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Abstract
In the present paper, we introduce a general iterative algorithm for finding a common
element of the set of common fixed points of an infinite family of strict
pseudo-contractions and the set of solutions of the variational inequalities for finite
family of strongly accretive mappings in a q-uniformly smooth Banach space.
Furthermore, we prove strong convergence of the iterative sequence under suitable
conditions. Our results generalize some recent results.
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1 Introduction
Throughout this paper, we always assume that X is a real Banach space with the dual X∗.
Let C be a subset of X, and T be a self-mapping of C. We use F(T) to denote the fixed
points of T . For q > , the generalized duality mapping Jq : X → X∗ is defined by

Jq(x) =
{

f ∈ X∗ : 〈x, f 〉 = ‖x‖q,‖f ‖ = ‖x‖q–},

where 〈·, ·〉 denotes the duality pairing between X and X∗. In particular, Jq = J is called
the normalized duality mapping and Jq(x) = ‖x‖q–J(x) for x �= . If X := H is a real Hilbert
space, then J = I where I is the identity mapping. It is well known that if X is smooth, then
Jq is single-valued, which is denoted by jq [].

Let U = {x ∈ X : ‖x‖ = }. A Banach space X is said to be strictly convex if ‖x+y‖
 ≤ 

for all x, y ∈ X with ‖x‖ = ‖y‖ =  and x �= y. It is also called uniformly convex if lim‖xn –
yn‖ =  for any two sequences {xn}, {yn} in X such that ‖xn‖ = ‖yn‖ =  and lim‖ xn+yn

 ‖ = .
A Banach space X is said to be Gâteaux differentiable if the limit

lim
t→

‖x + ty‖ – ‖x‖
t

()
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exists for all x, y ∈ U . In this case X is smooth. Also, we define a function ρX : [,∞) →
[,∞) called the modulus of smoothness of X as follows:

ρX(t) = sup

{


(‖x + y‖ + ‖x – y‖) –  : x ∈ U ,‖y‖ < t

}
.

A Banach space X is said to be uniformly smooth if ρX (t)
t →  as t → . Suppose that q > ,

then X is said to be q-uniformly smooth if there exists c >  such that ρX(t) ≤ ctq. It is easy
to see that if X is q-uniformly smooth, then q ≤  and X is uniformly smooth.

Let C be a nonempty, closed, and convex subset of a Banach space X and D be a
nonempty subset of C, then a mapping Q : C → D is said to be sunny provided

Q
(
Qx + t(x – Qx)

)
= Qx,

whenever Qx + t(x – Qx) ∈ C for x ∈ C, and t ≥ . A mapping Q : C → D is called a re-
traction if Qx = x for all x ∈ D. Furthermore, Q is a sunny nonexpansive retraction from C
onto D if Q is a retraction from C onto D which is also sunny and nonexpansive.

A subset D of C is called a sunny nonexpansive retraction of C if there exists a sunny
nonexpansive retraction from C onto D. In real Hilbert space, a sunny nonexpansive re-
traction QC coincides with the metric projection from X onto C.

Definition . A mapping T : C → C is said to be:
(i) λ-strictly pseudo contractive [], if for all x, y ∈ C there exist λ >  and

jq(x – y) ∈ Jq(x – y) such that

〈
Tx – Ty, jq(x – y)

〉 ≤ ‖x – y‖q – λ
∥∥(I – T)x – (I – T)y

∥∥q,

or equivalently

〈
(I – T)x – (I – T)y, jq(x – y)

〉 ≥ λ
∥∥(I – T)x – (I – T)y

∥∥q.

(ii) L-Lipschitzian if for all x, y ∈ C, there exists a constant L >  such that

‖Tx – Ty‖ ≤ L‖x – y‖.

If  < L < , then T is a contraction, and if L = , then T is a nonexpansive mapping.

Remark . Let C be a nonempty subset of a real Hilbert space H and T : C → C be a
mapping. Then T is said to be k-strictly pseudocontractive [], if for all x, y ∈ C, there
exists constant k ∈ [, ) such that

‖Tx – Ty‖ ≤ ‖x – y‖ + k
∥∥(I – T)x – (I – T)y

∥∥.

Definition . A mapping F : C → X is said to be accretive if for all x, y ∈ C there exists
jq(x – y) ∈ Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ .
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For some η > , F : C → X is said to be η-strongly accretive if for all x, y ∈ C there exists
jq(x – y) ∈ Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ η‖x – y‖q.

For some μ > , the mapping F : C → X is said to be μ-inverse strongly accretive if for all
x, y ∈ C there exists jq(x – y) ∈ Jq(x – y) such that

〈
Fx – Fy, jq(x – y)

〉 ≥ μ‖Fx – Fy‖q.

Note that if X := H is a real Hilbert space, accretive and strongly accretive operators coin-
cide with monotone and strongly monotone operators, respectively.

Let C be a nonempty, closed, and convex subset of X, and A : C → X be a mapping. The
classical variational inequality problem is to find x∗ ∈ C such that

〈
Ax∗, jq

(
x – x∗)〉 ≥ , ∀x ∈ C, ()

where jq(x – x∗) ∈ Jq(x – x∗). The solution set of a variational inequality is denoted by
VI(C, A). If X =: H is a real Hilbert space, the variational inequality problem reduces to
find x∗ ∈ C such that

〈
Ax∗, x – x∗〉 ≥ , ∀x ∈ C. ()

For more details of the variational inequality and its applications, we recommend the
reader [, ]. On the other hand, we note that the iterative approximations of fixed points
for nonexpansive mappings have been extensively studied by many authors [–].

In order to find the common element of the solution set of a variational inclusion () and
the set of fixed points of a nonexpansive mapping, Takahashi and Toyoda [] introduced
the following iterative scheme in a Hilbert space H . Starting with an arbitrary point x =
x ∈ H , define sequences {xn} by

xn+ = αnxn + ( – αn)SPC(xn – λnAxn), ()

where A : H → H is an α-inverse-strongly monotone mapping, S : C → C is a nonexpan-
sive mapping and {αn} is a sequence in [, ]. Under mild conditions, they obtained a weak
convergence theorem.

On the other hand, Aoyama et al. [] considered the following algorithm in a uniformly
convex and -uniformly smooth Banach spaces. For x = x ∈ C,

xn+ = αnxn + ( – αn)QC(xn – λnAxn), ()

where QC : X → C is a sunny nonexpansive retraction, and A is a β-Lipschitzian and
η-inverse strongly accretive operator. They proved that {xn} generated by () converges
weakly to a unique element z of VI(C, A).
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Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth uniformly
convex Banach space X. Assume the mapping Am : C → X be a μm-inverse-strongly accre-
tive mapping for each  ≤ m ≤ r, where r is a positive integer. Let {Tn}∞n= : C → C be a fam-
ily of λ-strict pseudo-contractions with  < λ < . Define a mapping Snx := (–γn)x+γnTnx
for all x ∈ C and n ≥ .

In this paper, motivated by the works mentioned above, we consider the following iter-
ation:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ C,

yn = αnxn + ( – αn)
∑r

m= ηm
n QC(xn – λmAmxn),

xn+ = QC[βnγ fxn + (I – βnμF)Snyn], n ≥ ,

()

and we prove that the proposed iterative algorithm is strongly convergent under some
mild conditions imposed on the algorithm parameters. The results proved in this paper
represent a refinement and improvement of the previously found results in the earlier and
recent literature.

2 Preliminaries
In order to prove our main results, we need the following lemmas.

Lemma . [, ] Let C be a closed convex subset of a smooth Banach space X. Let D
be a nonempty subset of C. Let Q : C → D be a retraction and J be the normalized duality
mapping on X. Then the following are equivalent:

(a) Q is sunny and nonexpansive.
(b) ‖Qx – Qy‖ ≤ 〈x – y, J(Qx – Qy)〉, ∀x, y ∈ C.
(c) 〈x – Qx, J(y – Qx)〉 ≤ , ∀x ∈ C, y ∈ D.
(d) 〈x – Qx, Jq(y – Qx)〉 ≤ , ∀x ∈ C, y ∈ D.

Lemma . [] Let C be a closed convex subset of a strictly convex Banach space X. Let
T and T be two nonexpansive mappings from C into itself with F(T) ∩ F(T) �= ∅. Define
a mapping S by

Sx = kTx + ( – k)Tx, ∀x ∈ C,

where k is a constant in (, ). Then S is nonexpansive and F(S) = F(T) ∩ F(T).

Lemma . [] Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ = ( – an)sn + anbn + cn,

where {an}, {bn}, {cn} satisfy the restrictions:
(i) limn→∞ an = ,

∑∞
n= an = ∞,

(ii) cn ≥ ,
∑∞

n= cn < ∞,
(iii) lim supn→∞ bn ≤ .

Then limn→∞ sn = .
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Lemma . [] Suppose that q > . Then the following inequality holds:

ab ≤ 
q

aq +
(

q – 
q

)
b

q
q– ,

for arbitrary positive real numbers a, b.

Lemma . [] Let X be a real q-uniformly smooth Banach space, then there exists a
constant Cq >  such that

‖x + y‖q ≤ ‖x‖q + q
〈
y, Jq(x)

〉
+ cq‖y‖q,

for all x, y ∈ X. In particular, if X is real -uniformly smooth Banach space, then there exists
a best smooth constant K >  such that

‖x + y‖ ≤ ‖x‖ + 
〈
y, J(x)

〉
+ K‖y‖

for all x, y ∈ C.

Lemma . [] Let X a real smooth and uniformly convex Banach space and let r > .
Then there exists a strictly increasing, continuous, and convex function g : [, r] → R such
that g() =  and g(‖x – y‖) ≤ ‖x‖ – 〈x, Jy〉 + ‖y‖, for all x, y ∈ Br , where Br = {z ∈ X :
‖z‖ ≤ r}.

Definition . [] Let Tn be a family of mappings from a subset C of a Banach space X
into itself with

⋂∞
n= F(Tn) �= ∅. We say that {Tn} satisfies the AKTT-condition if for each

bounded subset B of C,

∞∑

n=

sup
ω∈B

‖Tn+ω – Tnω‖ < ∞. ()

Lemma . [] Suppose that {Tn} satisfies the AKTT-condition such that:
(i) For each x ∈ C, {Tnx} is converge strongly to some point in C.

(ii) Let the mapping T : C → C defined by Tx = limn→∞ Tnx, for all x ∈ C.
Then limn→∞ supω∈B ‖Tω – Tnω‖ = , for each bounded subset B of C.

Lemma . [, ] Let C be a closed and convex subset of a smooth Banach space X. Suppose
that {Tn}∞n= : C → X is a family of λ-strictly pseudocontractive mappings; {μm}∞m= is a real
sequence in (, ) such that

∑∞
n= μm = . Then the following conclusions hold:

(i) A mapping G : C → X defined by G :=
∑∞

n= μnTn is a λ-strictly pseudocontractive
mapping.

(ii) F(G) =
⋂∞

n= F(Tn).

Lemma . [] Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X which admits weakly sequentially continuous generalized dual-
ity mapping jq from X into X∗. Let T : C → C be a nonexpansive mapping. Then, for all
{xn} ⊂ C, if xn ⇀ x and xn – Txn → , then x = Tx.
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Lemma . [] Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X. Let F : C → E be a k-Lipschitzian and η-strongly accretive op-
erator with constants k,η > . Let  < μ < ( qη

Cqkq )


q– and τ = μ(η – Cqμq–kq

q ). Then for
t ∈ (, min{, 

τ
}), the mapping S : C → E defined by S := (I – tμF) is a contraction with

a constant  – tτ .

Lemma . [] Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X. Let QC be a sunny nonexpansive retraction from X onto C. Let
F : C → X be a k-Lipschitzian and η-strongly accretive operator with constants k,η > ,
f : C → X be an L-Lipschitzian mapping with a constant L ≥  and S : C → C be a
nonexpansive mapping such that F(S) �= ∅. Let  < μ < ( qη

Cqkq )


q– and  ≤ γ L < τ , where

τ = μ(η – Cqμq–kq

q ). Then {xt} defined by

xt = QC
[
tγ fxt + (I – tμF)Sxt

]
()

has the following properties:
(i) {xt} is bounded for each t ∈ (, min{, 

τ
}).

(ii) limt→ ‖xt – Sxt‖ = .
(iii) {xt} defines a continuous curve from (, min{, 

τ
}) into C.

Lemma . [] Let C be a nonempty, closed, and convex subset of a real q-uniformly
smooth Banach space X which admits a weakly sequentially continuous generalized dual-
ity mapping jq from X into X∗. Let QC be a sunny nonexpansive retraction from X onto C.
Let F : C → X be a k-Lipschitzian and η-strongly accretive operator with constants k,η > ,
f : C → X be an L-Lipschitzian mapping with a constant L ≥ , and S : C → C be a nonex-
pansive mapping such that F(S) �= ∅. Suppose that  < μ < ( qη

Cqkq )


q– and  ≤ γ L < τ , where

τ = μ(η – Cqμq–kq

q ). For each t ∈ (, min{, 
τ
}), let {xt} be defined by (), then {xt} converges

strongly to x∗ ∈ F(S) as t → , in which x∗ is the unique solution of the variational inequal-
ity

〈
(μF – γ V )x∗, jq

(
x∗ – p

)〉 ≤ , ∀p ∈ F(S). ()

Lemma . [] Let X be a Banach space and J be a normality duality mapping. Then
for any given x, y ∈ X, the following inequality holds:

‖x + y‖ ≤ ‖x‖ + 
〈
y, j(x + y)

〉
,

for all j(x + y) ∈ J(x + y).

3 Main results
Theorem . Let C be a nonempty, closed, and convex subset of a real q-uniformly smooth,
uniformly convex Banach space X. Let QC be a sunny nonexpansive retraction from X
onto C. Assume that the mapping Am : C → H is a μm-inverse-strongly accretive map-
ping for each  ≤ m ≤ r, where r is a positive integer. Let F : C → X be a k-Lipschitzian
and η-strongly accretive operator with constants k,η > , f : C → X be an L-Lipschitzian
mapping with a constant L ≥ . Suppose that  < μ < ( qη

Cqkq )


q– and  ≤ γ L < τ , where
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τ = μ(η – Cqμq–kq

q ). Let {Tn}∞n= : C → C be a family of λ-strict pseudo-contractions with
 < λ < . Define a mapping Snx := ( – γn)x + γnTnx, for all x ∈ C and n ≥ . Assume that
F := (

⋂r
m= VI(C, Am)) ∩ (

⋂∞
n= F(Tn)) �= ∅. Let {xn} be a sequence generated by the following

iterative algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

x ∈ C,

yn = αnxn + ( – αn)
∑r

m= ηm
n QC(xn – λmAmxn),

xn+ = QC[βnγ fxn + (I – βnμF)Snyn], n ≥ ,

where {αn}, {βn}, {η
n}, {η

n}, . . . and {ηr
n} are sequences in (, ) and λm is a real number such

that  < λm < ( qμm
Cq

)


q– , for each  ≤ m ≤ r. Assume that the above control sequences satisfy
the following restrictions:

(i)
∑r

m= ηm
n = , ∀n ≥ ,

∑∞
n= |ηm

n+ – ηm
n | < ∞.

(ii) limn→∞ ηm
n = ηm ∈ (, ), for each m, where  ≤ m ≤ r.

(iii)
∑∞

n= βn = ∞, limn→∞ βn = ,
∑∞

n= |βn+ – βn| < ∞.
(iv)

∑∞
n= |αn+ – αn| < ∞, lim infn→∞ αn > .

(v)  ≤ γn ≤ δ, δ = min{, ( qλ

Cq
)


q– }, and

∑∞
n= |γn+ – γn| < ∞.

Suppose in addition that {Tn}∞n= satisfies the AKTT-condition. Let T : C → C be the
mapping defined by Tx = limn→∞ Tnx for all x ∈ C and suppose that F(T) =

⋂∞
n= F(Tn).

Then the sequence {xn} converges strongly to x∗ ∈ F as n → ∞, in which x∗ is the unique
solution of the variational inequality,

〈
(μF – γ f )x∗, jq

(
x∗ – p

)〉 ≤ , ∀p ∈ F(S).

Proof We divide the proof into several steps.
Step . We show that I – λmAm is nonexpansive for each m. Indeed, from Lemma .,

for all x, y ∈ C we have

∥∥(I – λmAm)x – (I – λmAm)y
∥∥q

=
∥∥(x – y) – λm(Amx – Amy)

∥∥q

≤ ‖x – y‖q – qλm
〈
Amx – Amy, jq(x – y)

〉
+ Cqλ

q
m‖Amx – Amy‖q

≤ ‖x – y‖q – qμmλm‖Amx – Amy‖q + Cqλ
q
m‖Amx – Amy‖q

≤ ‖x – y‖q – λm
(
qμm – Cqλ

q–
m

)‖Amx – Amy‖q.

It is clear that if  < λm ≤ ( qμm
Cq

)


q– , then I – λmAm is nonexpansive for each  ≤ m ≤ r.
Now, for each  ≤ m ≤ r, put

km
n = QC(xn – λmAmxn), zn =

r∑

m=

ηm
n km

n .

Let x∗ ∈ F , we have

∥∥km
n – x∗∥∥ =

∥∥QC(xn – λmAmxn) – QC
(
x∗ – λnAmx∗)∥∥

≤ ∥∥xn – x∗∥∥ ∀m,  ≤ m ≤ r.
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On the other hand we have

∥∥yn – x∗∥∥ =

∥∥∥∥∥
αnxn + ( – αn)

r∑

m=

ηm
n km

n – x∗
∥∥∥∥∥

≤ αn
∥∥xn – x∗∥∥ + ( – αn)

r∑

m=

ηm
n
∥∥xn – x∗∥∥

= αn
∥∥xn – x∗∥∥ + ( – αn)

∥∥xn – x∗∥∥ =
∥∥xn – x∗∥∥. ()

From () and the fact that Sn is nonexpansive [] we have

∥∥xn+ – x∗∥∥ =
∥∥QC

(
βnγ fxn + (I – βnμF)Snyn

)
– QCx∗∥∥

≤ ∥∥βnγ fxn + (I – βnμF)Snyn – x∗∥∥

=
∥∥βn

(
γ fxn – μFx∗) + (I – βnμF)

(
Snyn – x∗)∥∥

≤ βn
∥∥γ fxn – μFx∗∥∥ + ( – βnτ )

∥∥Snyn – x∗∥∥

≤ βnγ
∥∥fxn – fx∗∥∥ + βn

∥∥γ fx∗ – μFx∗∥∥ + ( – βnτ )
∥∥yn – x∗∥∥

≤ βnLγ
∥∥xn – x∗∥∥ + βn

∥∥γ fx∗ – μFx∗∥∥ + ( – βnτ )
∥∥xn – x∗∥∥

≤ (
 – βn(τ – Lγ )

)∥∥xn – x∗∥∥ + βn
∥∥γ fx∗ – μFx∗∥∥

≤ max
{∥∥xn – x∗∥∥, (τ – γ L)–∥∥γ fx∗ – μFx∗∥∥}

.

By induction, we find that

∥∥xn+ – x∗∥∥ ≤ max
{∥∥x – x∗∥∥, (τ – γ L)–∥∥γ fx∗ – μFx∗∥∥}

.

This shows that {xn} is bounded. Hence by (), {yn} is also bounded.
Step : We show that limn→∞ ‖xn+ – xn‖ = . Since

∥∥km
n+ – km

n
∥∥ =

∥∥QC(I – λmAm)xn+ – QC(I – λmAm)xn
∥∥ ≤ ‖xn+ – xn‖ ∀ ≤ m ≤ r.

On the other hand, we have

‖zn+ – zn‖ =

∥∥∥∥∥

r∑

m=

ηm
n+km

n+ –
r∑

m=

ηm
n km

n

∥∥∥∥∥

≤
∥∥∥∥∥

r∑

m=

ηm
n+km

n+ –
r∑

m=

ηm
n+km

n

∥∥∥∥∥
+

∥∥∥∥∥

r∑

m=

ηm
n+km

n –
r∑

m=

ηm
n km

n

∥∥∥∥∥

≤
r∑

m=

ηm
n+

∥∥km
n+ – km

n
∥∥ +

r∑

m=

∣∣ηm
n+ – ηm

n
∣∣∥∥km

n
∥∥

≤ ‖xn+ – xn‖ + M
r∑

m=

∣∣ηm
n+ – ηm

n
∣∣, ()

where M is an appropriate constant such that

M = max
{
sup

{∥∥PC(I – λmAm)xn
∥∥ : n ≥ 

}
:  ≤ m ≤ r

}
.
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Observe that

yn+ – yn = (αn+ – αn)(xn+ – zn) + αn(xn+ – xn) + ( – αn+)(zn+ – zn).

It follows from () that

‖yn+ – yn‖ ≤ |αn+ – αn|‖xn+ – zn‖ + αn+‖xn+ – xn‖ + ( – αn+)‖zn+ – zn‖
≤ |αn+ – αn|‖xn+ – zn‖ + αn+‖xn+ – xn‖

+ ( – αn+)

(

‖xn+ – xn‖ + M
r∑

m=

∣∣ηm
n+ – ηm

n
∣∣
)

≤ |αn+ – αn|‖xn+ – zn‖ + ‖xn+ – xn‖ + M
r∑

m=

∣∣ηm
n+ – ηm

n
∣∣. ()

Note that

‖Sn+yn+ – Snyn‖ ≤ ‖Sn+yn+ – Sn+yn‖ + ‖Sn+yn – Snyn‖
≤ ‖yn+ – yn‖ +

∥∥( – γn+)yn + γn+Tnyn –
[
( – γn)yn + γnTnyn

]∥∥

≤ ‖yn+ – yn‖ +
∥∥(γn+ – γn)(Tn+yn – yn) + γn(Tn+yn – Tnyn)

∥∥

≤ ‖yn+ – yn‖ + |γn+ – γn|‖Tn+yn – yn‖ + γn‖Tn+yn – Tnyn‖

≤ |αn+ – αn|‖xn+ – zn‖ + ‖xn+ – xn‖ + M
r∑

m=

∣∣ηm
n+ – ηm

n
∣∣

+ |γn+ – γn|‖Tn+yn – yn‖ + γn‖Tn+yn – Tnyn‖. ()

On the other hand,

‖xn+ – xn‖
=

∥∥QC
(
βnγ fxn + (I – βnμF)Snyn

)
– QC

(
βn–γ fxn– + (I – βn–μF)Sn–yn–

)∥∥

≤ ∥∥βnγ fxn + (I – βnμF)Snyn –
(
βn–γ fxn– + (I – βn–μF)Sn–yn–

)∥∥

≤ ∥∥βnγ (fxn – fxn–) + (βn – βn–)γ fxn–

+ (I – βnμF)(Snyn – Sn–yn–) + (βn – βn–)μFSn–yn–
∥∥

≤ βnγ L‖xn – xn–‖ + |βn – βn–|
(
γ ‖fxn–‖ + μ‖FSn–yn–‖

)

+ ( – βnτ )‖Snyn – Sn–yn–‖. ()

Substituting () into (), we obtain

‖xn+ – xn‖
≤ βnγ L‖xn – xn–‖ + |βn – βn–|

(
γ ‖fxn–‖ + μ‖FSn–yn–‖

)

+ ( – βnτ )

(

|αn – αn–|‖xn – zn–‖ + ‖xn – xn–‖ + M
r∑

m=

∣∣ηm
n – ηm

n–
∣∣



Nazari et al. Fixed Point Theory and Applications  (2015) 2015:15 Page 10 of 17

+ |γn – γn–|‖Tnyn– – yn–‖ + γn–‖Tnyn– – Tn–yn–‖
)

≤ (
 – βn(τ – γ L)

)‖xn – xn–‖ +

(

|βn – βn–| + |αn – αn–| + |γn – γn–|

+
r∑

m=

∣∣ηm
n – ηm

n–
∣∣
)

M + ‖Tnyn– – Tn–yn–‖, ()

where M = supn≥{γ ‖fxn–‖ + μ‖FSn–yn–‖,‖xn – zn–‖,‖Tnyn– – yn–‖, M}.
Since {Tn}∞n= satisfies the AKTT-condition, we deduce that

∞∑

n=

‖Tnyn– – Tn–yn–‖ ≤
∞∑

n=

sup
ω∈{yn–}

‖Tnω – Tn–ω‖ < ∞. ()

From (), (), and Lemma ., we deduce that

lim
n→∞‖xn+ – xn‖ = . ()

We observe that

‖Snyn – xn‖ ≤ ‖xn+ – xn‖ + ‖xn+ – Snyn‖
= ‖xn+ – xn‖ +

∥∥QC
(
βnγ fxn + (I – βnμF)Snyn

)
– Snyn

∥∥

= ‖xn+ – xn‖ +
∥∥(

βnγ fxn + (I – βnμF)Snyn
)

– Snyn
∥∥

= ‖xn+ – xn‖ + βn‖γ fxn – μFSnyn‖.

From the condition (iii) and (), we have

lim
n→∞‖Snyn – xn‖ = . ()

Step . We prove that limn→∞ ‖Tnxn – xn‖ = .
From Lemma ., we have

∥∥km
n – x∗∥∥q =

∥∥QC(xn – λmAmxn) – Qc
(
x∗ – λmAmx∗)∥∥q

≤ ∥∥(I – λmAm)xn – (I – λmAm)x∗∥∥q

≤ ∥∥xn – x∗∥∥q – λm
(
qμm – Cqλ

q–
m

)∥∥Amxn – Amx∗∥∥q

and

∥∥zn – x∗∥∥q =

∥∥∥∥∥

r∑

m=

ηm
n km

n – x∗
∥∥∥∥∥

q

≤
r∑

m=

ηm
n
∥∥km

n – x∗∥∥q

≤
r∑

m=

ηm
n
(∥∥xn – x∗∥∥q – λm

(
qμm – Cqλ

q–
m

)∥∥Amxn – Amx∗∥∥q)

=
∥∥xn – x∗∥∥q –

r∑

m=

ηm
n λm

(
qμm – Cqλ

q–
m

)∥∥Amxn – Amx∗∥∥q.
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By the convexity of ‖ · ‖, for all q > , and Lemma ., we obtain

∥∥xn+ – x∗∥∥q

=
∥∥QC

(
βnγ fxn + (I – βnμF)Snyn

)
– x∗∥∥q

≤ ∥∥(
βnγ fxn + (I – βnμF)Snyn

)
– x∗∥∥q

=
∥∥βn(γ fxn – μFSnyn) + Snyn – x∗∥∥q

≤ ∥∥Snyn – x∗∥∥q + q
〈
βn(γ fxn – μFSnyn), Jq

(
Snyn – x∗)〉 + Cq

∥∥βn(γ fxn – μFSnyn)
∥∥q

≤ ∥∥yn – x∗∥∥q + qβn‖γ fxn – μFSnyn‖
∥∥Snyn – x∗∥∥q– + Cqβ

q
n‖γ fxn – μFSnyn‖q

≤ ∥∥βnxn + ( – βn)zn – x∗∥∥q + βnM

≤ ∥∥βn
(
xn – x∗) + ( – βn)

(
zn – x∗)∥∥q + βnM

≤ βn
∥∥xn – x∗∥∥q + ( – βn)

∥∥zn – x∗∥∥q + βnM,

≤ βn
∥∥xn – x∗∥∥q + ( – βn)

[
∥∥xn – x∗∥∥q –

r∑

m=

ηm
n λm

(
qμm

– Cqλ
q–
m

)∥∥Amxn – Amx∗∥∥q
]

+ βnM,

≤ ∥∥xn – x∗∥∥q – ( – βn)
r∑

m=

ηm
n λm

(
qμm – Cqλ

q–
m

)∥∥Amxn – Amx∗∥∥q + βnM,

where

M = sup
n≥

{
q‖γ fxn – μFSnyn‖

∥∥Snyn – x∗∥∥q– + Cqβ
q–
n ‖γ fxn – μFSnyn‖q} < ∞.

By the fact that ar – br ≤ rar–(a – b), ∀r ≥ , we get

( – βn)
r∑

m=

ηm
n λm

(
qμm – Cqλ

q–
m

)∥∥Amxn – Amx∗∥∥q

≤ ∥∥xn – x∗∥∥q –
∥∥xn+ – x∗∥∥q + βnM

≤ q
∥∥xn – x∗∥∥q–(∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥)
+ βnM

≤ q
∥∥xn – x∗∥∥q–‖xn – xn+‖ + βnM.

Since  < λm < ( qμm
Cq

)


q– , from () and (iii) and the fact that {xn} is bounded we have

lim
n→∞

∥∥Amxn – Amx∗∥∥ = , ∀m,  ≤ m ≤ r. ()

Setting rm = sup{‖xn – x∗‖,‖km
n – x∗‖}, we have from Lemmas . and .

∥
∥km

n – x∗∥∥ =
∥∥QC(I – λmAm)xn – QC(I – λmAm)x∗∥∥

≤ 〈
xn – λmAmxn –

(
x∗ – λmAmx∗), j

(
km

n – x∗)〉
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≤ 〈
xn – x∗, j

(
km

n – x∗)〉 + λm
〈
Amx∗ – Amxn, j

(
km

n – x∗)〉

≤ 

[∥∥xn – x∗∥∥ +

∥∥km
n – x∗∥∥ – gm

(∥∥xn – x∗ – km
n + x∗∥∥)]

+ λm
〈
Amx∗ – Amxn, j

(
km

n – x∗)〉,

where gm : [, rm) → [,∞) is a continuous, strictly increasing, and convex function such
that gm() =  for all  ≤ m ≤ r. Hence, we have

∥∥km
n – x∗∥∥ ≤ ∥∥xn – x∗∥∥ – gm

(∥∥xn – km
n

∥∥)
+ λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥ ()

for all m, with  ≤ m ≤ r. On the other hand, we have

‖zn – xn‖ ≤
∥∥∥∥∥

r∑

m=

ηm
n km

n – xn

∥∥∥∥∥



≤
r∑

m=

ηm
n
∥∥km

n – xn
∥∥.

Since gm is increasing and convex by using () we have

gm
(‖zn – xn‖)

≤ gm

( r∑

m=

ηm
n
∥∥km

n – xn
∥∥

)

≤
r∑

m=

ηm
n gm

(∥∥km
n – xn

∥∥)

≤
r∑

m=

ηm
n
[∥∥xn – x∗∥∥ –

∥∥km
n – x∗∥∥ + λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥]

=
∥∥xn – x∗∥∥ –

r∑

m=

ηm
n
∥∥km

n – x∗∥∥ + 
r∑

m=

ηm
n λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥.

Thus we have

r∑

m=

ηm
n
∥∥km

n –x∗∥∥ ≤ ∥∥xn –x∗∥∥ –gm
(∥∥zn –xn

∥∥)+
r∑

m=

ηm
n λm

∥∥Amx∗ –Amxn
∥∥∥∥km

n –x∗∥∥.

Thanks to Lemma . we have

∥∥xn+ – x∗∥∥

=
∥∥QC

(
βnγ fxn + (I – βnμF)Snyn

)
– x∗∥∥

≤ ∥∥(
βnγ fxn + (I – βnμF)Snyn

)
– x∗∥∥

=
∥∥βn(γ fxn – μFSnyn) + Snyn – x∗∥∥

≤ ∥
∥Snyn – x∗∥∥ + 

〈
βn(γ fxn – μFSnyn), jq

(
βn(γ fxn – μFSnyn) + Snyn – x∗)〉

≤ ∥∥yn – x∗∥∥ + βnM

=
∥∥βnxn + ( – βn)zn – x∗∥∥ + βnM

≤ βn
∥∥xn – x∗∥∥ + ( – βn)

∥∥zn – x∗∥∥ + βnM
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≤ βn
∥∥xn – x∗∥∥ + ( – βn)

(∥∥∥∥∥

r∑

m=

ηm
n km

n – x∗
∥∥∥∥∥

)

+ βnM

≤ βn
∥∥xn – x∗∥∥ + ( – βn)

r∑

m=

ηm
n
∥∥km

n – x∗∥∥ + βnM

≤ βn
∥∥xn – x∗∥∥ + ( – βn)

(
∥∥xn – x∗∥∥ – gm

(‖zn – xn‖)

+ 
r∑

m=

ηm
n λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥
)

+ βnM

≤ ∥∥xn – x∗∥∥ – ( – βn)gm
(‖zn – xn‖) + ( – βn)

r∑

m=

ηm
n λm

× ∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥ + βnM,

where M = supn≥{〈γ fxn – μFSnyn, jq(βn(γ fxn – μfSnyn) + Snyn – x∗)〉}.
This in turn implies that

( – βn)gm
(‖zn – xn‖) ≤ ∥∥xn – x∗∥∥ –

∥∥xn+ – x∗∥∥

+ ( – βn)
r∑

m=

ηm
n λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥ + βnM

≤ ‖xn – xn+‖
(∥∥xn – x∗∥∥ +

∥∥xn+ – x∗∥∥)

+ ( – βn)
r∑

m=

ηm
n λm

∥∥Amx∗ – Amxn
∥∥∥∥km

n – x∗∥∥ + βnM.

In view of (ii), (iii), (), and () we have

lim
n→∞ gm

(‖zn – xn‖) = .

By the properties of gm, we get

lim
n→∞‖zn – xn‖ = . ()

On the other hand,

‖Snxn – xn‖ ≤ ‖Snxn – Snyn‖ + ‖Snyn – xn‖
≤ ‖xn – yn‖ + ‖Snyn – xn‖
≤ ‖xn – zn‖ + ‖zn – yn‖ + ‖Snyn – xn‖
= ‖xn – zn‖ + βn‖xn – zn‖ + ‖Snyn – xn‖.

It follows from (), (), and (iii) that

lim
n→∞‖Snxn – xn‖ = . ()
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Next, we show that ‖xn – Sxn‖ →  as n → ∞. For any bounded subset B of C, we observe
that

sup‖Sn+ω – Snω‖ = sup
ω∈B

∥∥γn+ω + ( – γn+)Tn+ω –
(
γnω + ( – γn)Tnω

)∥∥

≤ |γn+ – γn| sup
ω∈B

|ω| + ( – γn+) sup
ω∈B

‖Tn+ω – Tnω‖

+ |γn+ – γn| sup
ω∈B

‖Tnω‖

≤ |γn+ – γn|M + sup
ω∈B

‖Tn+ω – Tnω‖,

where M = supn≥{‖ω‖,‖Tnω‖}. By (v) and the fact that {Tn} satisfies the AKTT-
condition, we have

∞∑

n=

sup
ω∈B

‖Sn+ω – Snω‖ < ∞,

that is, {Sn} satisfies the AKTT-condition. Now we define the nonexpansive mapping S :
C → C by Sx = limn→∞ Snx for all x ∈ C. Since {γn} is bounded, there exists a subsequence
{γni} of {γn} such that γni → ν as i → ∞. It follows that

Sx = lim
i→∞ Sni x = lim

i→∞
[
γni x + ( – γni )Tni x

]
= νx + ( – ν)Tx, ∀x ∈ C.

That is F(S) = F(T). Hence F(S) =
⋂∞

n= F(Tn) =
⋂∞

n= F(Sn). On the other hand we have

‖xn – Sxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Sxn‖
≤ ‖xn – Snxn‖ + sup

ω∈{xn}
‖Snω – Sω‖.

This implies by Lemma . and () that

lim
n→∞‖xn – Sxn‖ = . ()

Now we define a mapping h : C → C by

hx =
r∑

m=

ηmPC(I – λmAm)x, ∀x ∈ C,

where ηm = limn→∞ ηm
n . From Lemma ., h is nonexpansive such that

F(h) =
r⋂

m=

F
(
PC(I – λmAm)

)
=

r⋂

m=

VI(C, Am) = .

Next, we define a mapping U : C → C by Ux = δSx+(–δ)hx, where δ ∈ (, ) is a constant.
Then by Lemma ., U is a nonexpansive and

F(U) = F(S) ∩ F(h) =
∞⋂

n=

F(Tn) ∩  = F = F(T) ∩ .
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Note that

‖xn – hxn‖ ≤ ‖xn – zn‖ + ‖zn – hxn‖

≤ ‖xn – zn‖ +
∥∥∥∥

m∑

n=

ηm
n PC(I – λmAm)xn –

r∑

m=

ηmPC(I – λmAm)xn

∥∥∥∥

≤ ‖xn – zn‖ + M
r∑

m=

∣∣ηm
n – ηm∣∣.

In view of restriction (ii), we find from () that

lim
n→∞‖xn – hxn‖ = . ()

Setting xt = QC[tγ fxt + (I – tμF)Uxt], it follows from Lemma . that {xt} converges
strongly to a point x∗ ∈ F(U) = F , in which x∗ is the unique solution of the variational
inequality (). From () and (), we have

‖xn – Uxn‖ =
∥∥δ(xn – Sxn) + ( – δ)(xn – hxn)

∥∥

≤ δ‖xn – Sxn‖ + ( – δ)‖xn – hxn‖ → .

Step . We show that

lim sup
〈
(γ f – μF)x∗, jq

(
xn – x∗)〉 ≤ ,

where x∗ is a solution of the variational inequality (). To show this, we can choose a
subsequence {xnj} of {xn} such that

lim sup
n→∞

〈
(γ f – μF)x∗, jq

(
xn – x∗)〉 = lim

j→∞
〈
(γ f – μF)x∗, jq

(
xnj – x∗)〉.

By reflexivity of a Banach space X and since {xn} is bounded, there exists a subsequence
{xnj} of {xn} which converges weakly to z. Without loss of generality, we can assume that
xnj ⇀ z. Since ‖xn – Uxn‖ →  by step , we obtain z = Uz and we have z ∈ F(U). Since
Banach space X has a weakly sequentially continuous generalized duality mapping, we
obtain

lim sup
n→∞

〈
(γ f – μF)x∗, jq

(
xn – x∗)〉 = lim

j→∞
〈
(γ f – μF)x∗, jq

(
xnj – x∗)〉

=
〈
(γ f – μF)x∗, jq

(
z – x∗)〉 ≤ .

Step . Finally, we show that limn→∞ ‖xn – x∗‖ = . Setting hn = βnγ fxn + (I – βnμF)Snyn,
∀n ≥ . Then we can rewrite xn+ = QChn. It follows from Lemmas . and . that

∥∥xn+ – x∗∥∥q

=
〈
QChn – hn, jq

(
xn+ – x∗)〉 +

〈
hn – x∗, jq

(
xn+ – x∗)〉

≤ 〈
hn – x∗, jq

(
xn+ – x∗)〉
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= βn
〈
γ fxn – μFx∗, jq

(
xn+ – x∗)〉 +

〈
(I – βnμF)

(
Snyn – x∗), jq

(
xn+ – x∗)〉

= βn
〈
γ
(
fxn – fx∗), jq

(
xn+ – x∗)〉 + βn

〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉

+
〈
(I – βnμF)

(
Snyn – x∗), jq

(
xn+ – x∗)〉

≤ βnγ L
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + βn

〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉

+ ( – βnτ )
∥∥yn – x∗∥∥∥∥xn+ – x∗∥∥q–

≤ βnγ L
∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + βn

〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉

+ ( – βnτ )
∥
∥xn – x∗∥∥∥∥xn+ – x∗∥∥q–

=
(
 – (τ – γ L)βn

)∥∥xn – x∗∥∥∥∥xn+ – x∗∥∥q– + βn
〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉

≤ (
 – (τ – γ L)βn

)[ 
q
∥∥xn – x∗∥∥q +

q – 
q

∥∥xn+ – x∗∥∥q–
]

+ βn
〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉,

which implies that

∥∥xn+ – x∗∥∥q ≤  – (τ – γ L)βn

 + (q – )(τ – γ )βn

∥∥xn – x∗∥∥q

+
qβn

 + (q – )(τ – γ L)βn
+

〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉

≤ (
 – (τ – γ L)βn

)∥∥xn – x∗∥∥q

+
qβn

 + (q – )(τ – γ L)βn
+

〈
γ fx∗ – μFx∗, jq

(
xn+ – x∗)〉.

Put an = βn(τ – γ L) and bn = q
(+(q–)(τ–γ L)βn)(τ–γ L) + 〈γ fx∗ – μFx∗, jq(xn+ – x∗)〉. Applying

Lemma ., we obtain xn → x∗ as n → ∞. This completes the proof. �

Remark . Theorem . improves and extends Theorem .; see Cho and Kang [].
Especially, our results extend the above results from Hilbert space to a more general q-
uniformly smooth Banach space.
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