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Abstract
The goal of this article is to present a recently developed numerical approach for
solving fractional stochastic differential equations with a singular Caputo kernel and a
nonsingular Caputo–Fabrizio and Atangana–Baleanu (ABC) kernel. The proposed
method is based on the discrete Temimi–Ansari method, which is combined with
three different numerical schemes that are appropriate for the new fractional
derivative operators. The proposed technique is used to investigate the effects of
Gaussian white-noise and Gaussian colored-noise perturbations on the potential
source and resistance in fractional stochastic electrical circuits. The proposed
method’s robustness and efficiency were demonstrated by comparing its results to
those of the stochastic Runge–Kutta method (SRK). The valuable point in this article is
that the resulting numerical scheme is able to combine two powerful methods that
can be extended into more complex stochastic models. The comparison of different
fractional derivatives using Mathematica 12 software has been obtained and the
simulation results demonstrate the merit of the contributed method.
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1 Introduction
Stochastic differential equations SDEs are a combination of deterministic differential
equations and a noise term. Researchers’ attention has been attracted to SDEs for being
useful to model phenomena in various fields, such as physics, engineering, economics and
finance, population, and biology.

In an electrical circuit, there are two types of noise: external noise and internal noise.
External noise denotes oscillations outside the deterministic system subjected to external
factors. Adding a noise term to the right side of a deterministic equation is a well-known
example with numerous engineering applications. Internal noise, such as burst noise, low-
frequency noise, shot noise, and thermal noise, is created by the discontinuous nature of
electrical signals [1]. In the internal noise, the magnitude of the random field at a given
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point and time is not depending on its magnitude at other points or times. Internal noise
is referred to as white noise. Clearly, there is no electrical circuit without thermal noise
at a certain temperature. Random impacts from both external and internal noise can be
obtained by replacing the deterministic model’s input and internal parameters with ran-
dom processes [2]. Many researchers have investigated the effects of this type of noise
in electrical circuits, see [3] for more information. Colored noise is used as an external
noise in which the interaction of the random field between differential points and times
can be nonzero. Many researchers have studied replacing white noise with colored noise
in a stochastic differential equation [4, 5]. Following Ito’s work [6] this type of random dif-
ferential equation can be referred to as stochastic differential equations. The solution of
stochastic differential equations explains Markov diffusion processes [7].

Fractional calculus has recently been applied in a variety of fields, including thermoelec-
tricity, fluid dynamics, economics, control system design, reaction–diffusion equations,
signal processing, and many others [8, 9]. The main idea behind using fractional differ-
entiation is to describe memory effects using the property of fractional-order derivatives.
Fractional-order derivatives and integrals consider system memory, patrimonial proper-
ties, and nonlocal divided effects; these effects are critical for depicting real-world prob-
lems. Furthermore, fractional-order derivatives are eventually nonlocal operators; the
next state of a model depends not only on its current state but also on all of its previ-
ous states. Variables are rated using fractional derivatives as a result of the states. That is,
the integral represented the store memory as an inverse operator.

The Riemann–Liouville and Liouville–Caputo fractional-order derivatives and integrals
are not the only ones known. These definitions include a single function that represents
the kernel and describes the system’s memory effects. As none of them can accurately de-
scribe the full effects of memory effects, Caputo–Fabrizio (CF) and Atangana–Baleanu
(ABC) proposed new operators with local and nonsingular kernels that use the exponen-
tial decay law rather than the power law. These nonsingular fractional derivatives can ef-
ficiently model the memory effect and systems with partial waste or squandering [10]. In
recent years, fractional calculus has been applied to the development of the fractional-
derivatives model, which represents the behavior of various types of fractional-derivative
electrical circuit models [11–15].

In the following section, we will present three popular definitions for fractional opera-
tors, which will be used in this article to model the RC model.

Definition 1 ([16]) For v : [a, b] → Rm, m – 1 < α ≤ m and m ∈ N , the Caputo αth-order
fractional derivative and the fractional integral are, respectively, defined by

C
a Dα

t v(t) =
1

�(m – α)

∫ t

a
v(m)(s)(t – s)m–α–1 ds,

aIα
t v(t) =

1
�(α)

∫ t

a
v(s)(t – s)α–1 ds.

However, the main disadvantage of the Caputo derivative is that it provides a unique
kernel in the maintenance of domestic dynamics. To overcome this stiffness, the follow-
ing definitions introduced the Caputo–Fabrizio (CF) operator with the exponential kernel
[12] and the ABC derivative with the Mittag–Leffler (ML) function [13]. In [11–14, 16–19]
some unique applications of these nonsingular fractional derivatives are discussed.
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Definition 2 ([17]) For v ∈ H1(a, b), 0 < α ≤ 1, the CF αth αth-order fractional derivative
and the fractional integral are, respectively, defined by

CF
a Dα

t v(t) =
1

(1 – α)

∫ t

a

dv(s)
ds

Exp

[
–

α

1 – α
(t – s)

]
ds,

CF
a Iα

t v(t) = (1 – α)v((t) + α

∫ t

a
v(s) ds.

Definition 3 ([16, 17]) For v ∈ H1(a, b), 0 < α ≤ 1, the ABC αth-order fractional derivative
and the fractional integral are, respectively, defined by

ABC
a Dα

t v(t) =
β(α)

(1 – α)

∫ t

a

dv(s)
ds

Eα

[
–

α

1 – α
(t – s)α

]
ds,

ABC
a Iα

t v(t) =
(1 – α)
β(α)

v((t) +
α

β(α)�(α)

∫ t

a
v(s)(t – s)α–1 ds,

where Eα is the Mittag–Leffler (ML) function and β(α) is the normalization function with
β(0) = β(1) = 1. for facilitation we take β(α) = 1.

The Temimi–Ansari approach has been used to investigate several forms of differential
equations [20, 21]. The discrete Temimi–Ansari method (DTAM) was developed by the
authors in [22, 25] to solve a wide class of stochastic nonlinear differential equations where
the classic TAM is coupled with the finite-difference numerical scheme.

In this article, a variant of the Discrete Temimi–Ansari method, known as the fractional
Discrete Temimi–Ansari method (FDTAM), is presented. The Discrete Temimi–Ansari
method’s remarkable technique is combined with three numerical schemes of the frac-
tional operator with a singular kernel of Caputo type and nonsingular kernels of Caputo–
Fabrizio and Atangana–Baleanu ABC types. This method is characterized by combin-
ing two powerful methods for obtaining approximate numerical solutions for fractional
stochastic models. It is important to note that the proposed method is efficient in reduc-
ing the computational work compared to traditional numerical methods, owing to the
high precision of the numerical result.

The proposed technique was successfully used to investigate the effects of Gaussian
white-noise and Gaussian colored-noise perturbations on the potential source and resis-
tance of fractional linear electrical circuits with fractional order as follows:

0Dα
t v(t) = F(t, v) + G(t) + f (t)n(t), v(0) = a, (1)

where the fractional time derivative 0Dα
t v(t) can be of the type C

0 Dα
t or CF

0 Dα
t or ABC

0 Dα
t ,

the fractional-order of a derivative is α ∈ [0, 1] and t > 0. v(t) the unknown function, t
represents the independent variable, F(t, v) and G(t) are linear or nonlinear functions,
and n(t) is Gaussian white noise that can be derived from the Wiener process ω(t) by:

n(t) = �
dω(t)

dt
. (2)

The expectation E[n(t)] = 0, and finite variance Var[n(t)] = �2, assume � = 1.
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This article is organized as follows: The numerical schemes for the fractional discrete
Temimi–Ansari Method (FDTAM) are presented in Sect. 2. The proposed method was
applied to the fractional stochastic linear electric circuit in Sect. 3 under the effects of
Gaussian white and colored noise. Finally, Sect. 4 contains the conclusions.

2 Fractional discrete Temimi–Ansari method (FDTAM) and convergence
analysis

In this section, we present a new variation of the Discrete Temimi–Ansari method DTAM
for handling stochastic linear electrical circuits with fractional order, which includes re-
sistances, inductances, capacitances, and voltage sources for a new fractional operator
with a singular kernel of Caputo type and nonsingular kernels of Caputo–Fabrizio and
Atangana–Baleanu ABC types.

Consider the following differential equation in the form

L
[
v(t)

]
+ N

[
v(t)

]
+ g(t) = 0, (3a)

with initial conditions I
(
v,

(
djv

)
/
(
dtj)) = 0, (3b)

where L and N exemplify the linear and the nonlinear operators, respectively, and g(t)
exemplifies the nonhomogeneous term. The Temimi–Ansari method was used to solve
the differential Eq. (1) as follows:

To obtain the initial approximate function v0(t), this is the solution to the following
initial-value problem

L
[
v0(t)

]
+ g(t) = 0, I

(
v0,

(
djv0

)
/
(
dtj)) = 0. (4)

To acquire the next sacrificial function v1(t), the following problem must be solved

L
[
v1(t)

]
+ N

[
v0(t)

]
+ g(t) = 0, I

(
v1,

(
djv1

)
/
(
dtj)) = 0. (5)

Also, the nth approximate functions vn(t) can be evaluated in the same way. Then,

L
[
vn(t)

]
+ N

[
vn–1(t)

]
+ g(t) = 0, n = 2, 3, . . . , I

(
vn,

(
djvn

)
/
(
dtj)) = 0. (6)

The produced iterative solution becomes close to the exact solution as the number of
iterations increases

v(t) = lim
n→∞ vn(t). (7)

The authors of [20, 22, 23] present an expanded investigation of error analysis and con-
vergence standards for the TAM approach applied to an ordinary differential equation and
its extension to systems of differential equations.
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To present a study of convergence, we will start by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ0 = v0(t),

ξ1 = �[ξ0],

ξ2 = �[ξ0 + ξ1],
...

ξn = �[ξ0 + ξ1 + · · · + ξn–1].

(8)

By defining the factor �[v(t)] as

�
[
ξn(t)

]
= vn(t) –

n–1∑
i=0

vi(t), i = 1, 2, 3, . . . , (9)

given that vn(t) is the solution for TAM.
Using these standards, convenient provisions for the convergence of TAM are discussed

by the following theorems.

Theorem 1 The chain solution v(t) = limn→∞ vn(t) will appear as the exact solution to the
given problem if this chain solution is convergent.

Proof See [18, 22]. �

Theorem 2 Assume that � stated in Eq. (9), is a factor from H to H , where H is a Hilbert
space. The chain solution v(t) = limn→∞ vn(t) converges if ∃0 < η < 1 such that

H
∥∥�[ξ0 + ξ1 + · · · + ξn]

∥∥ ≤ η
∥∥�[ξ0 + ξ1 + · · · + ξn–1]

∥∥ ∀η∈N∪{0}.

This notion is a specific state of the fixed-point notion and it is enough to prove the con-
vergence of TAM.

Proof See [18, 22]. �

Theorem 3 Whether the chain solution
∑∞

i=0 vi(t) is convergent to v(t), then the maximum
error En(t) will be

En(t) ≤ 1
1 – ρ

ρn‖v0‖, (10)

where the chain
∑n–1

i=0 vi(t) is employed to solve a wide class of nonlinear problems.

Proof See [18, 22]. �

The acquired solution by the TAM converges to the exact solution as: ∃ 0 < η < 1 such
that

Dn =

⎧⎨
⎩

‖ξn‖
‖ξn–1‖ ‖ξn‖ 
= 0,

0, ‖ξn‖ = 0.
(11)
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The power-chain solution
∑∞

n=0 vn(t) converges to the exact solution v(t) when 0 ≤ Dn <
1,∀n = 0, 1, 2, . . .

Only for α = 1, can the solution to the stochastic Eq. (1) be achieved using the TAM
technique, however, due to the complexity of integrating random functions, only a few
iterations are possible. As the fractional time derivative 0Dα

t t can be singular or nonsin-
gular of type C

0 Dα
t or CF

0 Dα
t or ABC

0 Dα
t , we propose the fractional discrete Temimi–Ansari

(FDTAM) method to solve stochastic nonlinear differential Eq. (1) for a fractional opera-
tor with a local singular kernel type Caputo and a nonsingular kernel of Caputo–Fabrizio
and Atangana–Baleanu ABC types as follows:

2.1 Liouville–Caputo sense
The FDTAM scheme for a Caputo fractional operator to approximate the solution for
problem (1) will be as follows:

Assume: an n-point uniform mesh on [0, T] as {i : i = 1, . . . , n}, 0 < t1 < t2 < · · · < tn = T
with ti – ti–1 = q. Let h ∈ (0, q] be a fixed constant for a fixed h.

The finite-difference form to approximate dω(tj+1)
dt is given by

dω(ti+1)
dt

=
ωi+1 – ωi

h
. (12)

The generalized Euler’s scheme to approximate C
0 Dα

t v0(tj+1) is given by

v0(ti+1) = v0(ti) +
hα

�(α + 1)

[
G(ti) + f (ti)

ω(ti+1) – ω(ti)
h

]
, (13)

where v0(ti+1) = vi+1
0 , v0(ti) = vi

0,ω(ti+1) = ωi+1 and ω(ti) = ωi. Therefore, the first refined
equation to approximate the initial approximate function v0 (ti+1) is

vi+1
0 = vi

0 +
hα

�(α + 1)

[
G(ti) + f (ti)

ωi+1 – ωi

h

]
. (14a)

The next discrete approximate function v1 (ti+1) and the nth discrete approximate func-
tions vn (ti+1) can be computed as follows

vi+1
1 = vi

1 +
hα

�(α + 1)

[
F
(
ti, vi

0
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]
, (14b)

vi+1
n = vi

n +
hα

�(α + 1)

[
F
(
ti, vi

n–1
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]
. (14c)

The solution will be calculated through k runs of various patterns of the Wiener process
ω(t), and then the refined scheme (14a)–(14c) can be written in the following form:

vi+1
0,k = vi

0,k +
hα

�(α + 1)

[
G(ti) + f (ti)

ωi+1 – ωi

h

]
, (15a)

vi+1
1,k = vi

1,k +
hα

�(α + 1)

[
F
(
ti, vi

0,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]
, (15b)

vi+1
n,k = vi

n,k +
hα

�(α + 1)

[
F
(
ti, vi

n–1,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]
. (15c)



Fareed et al. Advances in Continuous and Discrete Models          (2023) 2023:5 Page 7 of 17

We must select a time step h to guarantee system convergence of (15a)–(15c). Setting the
convergence gauge of the fixed-point iteration by dividing the right-hand side of Eq. (15b)
we obtain:

(
hα

�(α + 1)

)
∂F(ti, vi

0,k)
∂vi

0,k
< 1, (16)

h <
(

�(α + 1)
∂F(ti ,vi

0,k )
∂vi

0,k

) 1
α

. (17)

Let g1 =
∂F(ti ,vi

0,k )
∂vi

0,k
, then we have:

h <
(

�(α + 1)
g1

) 1
α

. (18)

The condition h < ( �(α+1)
g1

) 1
α is an appropriate condition for the time step used in the

Liouville–Caputo sense for convergence. The other Eqs. (15a) and (15c) can use the same
condition because of symmetry.

2.2 Caputo–Fabrizio sense
The FDTAM scheme for a Caputo–Fabrizio fractional operator to approximate the solu-
tion for the problem (1) will be as follows:

The Caputo–Fabrizio scheme to approximate CF
0 Dα

t v0(tj+1) is given by

v0(ti+1) = v0(ti) +
(

1 – α

β(α)
+

3αh
2β(α)

)[
G(ti) + f (ti)

ω(ti+1) – ω(ti)
h

]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
G(ti–1) + f (ti–1)

ω(ti) – ω(ti–1)
h

]
, (19)

where v0(ti+1) = vi+1
0 , v0(ti) = vi

0,ω(ti+1) = ωi+1, and ω(ti) = ωi. Therefore, the first iterative
equation to approximate the initial approximate function v0 (ti+1) is

vi+1
0 = vi

0 +
(

1 – α

β(α)
+

3αh
2β(α)

)[
G(ti) + f (ti)

ωi+1 – ωi

h

]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
G(ti–1) + f (ti–1)

ωi – ωi–1

h

]
. (20a)

The next Caputo–Fabrizio approximate function v1 (ti+1) and the nth Caputo–Fabrizio
approximate functions vn (ti+1) can be computed as follows

vi+1
1 = vi

1 +
(

1 – α

β(α)
+

3αh
2β(α)

)[
F
(
ti, vi

0
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
F
(
ti–1, vi–1

0
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
, (20b)

vi+1
n = vi

n +
(

1 – α

β(α)
+

3αh
2β(α)

)[
F
(
ti, vi

n–1
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]
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+
(

1 – α

β(α)
+

αh
2β(α)

)[
F
(
ti–1, vi–1

n–1
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
. (20c)

The solution will be calculated using k runs of various Wiener process ω(t) patterns, and
the refined scheme (20a)–(20c) can be written as follows:

vi+1
0,k = vi

0,k +
(

1 – α

β(α)
+

3αh
2β(α)

)[
G(ti) + f (ti)

ωi+1 – ωi

h

]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
G(ti–1) + f (ti–1)

ω(ti) – ω(ti–1)
h

]
, (21a)

vi+1
1,k = vi

1,k +
(

1 – α

β(α)
+

3αh
2β(α)

)[
F
(
ti, vi

0,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
F
(
ti–1, vi–1

0,k
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
, (21b)

vi+1
n,k = vi

n,k +
(

1 – α

β(α)
+

3αh
2β(α)

)[
F
(
ti, vi

n–1,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

1 – α

β(α)
+

αh
2β(α)

)[
F
(
ti–1, vi–1

n–1,k
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
. (21c)

For facilitation we take β(α) = 1.

2.3 Atangana–Baleanu sense
The FDTAM scheme for the Atangana–Baleanu fractional operator will be as follows to
approximate the solution to problem (1):

The Atangana–Baleanu scheme to approximate ABC
0 Dα

t v0(tj+1) is given by

v0(ti+1) = v0(ti) +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
G(ti) + f (ti)

ω(ti+1) – ω(ti)
h

]

+
(

hα

β(α)�(α)

)[
G(ti–1) + f (ti–1)

ω(ti) – ω(ti–1)
h

]
, (22)

where v0(ti+1) = vi+1
0 , v0(ti) = vi

0,ω(ti+1) = ωi+1, and ω(ti) = ωi. Therefore, the first iterative
equation to approximate the initial approximate function v0 (ti+1) is

vi+1
0 = vi

0 +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
G(ti) + f (ti)

ωi+1 – ωi

h

]

+
(

hα

β(α)�(α)

)[
G(ti–1) + f (ti–1)

ω(ti) – ω(ti–1)
h

]
. (23a)

The next Atangana–Baleanu approximate function v1 (ti+1) and the nth Atangana–
Baleanu approximate functions vn (ti+1) can be computed as follows:

vi+1
1 = vi

1 +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
F
(
ti, vi

0
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

hα

β(α)�(α)

)[
F
(
ti–1, vi–1

0
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
, (23b)

vi+1
n = vi

n +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
F
(
ti, vi

n–1
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

hα

β(α)�(α)

)[
F
(
ti–1, vi–1

n–1
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
. (23c)
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The solution will be calculated using k runs of various Wiener process ω(t) patterns, and
the refined scheme (23a)–(23c) can be written as follows:

vi+1
0,k = vi

0,k +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
G(ti) + f (ti)

ωi+1 – ωi

h

]

+
(

hα

β(α)�(α)

)[
G(ti–1) + f (ti–1)

ω(ti) – ω(ti–1)
h

]
, (24a)

vi+1
1,k = vi

1,k +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
F
(
ti, vi

0,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

hα

β(α)�(α)

)[
F
(
ti–1, vi–1

0,k
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
, (24b)

vi+1
n,k = vi

n,k +
(

hα

β(α)�(α)

)(
1 +

(1 – α)�(α)
hα

)[
F
(
ti, vi

n–1,k
)

+
(

G(ti) + f (ti)
ωi+1 – ωi

h

)]

+
(

hα

β(α)�(α)

)[
F
(
ti–1, vi–1

n–1,k
)

+
(

G(ti–1) + f (ti–1)
ωi – ωi–1

h

)]
. (24c)

Computing the mean and variance of the resulting sequences {vn,1, vn,2, vn,3, . . . , vn,k} will
yield the solution’s mean and variance.

Finally, we obtain the mean and variance of the solution by taking the mean and vari-
ance of the solution sequences {vn,1, vn,2, vn,3, . . . , vn,k}. These smart proposed numerical
schemes are more effective than conventional TAM in solving fractional stochastic non-
linear differential equations with different fractional operators.

3 Applications
3.1 The mathematical model of an RLC circuit
An RLC circuit is an electrical circuit that uses a voltage or current source to drive a re-
sistor, a capacitor, and an inductor. According to Kirchhoff’s law, the charge v(t) at time t
at a fixed location in an electrical circuit fulfills the differential equation [15, 24].

L
d2v(t)

dt2 + R
dv(t)

dt
+

1
C

v(t) = q(t), v(0) = v0,
dv(0)

dt
= I0, (25)

where L is inductance, R is resistance, C is capacitance, and q(t) is the potential source at
time t. Now, we may have a state where some of the coefficients are not in the deterministic
form. The circuit is under an external voltage q(t), which is a superposition of a periodic
signal and white noise

q∗(t) = q(t) + βn(t). (26)

Using the stochastic version of the voltage source, the model of RLC can be written as:

L
d2v(t)

dt2 + R
dv(t)

dt
+

1
C

v(t) = q(t) + βn(t), v(0) = v0,
dv(0)

dt
= I0, (27)

where β is the intensity of the noise.
The solution of the stochastic RLC circuit model (27) with white Gaussian noise n(t)

produced using a strong Kloeden–Platen–Schurz scheme of order 1.5, which is included
in the Mathematica-12 software, is shown in Fig. 1.
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Figure 1 The solution of a stochastic RLC circuit with white noise

Figure 2 The solution of a stochastic RLC circuit with colored noise

White noise cannot be considered a stochastic process where the Wiener-process route
is not differentiable everywhere, but it can be approximated by conventional stochastic
processes with wide spectral bands, which are generally known as colored-noise processes.
The Ornstein–Uhlenbeck process n1(t) with zero mean and variance σ = 0.7 is the most
well-known example of this type of noise. It is generated using a linear stochastic differ-
ential equation driven by white noise as follows:

dn1(t)
dt

= –
1
τs

n1(t) + σ

√
2
τs

n(t), (28)

where τs = 100 ms and n(t) is a white Gaussian noise with zero mean and variance one.
Equation (28) can be written in the Ito integral form as

dn1(t) = –
1
τs

n1(t) dt + σ

√
2
τs

dω(t), (29)

where ω(t) is the Wiener process.
Replacing the white noise n(t) in Eq. (27) with the colored noise model (29) we obtain

the solution presented in Fig. 2.

3.2 The mathematical model of RC circuit
The condensation of charge in the RC circuit’s capacitor, which is modeled by an ordinary
differential equation and its stochastic equivalents, is solved for the stochastic case in this
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section. Each electrical circuit made up of an inductor, a resistor, and a capacitor can be
framed by an ordinary differential equation in which the differential operators’ parameters
are functions of the circuit elements. By adding white noise to the potential input source,
the deterministic ordinary differential equation can be converted to a stochastic one.

Assuming that v(t) is the charge on the capacitor and q(t) is the potential source applied
to the input of the RC circuit. Using Kirchoff’s second law,

q(t) = I(t)R +
v(t)
C

. (30)

Since I(t) = dv(t)
dt , we obtain the following equation:

dv(t)
dt

+
(
RC–1)v(t) = R–1q(t), (31a)

with initial condition

v(0) = v0, (31b)

where v(0) is the initial charge stored in the capacitor. The potential source and resistance
may not be deterministic but of the form:

q∗(t) = q(t) + βn(t), (32)

and

R∗ = R + “noise” = R + ζn1(t), (33)

where n(t) is the Gaussian white noise with mean zero and variance one, and n1(t), is a zero
mean, exponentially correlated stationary process, ζ ,β is the noise intensity, and they are
positive constants that signal the stochastic case’s deviation from the deterministic one,
and the correlated process n1(t), is the colored noise driven by Eq. (29).

Substituting (32) and (33) into (31a)–(31b) yields:

dv(t)
dt

+
(

1
C(R + ζn1(t))

)
v(t) =

(
1

(R + ζn1(t))

)(
q(t) + βn(t)

)
, (34a)

with initial condition

v(0) = v0. (34b)

The general model of the stochastic RC circuit can be written in the general form

dv
dt

= F(t, v) + G(t) + f (t)n(t), v(0) = a. (35)

Since the fractional derivatives ultimately include memory, then it is controversial to
apply a fractional extension on Eq. (35). If we exchange the time derivative of Eq. (35) by the
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Figure 3 The mean and variance of a fractional stochastic RC Eq. (36) for several values of α by 100 iterations
of CDTAM

Caputo (CD) or Caputo–Fabrizio (CF) or Atangana–Baleanu ABC fractional derivatives,
then we obtain Eq. (1).

Consider the fractional linear electrical circuits based on the new fractional operator
with a Caputo local singular kernel and nonsingular kernels of the Caputo–Fabrizio and
Atangana–Baleanu ABC types. The time-domain fractional equations considered deriva-
tives in the range α ∈ (0, 1]. The numerical solutions were obtained using the FDTAM
approach, and some examples are provided, which involve electrical circuits with resis-
tances, inductances, capacitances, and voltage sources.

Case 1. External noise
Consider the Fractional Stochastic RC Equation with only external noise in the potential

source of the form

0Dα
t v(t) + Av(t) = B + Dn(t), v(0) = v0, t ≥ 0, (36)

where A = (RC)–1, B = R–1q(t), and D = βR–1.
The parameters used in the stochastic model of the RC circuit are as follows [2]; R =

10�; C = 1F ; q(t) = q = 20V ;β = 1.
Application is made of the constructed fractional discrete Temimi–Ansari method (FD-

TAM) schemes (15a)–(15c), (21a)–(21c), and (24a)–(24c) to the fractional stochastic RC
equation for Caputo, Caputo–Fabrizio, and Atangana–Baleanu ABC types (36). Using
h = 0.01, Figs. 3(a), 4(a), 5(a) show the expectation of sequences v200,1, v200,2, v200,3, . . . ,
v200,1000 for different orders of the fractional-derivative operator α = 1, 0.9, 0.8, and the
solution by the stochastic Runge–Kutta method (SRK) at α = 1. Figs. 3(b) 4(b), and 5(b)
depict variances by proposed schemes for different orders of the fractional derivative op-
erator α = 1, 0.9, 0.8, and the solution by stochastic Runge–Kutta method (SRK) at α = 1.
These figures confirmed that the results of (FDTAM) schemes are excellently compatible
with the stochastic Runge–Kutta method (SRK) at α = 1. Table 1 compares the approxi-
mate solutions of the fractional stochastic RC model with external noise for the fractional
derivatives CD, CF, and ABC at α = 1, α = 0.9, and α = 0.8 to the solution of stochastic
Runge–Kutta (SRK) method.

Case 2. Internal and external noise



Fareed et al. Advances in Continuous and Discrete Models          (2023) 2023:5 Page 13 of 17

Figure 4 The mean and variance of a fractional stochastic RC Eq. (36) for several values of α by 100 iterations
of CFTAM

Figure 5 The mean and variance of a fractional stochastic RC Eq. (36) for several values of α by 100 iterations
of CFTAM

Consider the Fractional Stochastic RC model with both internal and external noise in
potential source and resistance, respectively, of the form

0Dα
t v(t) +

(
1

C(R + ζn1(t))

)
v(t) =

(
1

(R + ζn1(t))

)(
q(ti) + βn(t)

)
. (37)

Applying the constructed Fractional Discrete Temimi–Ansari method (FDTAM)
schemes (15a)–(15c), (21a)–(21c) and (24a)–(24c), respectively, for Caputo, Caputo–
Fabrizio, and Atangana–Baleanu ABC types on the fractional stochastic RC Eq. (37). By se-
lecting h = 0.01, Figs. 6(a), 7(a), 8(a) show the expectation of sequences {v100,1, v100,2, v100,3,
. . . , v100,1000} for different orders of the fractional derivative operator: α = 1, 0.9, 0.8.
Figs. 6(b), 7(b), 8(b) show the variances by the proposed schemes for different orders of
the fractional derivative operator: α = 1, 0.9, 0.8. These figures confirmed that the results
of (CDTAM), (CFTAM), and (ABTAM) are compatible with each other in an excellent
modality. Table 2 shows a time comparison of the approximate solutions of the fractional
stochastic RC model with external and internal noise for CD, CF, and ABC fractional
derivatives at α = 1, α = 0.9, and α = 0.8.

A new fractional stochastic method for approximating a fractional stochastic RC circuit
under the effects of Gaussian white noise and Gaussian colored noise perturbations on the
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Figure 6 The mean and variance of a fractional stochastic RC Eq. (37) for several values of α by 100 iterations
of CDTAM

Figure 7 The mean and variance of a Fractional stochastic RC Eq. (37) for several values of α by 100 iterations
of CFTAM

Figure 8 The mean and variance of a Fractional stochastic RC Eq. (37) for several values of α by 100 iterations
of ABCTAM

potential source and resistance of fractional linear electrical circuits and fractional oper-
ator with local singular kernel of Caputo–Fabrizio and ABC types has been developed.
Tables 1 and 2 show time comparisons between an approximate solution with CD, CFD,
ABC, and the Stochastic Runge–Kutta method for the stochastic RC circuit model and
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Table 1 Time comparison of the approximate solutions of fractional stochastic RC model with
external noise for CD, CF, and ABC fractional derivatives at α = 1, α = 0.9, and α = 0.8 and the solution
of the Stochastic Runge–Kutta (SRK) method

Time CD CF ABC SRK

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

10 0.999304 0.9906497 1.050293 1.013083 1.202816 1.0074569 1.011102 0.806871 1.118561 1.0121553
20 1.013781 1.0073171 1.081426 1.059922 1.014441 1.2262395 0.891621 0.964927 0.963199 1.0023026
30 1.003784 0.9606641 1.036778 0.940042 1.095935 1.2146484 0.941030 1.117160 0.982169 1.0042459
40 0.973298 1.0492959 0.938137 1.009827 0.900094 1.5188262 0.989640 0.749823 0.680580 1.0014909
50 1.025356 1.0147813 0.985297 1.028005 0.672779 1.0174633 1.075177 1.124972 0.856008 1.0027986
60 1.015256 1.0591548 1.048250 0.875409 1.266037 1.0606401 1.080171 0.944387 1.062668 0.9892436
70 0.918271 1.0319845 0.937035 0.957743 0.779292 1.0886256 1.109512 0.948810 1.258928 1.0041955
80 0.926106 0.9709640 0.945952 0.975902 1.141334 0.9260061 1.004276 1.095910 1.062043 1.0013826
90 1.005957 1.0632894 1.013453 1.000967 0.674245 0.8481464 0.971001 0.857424 1.007927 1.0048435
100 0.906339 0.9907657 1.015398 0.987498 0.749267 0.9955613 1.009571 1.219733 1.110964 1.0009460

Table 2 Time comparison of the approximate solutions of fractional stochastic RC model with
external and internal noise for CD, CF, and ABC fractional derivatives at α = 1, α = 0.9, and α = 0.8

Time CD CF ABC

α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8 α = 1 α = 0.9 α = 0.8

10 1.0417211 0.9586769 0.924926 0.852404 1.007488 1.1219353 1.0240777 1.1515323 1.101921
20 1.0431299 0.9238934 1.054235 0.994936 0.990548 1.0672070 0.8622823 1.2555819 0.583912
30 0.9610292 0.8936729 0.839914 0.976311 0.864789 0.8589190 0.9435111 1.2279188 1.071219
40 0.9945418 0.9867584 1.098535 0.960077 0.966953 0.8607355 0.9581774 0.7981606 1.140971
50 0.9578704 0.9875809 0.917085 0.985015 0.957769 1.0081455 0.9893450 0.9361715 1.254575
60 0.9501872 0.9148090 1.085565 1.027849 1.040610 1.1842127 0.9770676 1.2336195 0.933935
70 0.9406390 0.9989409 0.930192 0.997489 0.927629 0.9661507 1.0473299 1.2598179 1.181909
80 0.9630779 0.9705497 0.998849 0.984759 0.789988 1.0511748 0.9625619 0.9911711 0.979103
90 0.8660355 1.0325249 1.004245 1.025733 0.976182 1.1151639 0.9282355 0.9930742 0.402819
100 1.0123927 1.0645085 1.072624 0.969628 1.066534 1.0733375 1.0349394 1.4951479 0.840118

the newly presented numerical schemes for two different types of noise. The results show
that the proposed method is trustworthy and can be applied to more complex stochastic
problems in engineering sciences.

4 Conclusions
To overcome the limitations of the traditional Riemann–Liouville and Caputo fractional
derivatives, new types of fractional differentiation with nonlocal and nonsingular ker-
nels have recently been implemented. This paper introduces and applies a new numerical
scheme to solve the linear fractional stochastic RC circuit model for a new fractional op-
erator with Caputo local singular kernel and nonsingular kernel of Caputo–Fabrizio CF
and Atangana–Baleanu ABC types. This article is dedicated to the development of a new
numerical scheme that combines the fundamental theorem of fractional calculus and the
recently developed DTAM approach. Both white and colored noise have been successfully
implemented using the new proposed numerical approach. Unquestionably, the new nu-
merical scheme is very efficacious and converges toward a solution very rapidly compared
with approximate and stochastic Runge–Kutta solutions.
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