au+ Cu) =0.

Thus — (¢, (1 + Y2 )| Vu|P2Vu) = 0, a.e.on T.

1+ Vu|?P
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Then u(x) € (A + C)10 implies that u(x) is the solution of (E).
This completes the proof. g

Theorem 24 Suppose A and C are the same as those in Lemmas 21 and 22, respectively.
Let T : LP(2) — LP(2) be any strongly positive linear bounded operator with coefficient y
and f : LP(Q2) — LP(R2) be a contraction with coefficient k. Suppose the following conditions
are satisfied:
(i) 0<n<27—k,and0<a<1;
(i) {ea)320 C L(Q), X lleal < +00;
(iii) {an}, {Bn}, and {y,} are three sequences in (0,1). y, — 0, % ->1,8,—~>1a,—0,
asm—> 00. Y 120 Y =00, 3120 |1 — 0| < +00, 3% 0 | Bus1 — Bul < +00,
Zzio(l — VnV)n P < +00;
(iv) {ra} C(0,1) such thaty .2 |Fus1 — rul < +00,and 1>r, > & >0 for n > 0.
If we construct the following iterative algorithm:

u(x) € LP(2),

V(%) = (1 = ) (4 (%) + €,(x)),

Wy (%) = (L= Bu)un(x) + Bulav,(x) + (1 = @) (v (x) = 7, Cv, (x))],
Un1 (%) = Yunif (n) + I = yu T)wy(x), n>0,

(F)

then u,(x) converges strongly to u(x) € (A + C)0, which is the unique solution of the capil-
larity equation (E) and satisfies the following variational inequality: for Vz(x) € (A + C)™0,

(T = nf)ulx), J,(u(x) - z)) < 0.

Remark 25 From Theorem 24 we can easily see the relationship among the solution of
the capillarity equation, the solution of a variational inequality, and the zero of sum of an
m-accretive operator and an «-inversely strongly accretive operator.

Remark 26 Let C be the 1-inversely strong accretive operator defined in Lemma 22, then
it is obvious that C satisfies

(Cx - Cy,]p[(l -rCx—(I - rC)y]) >0, forl>r>0,xy¢€l?(Q).

Thus the assumption imposed on B; in Theorem 10 is valid.
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