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1 Introduction

The idea of the Deep Ritz Method is to use variational energies as an objective function for
neural network training to obtain a finite-dimensional optimization problem that allows
solving the underlying partial differential equation approximately. The idea of deriving a
finite-dimensional optimization problem from variational energies dates back to Ritz [28],
was widely popularized in the context of finite element methods (see, e.g., Braess [4]), and
was recently revived by E and Yu [13] using deep neural networks. In the following, we
give a more thorough introduction to the Deep Ritz Method. Let € R? be a bounded
domain and consider the variational energy corresponding to the Lagrangian L and a force

f, namely
E: X—R, E(u) = f L(Vu(x), u(x),x) — f(x)u(x) dx, (1)
Q

defined on a suitable function space X, usually a Sobolev space W?(Q2). One is typically
interested in minimizers of E on subsets &/ € X where U encodes further physical con-
straints, such as boundary conditions. Here, we consider either unconstrained problems
or zero Dirichlet boundary conditions and use the notation U = X, for the latter case. In

other words, for zero boundary conditions, one aims to find

u € argmin /Q L(Vv(x), v(x),x) — fx)v(x) d. (2)

veXo
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To solve such a minimization problem numerically, the idea dating back to Ritz [28] is to

use a parametric ansatz class
A={upeX|0e®CR}cU 3)

and to consider the finite-dimensional minimization problem of finding

0" e argmin/S;L(Vve (%), Vg(x),x) —f®)vo(x)dx

0ec®

which can be approached by different strategies, depending on the class A. For instance,
if A is chosen to be a finite element ansatz space or polynomials and the structure of E is
simple enough, one uses optimality conditions to solve this problem.

In this manuscript, we focus on ansatz classes that are given through (deep) neural net-
works. When choosing such ansatz functions, the method is known as the Deep Ritz
Method and was recently proposed by E and Yu [13]. Neural network type ansatz func-
tions possess a parametric form as in (3), however, it is difficult to impose zero boundary
conditions on the ansatz class A. To circumvent this problem, one can use a penalty ap-
proach, relaxing the energy to the full space, but penalizing the violation of zero boundary
conditions, to include these. This means that for a penalization parameter A > 0 one aims
to find

0; € argmin/ L(Vvy(x), vo (%), x) —f (x)ve (%) dx + A/ V2 ds. (4)
Q

0e® Q2

The idea of using neural networks for the approximate solution of PDEs can be traced
back at least to the works of Lee and Kang [21], Dissanayake and Phan-Thien [10],
Takeuchi and Kosugi [32], Lagaris et al. [20]. Since the recent successful application of neu-
ral network based methods to stationary and instationary PDEs by E et al. [12], E and Yu
[13], Sirignano and Spiliopoulos [30], there is an ever growing body of theoretical works
contributing to the understanding of these approaches. For a collection of the different
methods, we refer to the overview articles by Beck et al. [3], Han et al. [15].

The error in the Deep Ritz Method, which decomposes into an approximation, opti-
mization, and generalization terms, has been studied by Luo and Yang [25], Xu [34], Duan
etal. [11], Hong et al. [17], Jiao et al. [18], Lu et al. [23], Lu et al. [24], Miller and Zeinhofer
[26]. However, those works either consider non-essential boundary conditions or they re-
quire a term with a positive potential, apart from Miiller and Zeinhofer [26]. This excludes
the prototypical Poisson equation, which was originally treated by the Deep Ritz Method
by E and Yu [13]. More importantly, those works only study linear problems, which ex-
cludes many important applications.

In this work, we thus study the convergence of the Deep Ritz Method when a sequence
of growing ansatz classes (A4,),en, given through parameter sets ©,, and a penalization of
growing strength (A,),eny with &, /' 00, is used in the optimization problem (4) with more
modest assumptions on L, f, and Q.

Denote a sequence of (almost) minimizing parameters of problem (4) with parameter
set ©, and penalization A,, by 6,,. We then see that under mild assumptions on (A4,,),cn and
E, the sequence (ug, )qen of (almost) minimizers converges weakly in X to the solution of
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the continuous problem, see Theorem 7 in Sect. 3. We then strengthen this result in Sect. 4
where we show that the aforementioned convergence is uniform across certain bounded
families of right-hand sides f, see Theorem 12. This means that a fixed number of degrees
of freedom in the ansatz class can be used independently of the right-hand side to achieve
a given accuracy. Alternatively, given a discretization of the space of right-hand sides, one
may discretize the solution operator that maps f to the minimizer u of (2) and still obtain
a convergence guarantee (although this is not necessarily a viable numerical approach).

To the best of our knowledge, our results currently comprise the only convergence guar-
antees for the Deep Ritz Method for nonlinear problems. However, since we prove these
results using I'-convergence methods, no rates of convergence are obtained — as men-
tioned above, for linear elliptic equations some error decay estimates are known. Our
results also do not provide insight into the finite-dimensional optimization problem (4)
which is a challenging problem in its own right, see, for instance, Wang et al. [33], Courte
and Zeinhofer [8]. However, they guarantee that given one is able to solve (4) to a reason-
able accuracy, one is approaching the solution of the continuous problem (2).

Our results are formulated for neural network type ansatz functions due to the cur-
rent interest in using these in numerical simulations, yet other choices are possible. For
instance, our results do apply directly to finite element functions.

The remainder of this work is organized as follows. Section 2 discusses some prelimi-
naries and the used notation. The main results, namely I"-convergence and uniformity of
convergence are provided in Sects. 3 and 4, respectively. Finally, in Sect. 5 we discuss how

the p-Laplace and a phase field model fit into our general framework.

2 Notation and preliminaries
We fix our notation and present the tools that our analysis relies on.

2.1 Notation of Sobolev spaces and Friedrich’s inequality
We denote the space of functions on Q2 C R that are integrable in the pth power by L7(<2),
where we assume that p € [1, 00). Endowed with

gy = [ o,
Q

this is a Banach space, i.e., a complete normed space. If # is a multivariate function with
values in R™, we interpret |-| as the Euclidean norm. We denote the subspace of L?(£2)
of functions with weak derivatives up to order k in L?(2) by W*?(2), which is a Banach

space with the norm

k
Il gy 2= D 1D g
=0

This space is called a Sobolev space and we denote its dual space, i.e., the space consisting
of all bounded and linear functionals on W*?(Q2) by W*?(Q)*. The closure of all com-
pactly supported smooth functions C*($2) in W*?(2Q) is denoted by Wg P(Q). Tt is well
known that if © has a Lipschitz continuous boundary the operator that restricts a Lips-
chitz continuous function on Q to the boundary admits a linear and bounded extension
tr: WHP(Q) — LP(0R). This operator is called the trace operator and its kernel is precisely
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Wol ?(Q). Further, we write ||u||1»(30) whenever we mean ||tr(x)||1r(ag)- In the following we
mostly work with the case p = 2 and write H(/B)(Q) instead of W(ko’)z(Q).

In order to study the boundary penalty method, we use the Friedrich inequality which
states that the L7(€2) norm of a function can be estimated by the norm of its gradient and
boundary values. We refer to Griser [14] for a proof.

Proposition 1 (Friedrich’s inequality) Let  C R? be a bounded and open set with Lips-
chitz boundary 92 and p € (1,00). Then there exists a constant ¢ > 0 such that

Nl < € - (IVUl o) + N8ll5p o) for all u e WH(R). (5)
we(g) ) Cle)

2.2 Neural networks
Here we introduce our notation for the functions represented by a feedforward neural
network. Consider natural numbers d, n1, L, N, ...,N; € N and let

0= ((ALby),.... (AL, by))

be a tuple of matrix—vector pairs where A; € RN>Ni-1 b, € RN and Ny = d, N = m. Every
matrix—vector pair (4;, b;) induces an affine linear map T;: RN-1 — RN, The neural net-
work function with parameters 6 and with respect to some activation function p: R - R
is the function

uf: R — R™, x> T (p(Tr-1(p(- - p(T1())))))-

The set of all neural network functions of a certain architecture is given by {u | 6 € ©},
where © collects all parameters of the above form with respect to fixed natural numbers
d,m,L,Ny,...,Ny. If we have f = u for some 6 € ® we say the function f can be realized
by the neural network F5. Note that we often drop the superscript p if it is clear from the
context.

A particular activation function often used in practice and relevant for our results is the
rectified linear unit or ReLU activation function, which is defined via x — max{0, x}. Arora
et al. [2] showed that the class of ReLU networks coincides with the class of continuous
and piecewise linear functions. In particular, they are weakly differentiable. Since piece-
wise linear functions are dense in H} (), we obtain the following universal approximation
result which we prove in detail in the appendix.

Theorem 2 (Universal approximation with zero boundary values) Consider an open set
Q C R? and fix a function u € W&’p(Q) with p € [1,00). Then for all ¢ > 0 there exists
Ug € Wol’p(Q) that can be realized by an ReLU network of depth [log,(d + 1)1 + 1 such that

lut = utellwipy < -

To the best of our knowledge, this is the only available universal approximation result
where the approximating neural network functions are guaranteed to have zero boundary
values. This relies on the special properties of the ReLU activation function and it is un-
clear for which classes of activation functions universal approximation with zero boundary
values hold.
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2.3 Gamma convergence
We recall the definition of I"-convergence with respect to the weak topology of reflexive

Banach spaces. For further reading, we point the reader towards Dal Maso [9].

Definition 3 (I"-convergence) Let X be a reflexive Banach space as well as F,,, F: X —
(—00,00]. Then (F,),en is said to be I'-convergent to F if the following two properties are
satisfied:

(i) (Liminfinequality) For every x € X and (x,),en With x,, — x, we have
F(x) < liminf F,(x,).
n—00
(ii) (Recovery sequence) For every x € X, there is (x,),en with x,, — x such that
F(x) = lim F,(x,).
n— 00
The sequence (F,),cn is called equicoercive if the set

U{x€X|Fy,(x)§r}

neN

is bounded in X (or equivalently, relatively compact with respect to the weak topology) for
all » € R. We say that a sequence (x,),cn are quasiminimizers of the functionals (F,),cn if

we have
F,(x,) < inf F,,(x) + 8,
xeX

where §,, — 0.

We need the following property of I'-convergent sequences. We want to emphasize the
fact that there are no requirements regarding the continuity of any of the functionals and

that the functionals (F,),cy are not assumed to admit minimizers.

Theorem 4 (Convergence of quasiminimizers) Let X be a reflexive Banach space and
(Fy)nen be an equicoercive sequence of functionals that T'-converges to F. Then, any se-
quence (x,)nen of quasiminimizers of (F,)uen is relatively compact with respect to the weak
topology of X and every weak accumulation point of (x,),en is a global minimizer of F.
Consequently, if F possesses a unique minimizer x, then (x,),cn converges weakly to x.

3 Abstract I'-convergence result for the deep Ritz method
For the abstract results, we work with an abstract energy E: X — R, instead of an integral
functional of the form (1). This reduces technicalities in the proofs and separates abstract

functional-analytic considerations from applications.

Setting 5 Let (X, ||-||lx) and (B, ||-||) be reflexive Banach spaces and y € L(X, B) be a con-
tinuous linear map. We set Xy to be the kernel of v, i.e., Xo = y"1({0}). Let p: R — R be
some activation function and denote by (©,),cn a sequence of neural network parameters.
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We assume that any function represented by such a neural network is a member of X and
define

A,i={x9 |0 €0,} CX. (6)

Here, xy denotes the function represented by the neural network with the parameters 6. Let
E: X — (—00,00] be a functional and (\,),cn a sequence of real numbers with X, — oo.
Furthermore, letp € (1,00) and f € X* befixed and define thefunctionale,: X — (—00, 0]

by

Fx) - E@x) + Mnlly @)|l5 —f(x) forxe A,
* otherwise,
as Well as Ff: X g (_OO) OO] by

E(x) - f(x) forxe Xo,

00 otherwise.

F(x) =

Then assume the following holds:
(A1) Forevery x € Xy, there is x, € A, such that x, — x and L,y (x,)|s — 0 for
n—> 0.
(A2) The functional E is bounded from below, weakly lower semicontinuous with respect
to the weak topology of (X, ||| x) and continuous with respect to the norm topology
of (X, I11x).

(A3) The sequence (Fﬁ),,eN is equicoercive with respect to the norm ||-||x.

Remark 6 We discuss Assumptions (A1) to (A3) in view of their applicability to concrete
problems.

(i) In applications, (X, ||-|lx) will usually be a Sobolev space with its natural norm, the
space B contains boundary values of functions in X and the operator y is a
boundary value operator, e.g., the trace map. However, if the energy E is coercive on
all of X, i.e., without adding boundary terms to it, we might choose y = 0 and obtain
Xo = X. This is the case for non-essential boundary value problems.

(i) Assumption (A1) compensates that, in general, we cannot penalize with arbitrary
strength. However, if we can approximate any member of X, by a sequence
xg, € A,y N X then any divergent sequence (1,),en can be chosen. This is, for
example, the case for the ReLU activation function and the space X, = H}(£2). More
precisely, we can choose A, to be the class of functions expressed by a (fully
connected) ReLU network of depth [log,(d + 1)] + 1 and width #, see Theorem 2.

Theorem 7 (I"-convergence) Assume we are in Setting 5. Then the sequence (F{;),,GN of
functionals T-converges towards F/ . In particular, if (8,)nen is a sequence of nonnegative
real numbers converging to zero, any sequence of §,,-quasiminimizers of Fﬁ is bounded and

all its weak accumulation points are minimizers of F/ . If, additionally, F/ possesses a unique
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minimizer s/ € Xo, any sequence of §,,-quasiminimizers converges to x/' in the weak topology
of X.

Proof We begin with the limes inferior inequality. Let %, — x in X and assume that x ¢
Xo. Then f(x,) converges to f(x) as real numbers and y(x,) converges weakly to y(x) #
0 in B. Combining this with the weak lower semicontinuity of || - |5, we get, using the

boundedness from below, that
liminf F/(x,) > inf E(x) + liminf 4, |y (%) |2 = lim f(x,) = oc.
n—00 xeX n— 00 n— 00
Now let x € X;. Then by the weak lower semicontinuity of E, we find

liminf F/ (x,) > liminf E(x,) —f (x) = E(x) —f(x) = F (%)

n—00

Now let us have a look at the construction of the recovery sequence. For x ¢ X,,, we can
choose the constant sequence and estimate

Fl(xs) > E@®) + hn |y ) |5 = f ).

Hence we find that P,C” (%) = oo = F/ (x). If x € X,, we approximate it with a sequence (x,,) C
X, according to Assumption (A1), such thatx, € A, and x, — xin ||-||x and A, ||y (x,) ||‘f3 —
0. It follows that

F (%) = E(x) + Anllalll = f () = E(x) - f(x) = F/ (). O

A sufficient criterion for equicoercivity of the sequence (Fg Jnen from Assumption (A3)
in terms of the functional E is given by the following lemma.

Lemma 8 (Criterion for equicoercivity) Assume we are in Setting 5. If there is a constant
¢ > 0 such that it holds for all x € X that

E@) + |y@)]5 = c- (Il - llxllx - 1),
then the sequence (Ff;)y,eN is equicoercive.
Proof 1t suffices to show that the sequence
G{,: X— R with G’;l(x) =Ex) + Ay ||y(x) ||1; —f(x)

is equicoercive, as GJ,; < P,’; .Solet r € R be given and assume that r > GJ:, (x). We estimate,
assuming without loss of generality that A, > 1,

r = E@) + 2]y @)| -f@)
> c- (Il = l#llx = 1) = If llx- - li%llx

>C- (Il = llellx = 1).
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As p > 1, a scaled version of Young’s inequality clearly implies a bound on the set

U{xeXIG{l(x)fr}

neN

and hence the sequence (F,f,),,eN is seen to be equicoercive. O

4 Abstract uniform convergence result for the deep Ritz method
In this section we present an extension of Setting 5 that allows proving uniform conver-
gence results over certain bounded families of right-hand sides.

Setting 9 Assume we are in Setting 5. Furthermore, let there be an additional norm |-|
on X such that the dual space (X, |-|)* is reflexive. However, we do not require (X, |-|) to be
complete. Then, let the following assumptions hold:
(A4) The identity 1d: (X, ||-Ilx) = (X, |']) is completely continuous, i.e., maps weakly
convergent sequences to strongly convergent ones.

(A5) Foreveryf € X*, there is a unique minimizer x; € Xo of F/ and the solution map
S:Xg— Xo withfrsa

is demicontinuous, i.e., maps strongly convergent sequences to weakly convergent

ores.

Remark 10 As mentioned earlier, (X, ||-||x) is usually a Sobolev space with its natural norm.
The norm |-| may then chosen to be an L?(2) or W*”(2) norm, where s is strictly smaller
than the differentiability order of X. In this case, Rellich’s compactness theorem provides
Assumption (A4).

Lemma 11 (Compactness) Assume we are in Setting 9. Then the solution operator
S: (X, |-1)* = (Xo, |1) is completely continuous, i.e., maps weakly convergent sequences to
strongly convergent ones.

Proof We begin by clarifying what we mean by S being defined on (X, |-])*. Denote by i
the inclusion map i: Xy — X and consider

o 0¥ i*

COEN — (X 1lx) " — (Ko, lI-l1x)” = (X0, IIl1x) = (X0, I1).

By abusing notation, always when we refer to S as defined on (X, |-|)* we mean the above
composition, i.e., IdoS o i* o Id*. Having explained this, it is clear that it suffices to show
that Id* maps weakly convergent sequences to strongly convergent ones since i* is contin-
uous, S demicontinuous, and Id strongly continuous. This, however, is a consequence of
Schauder’s theorem, see, for instance, Alt [1], which states that a linear map L € £(X, Y)
between Banach spaces is compact if and only if L* € £(Y™*, X*) is. Here, compact means
that L maps bounded sets to relatively compact ones. Let X, denote the completion of
(X, |])- Then, using the reflexivity of (X, |-||x) it is easily seen that Id: (X, |-]x) = X; is
compact. Finally, using that (X, |-|)* = X' the desired compactness of Id* is established. (J
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The following theorem is the main result of this section. It shows that the convergence
of the Deep Ritz method is uniform on bounded sets in the space (X, |-])*. The proof of
the uniformity follows an idea from Cherednichenko et al. [7], where in a different setting
a compactness result was used to amplify pointwise convergence to uniform convergence
across bounded sets, compare to Theorem 4.1 and Corollary 4.2 in Cherednichenko et al.

(7].

Theorem 12 (Uniform convergence of the Deep Ritz Method) Assume that we are in
Setting 9 and let 5, \( 0 be a sequence of real numbers. For f € X*, we set

Suf) = [w e X | Fiw) < inf F(@) +3,},

which is the approximate solution set corresponding to f and 8,. Furthermore, denote the
unique minimizer of F/ in Xo by &' and fix R > 0. Then we have

sup{‘x{, —xf| |x{l € S (), Il < R} — 0 forn— oo.

In the definition of this supremum, f is measured in the norm of the space (X, |-|)*. This
means that f : (X, |-]) — R is continuous, which is a more restrictive requirement than the
continuity with respect to ||-|| x. Also the computation of this norm takes place in the unit
ball of (X, |-]), i.e.,

If Iy = sup f(x).

lx|<1

Before we prove Theorem 12, we need a I'-convergence result similar to Theorem 7. The
only difference is that now also the right-hand side may vary along the sequence.

Proposition 13 Assume that we are in Setting 9, however, we do not need Assumption
(A5) for this result. Let f,,f € (X, |-|)* be such that f,, — f in the weak topology of the reflex-
ive space (X, |-)*. Then the sequence (PZ")HEN of functionals T -converges to F/ in the weak
topology of (X, ||-||x). Furthermore, the sequence (lj,:”),,eN is equicoercive.

Proof The proof is almost identical to that of Theorem 7 but, since it is brief, we include
it for the reader’s convenience. We begin with the limes inferior inequality. Let x,, — x in
X and x ¢ Xy. Then x,, — x with respect to |-| which implies that f,(x,) converges to f(x).
I%

Using that y (x,) — y (x) in B, combined with the weak lower semicontinuity of || - ||, we

get
liminf E? (x,) > inf E(x) + liminf 4, | G6,) [, = lim £, () = oo.
Now let x € X,. Then by the weak lower semicontinuity of E, we find
liminf E (x,) > liminf E(x,,) ~ £(x) = E(x) ~f (%) = F/ (x).

Now let us have a look at the construction of the recovery sequence. For x ¢ Xj, we can
choose the constant sequence and estimate

Ej () = inf EG) + 2|y @) = Wlloxgy - 1l
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As ||[fullx,.p+ is bounded we find P{;” (%) = 0o = F/ (x). If x € Xy, we approximate it with a
sequence (x,) C X, according to Assumption (Al), such that x, € A, and x,, - x in ||-||x
and A, ||y (x,)]l5 — 0. It follows that

Flr (%) = E@n) + Anll®nll = o) —> E(x) —f () = F/ (x).

The equicoercivity was already assumed in (A3) so it does not need to be shown. O

Proof of Theorem 12 'We can choose (f,,) € (X, |-])* and ||f, ]l 1 <R andx{f1 € Su(f,) such
that

sup |xj;_xf|5|x1::4_xfn|+l'
WH(X,‘.D*SRJC/;ESn(f) n

Now it suffices to show that Ix],(f — /| converges to zero. Since (f;),cy is bounded in (X, |-|)*
and this space is reflexive, we can, without loss of generality, assume that f;, — f in (X, |-|)*.
This implies by Lemma 11 that #” — &/ in (X, |-|). The I'-convergence result of the previ-
ous proposition yields x{{’ — &/ in X and hence x’:f‘ — «/ with respect to |-| which concludes
the proof. d

5 Examples

We discuss different concrete examples that allow the application of our abstract results
and focus on nonlinear problems. In particular, we consider a phase field model illustrat-
ing the basic I'-convergence result of Sect. 3 and the p-Laplacian as an example for the
uniform results of Sect. 4.

5.1 General practical considerations

In practice, when solving the optimization problem (4), in order to obtain an approxi-
mate solution of the variational problem (2) there are a lot of choices to make. We give an
overview over some of them here and report our specific choices in the individual exam-
ples.

Optimization One can use almost any kind of optimization algorithm for the approx-
imation solution of the optimization problem (4), where gradient type algorithms and
quasi-Newton methods are the most common choice. We use a combination of the Adam
optimizer and L-BFGS. The former is a version of stochastic gradient descent with with
adaptive moment estimation, see Kingma and Ba [19] and the latter is a quasi-Newton
method, see Liu and Nocedal [22]. Typically, the optimization process begins with ap-
plying Adam until convergence slows down and the fast local convergence properties of
Newton methods can be exploited through the application of the L-BFGS optimizer.

Quadrature In practice, one does not have access to the true gradient of the objective
function. Hence, one usually uses estimates for the gradient as update directions. For ex-
ample, E and Yu [13] used an online SGD estimator, i.e., a Monte Carlo approximation of
the integral with fixed sample size. However, one can use any quadrature rule for the eval-
uation of the integrals in order to obtain approximations of the true gradient. We used a
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uniform grid for the discretization of the integral, i.e., the integral is approximated by the
sum of the functions values at the grid points divided by the number of grid points. On
the boundary of the domains, equispaced integration points are used and the quadrature
rule is analogue to the one previously described.

We choose the number of integration points such that no further improved accuracy
of the method is observed when increasing their amount. As this was computationally
tractable without problems, no more elaborate integration routines were deemed neces-

sary.

Activation functions The only requirements on the activation function present in Set-
ting 5 are that the associated neural network functions belong to the considered Banach
space A, C X as well as that Condition (A1) holds. The first one is usually of no concern
as in practice X is often a space of given smoothness and hence for sufficently smooth ac-
tivations A,, C X is satisfied. Note that this is in particular the case X = H'(£2) and for the
ReLU activation function. Further, in order to Condition (A1) to hold, it is necessary that
the neural network type ansatz classes (A4,) have the universal approximation property in
Xo, i.e., that Xy C m. Note that this is the case for shallow! networks of increasing
width and X = H¥(R) as long as the activation function is k times continuously differen-

tiable and nonpolynomial (Pinkus [27]).

Penalization strength  Condition (A1) couples the penalization strength to the norm of
the (generalized) boundary values required for approximation of a general element x € X.
Consider, for example, the case that for any x € Xj there are x, € X, such that x, — x
and ||y (x,)|ls < c(x)8, for some §, — 0. Then any choice of penalization strengths A, —
oo with 1,8, — 0 satisfies Condition (A1). Let us first consider the case with inessential
boundary values, which corresponds to y = 0 in the notation of Setting 5. Then, as argued
above smooth and nonpolynomial activations together with arbitrarily strong penalization
strengths are allowed.

Let us consider the case X = H'(R2) and y = tr and B = L*(R2). For the ReLU activation
function, Theorem 2 guarantees the existence of the u,, — u with ||, ;23q) = 0, which al-
lows for arbitrarily strong penalization. For other activation functions, which do not pos-
sess the universal approximation property with exact (generalized) zero boundary values,

the proof of (A1) is more delicate and has to be established in specific cases.

5.2 A phase field model
Let ¢ > 0 be fixed, Q2 € R¥ a bounded Lipschitz domain and consider the following energy:

1
E: HY(Q) N LYQ) — [0, 00), E(u) = g/ |Vu|? dx + —/ W (u) dx,
Q €Ja
where W: R — R is the nonlinear function given by
1 1, 1, 1,

W(u) = Zuz(u— 1)%= Zu" EELARLE

and hence also for deep as can be seen by composing with almost identity layers
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The functional E constitutes a way to approximately describe phase separation and the
parameter ¢ encodes the length-scale of the phase transition, see Cahn and Hilliard [6].
We describe now how the Setting 5 is applicable to fully connected neural network ansatz
functions with tanh activation function. For the Banach spaces in Setting 5, we choose

X=H'(Q) NLY Q) -1 = M-l + 1Ml o)

We choose y = 0, hence the choice of the space B and its norm is irrelevant. The choice
of y = 0 corresponds to the case of homogeneous Neumann boundary conditions. The
space X is reflexive as it is an intersection of reflexive spaces. We define

An={ug |0 €©,} CH (Q)NLYQ),

where ®, implicitly encodes that we use scalar valued neural networks with input dimen-
sion d and arbitrary fixed depth larger or equal to two. The width of all layers (except the
input and output) is set to #n. With y = 0 and this definition of (A4,,),cn the requirements
of Assumption (A1) are satisfied, as can be seen by well known universal approximation
results, we refer to Pinkus [27].

To proceed, the continuity of E with respect to ||-||x is clear, hence we turn to the weak
lower semicontinuity. To this end, we write E in the following form:

€ 1 1 1 1
E(u)=—/ |VM|2dx+—/u4dx+—/ S 3 dx
2Jo e Jq Q4 2

&

=E1(u) :=Ep(u)

and treat £, and E, separately. The term E; is continuous with respect to ||-||x and convex,
hence weakly lower semicontinuous. To treat E;, note that we have the compact embed-
ding

HYQ)NLY Q) > L3(Q).

This implies that a sequence that converges weakly in H'(2) N L*(2) converges strongly
in L3(Q2) and consequently shows that the term E, is continuous with respect to weak
convergence in X. Finally, for fixed f € X*, we need to show that the sequence (Fﬁ),,eN
defined in (6) is equicoercive with respect to ||-||x. To this end, it suffices to show that the
functional

G X->R, Gf(u):§/Q|Vu|2dx+§/§;W(u)dx—f(u)

is coercive as it holds PZ > G. Let r € R be fixed and consider all € X with G/ (&) > r.
Then we estimate

r>G(u)

1
. g/ﬂwmzd“g/QW(u)dx—f(u)

1 1
2 ellul gy = Wil (o) + Nllan) + o= llfsc@y = 5 Nl
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|Q|1/4 34
S gy = I e 20

= cllullzgy = Wl el + -1l gy =

where we used the estimate

3 1/4 3/4
s < 12042l 32,

due to Holder’s inequality. This clearly implies a bound on the set

UfueH' (@ N L Q) | & ) <7}

neN
and hence (F],,C)neN is equicoercive.

Description of the experiment Figure 1 shows two exemplary numerical realizations of
the Deep Ritz Method with the unit disk €2 = B;(0) as a domain and with right-hand sides

fi = XBy;(0-1/2) ~ XBy;(0,1/2)

for 1 = 0.1 and r, = 0.4 corresponding to the left and right picture, respectively. Fur-
ther, we considered ¢ = 0.01 and used a fully connected network with tanh activation
and three hidden layers of width 16. Note that by Theorem 2 ReLU networks of depth
[log,(2+1)1+1 = 3 satisfy the universal approximation property with exact zero boundary
values. Hence, the number of trainable parameters is 609 in this case. As we were solving
a homogeneous Neumann boundary value problem, no penalization was needed. For the
discretization of the integral over the unit disk B;(0), we used an evenly spaced grid and
gave equal weights in the numerical approximation of the integrals to the function val-
ues at every grid point. For the optimization of the networks parameters, we used Adam
with full batch size until the optimization slowed down and then used L-BFGS in order
to exploit the fast local convergence properties of quasi-Newton methods. Note that in
the case of f, a phase transition around the ball B, (0, 1/2) is energetically more favorable
than the configuration in the right figure, where the radius r, is much larger.

1.0 1 1.0 4 1.0
0.8

0.5 1 0.5 1
0.6

0.0 1 0.0 1
0.4

—0.5 —0.5 1
0.2
—1.0 1 -1.0 A 0.0

T T T T T

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 1 Exemplary numerical realization of the Deep Ritz Method for a Cahn—Hilliard functional with
right-hand sides given through f = xs,(0-1/2) = X8,(0,1/2) With r = 0.1 for the left plot and r = 0.4 for the right
plot. The value of € is set to 0.01. We used zero Neumann boundary conditions and fully connected
feed-forward networks with three hidden layers of width 16 and tanh activation. The number of trainable
parameters is 609
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Remark 14 (Stability under compact perturbations) With a similar — even simpler — ap-
proach, we may also show that energies of the form

E(u) = E(u) + F(u)

fall in the Setting 5 provided E does and F is bounded from below and continuous with re-
spect to weak convergence in X. Note also that in the space dimension d = 2 this includes
the above example, however, the slightly more involved proof presented here works inde-
pendently of the space dimension d.

5.3 The p-Laplacian
As an example for the uniform convergence of the Deep Ritz method, we discuss the p-
Laplacian. To this end, consider the p-Dirichlet energy for p € (1, 00) given by

1
E: WP(Q) - R, uH—/mem
pPJa

Note that for p # 2 the associated Euler—Lagrange equation — the p-Laplace equation — is
nonlinear. In strong formulation it is given by

—div(|Vul’?Vu)=f ing,

u=0 onod,

see, for example, Struwe [31] or Rizicka [29]. Choosing the ReLU activation function, the
abstract setting is applicable as we will describe now. For the Banach spaces, we choose

X=Ww"(Q), B=L’(39), |ul = llull o)

where the norms ||-|x and |||z are chosen to be the natural ones. Clearly, W?(Q) en-
dowed with the norm ||| y1(q) is reflexive by our assumption p € (1, 00). Note that

(WH(Q), 1) = 17(Q) = 7 (Q),
which is also reflexive. We set y =tr, i.e.,
tr: WY (Q) — LP(32) with u > ulyq

We use the same ansatz sets (A4,),cy as in the previous example, hence Assumption (A1)
holds. Rellich’s theorem provides the complete continuity of the embedding

(W), Il wir) = (W2Q), I l2@)

which shows Assumption (A4). As for Assumption (A3), Friedrich’s inequality provides
the assumptions of Lemma 8. Furthermore, E is continuous with respect to |||l 1) and
convex, hence also weakly lower semicontinuous. By Poincaré’s and Young’s inequalities,
we find for all 4 € Wol'p(SZ) that

1 P d —
ﬂw_pﬁwmdxf@
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> C||M||€¢1,p(9) = I lwrey 1l wir o)

= Cllulfq - C-
Hence, a minimizing sequence in Wol ?(Q) for F/ is bounded and as F is strictly convex on
WO1 ?(Q) it possesses a unique minimizer. Finally, to provide the demicontinuity, we must
consider the operator S: WO1 P(Q)F — Wg’p (€2) mapping f to the unique minimizer u; of
E-fon WO1 ?(Q). By the Euler—Lagrange formalism,  minimizes F/ if and only if

/ |[VulP>Vu-Vvdx=f(v) forallve Wé‘p(Q).
Q
Hence, the solution map S is precisely the inverse of the mapping
WP(Q) — WP (Q)F,  ur (v > / IVulP2Vy - Vv dx)
Q

and this map is demicontinuous, see, for example, Ruzicka [29].

Description of the experiment  Figure 2 shows two numerical realizations of the Deep Ritz
Method for the p-Laplacian with right-hand side f = 1 and p; = 3/2 in the left picture and
p2 =10 in the right picture. The penalization value is set to A = 250 in both simulations to
approximately enforce zero boundary values. We used fully connected feed-forward net-
works with three hidden layers of width 16 and GELU activation (Hendrycks and Gimpel
[16]) for the left plot and ReLU activation for the right plot. The quadrature follows the
same strategy as in the previous example. Note that the exact solution to the homogeneous
p-Laplace problem on the disk with f =1 is given by

uy(x) = C- (1 - |x|7T)

for a suitable constant C that depends on the spatial dimension and the value of p. We see
that the solution #, converges pointwise to zero for p \ 0 and for p ' oo the function u,
tends to x — C(1 — |x|). This asymptotic behavior is clearly visible in our simulations.

.01 008 0] 038
0.07 0.7
0.5 006 2° 0.6
0.05 0.5
0.0 oos 007 04
0.03 0.3
—-0.54 — 4
0.02 03 0.2
0.01 0.1
—-1.04 -1.01
: : . - . . . . : - 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Figure 2 Exemplary numerical realization of the Deep Ritz Method for the p-Laplacian with right-hand f =1
and p=1.5in the left plot and p = 10 in the right plot. Zero Dirichlet boundary conditions are enforced
through a penalty parameter A = 250. We used fully connected feed-forward networks with three hidden
layers of width 16 and GELU activation for the left plot and RelLU activation for the right plot. The number of
trainable parameters is 609. Note the difference in the scaling of the axis in the two plots
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In case of the ReLU ansatz function, the architecture considered agrees with the analysis
presented in the previous paragraph. For p; = 3/2, we found the GELU activation func-
tion to provide good performance. However, for the GELU activation function, establish-
ing condition (A1) is not entirely obvious. The GELU activation is defined as GELU(x) :=
x®(x), where ® is the cumulative distribution function of the Gaussian normal. It is of-
ten interpreted as a smoothed version of the ReLU since t~* GELU(tx) — ReLU(x) and
3,(t ' GELU(tx)) — 9, ReLU(x) pointwise for ¢t — oco. This gives some intuition why the
GELU activation function could admit a universal approximation result with almost zero
boundary values and hence satisfy (A1), however, we leave a rigorous statement for future
research. This aligns very well with our numerical experiments, which do not indicate

problems in resolving the zero boundary values in this practical example.

Appendix: Universal approximation with zero boundary values

Here we prove the universal approximation result which we stated as Theorem 2 in the
main text. Our proof uses that every continuous, piecewise-linear function can be repre-
sented by a neural network with ReLU activation function and then shows how to approx-
imate Sobolev functions with zero boundary conditions by such functions. The precise
definition of a piecewise linear function is the following.

Definition 15 (Continuous piecewise-linear function) We say that a function f: R — R
is continuous piecewise linear, or in short piecewise linear, if there exists a finite set of
closed polyhedra whose union is R?, and f is affine linear over each polyhedron. Note
every piecewise linear functions is continuous by definition since the polyhedra are closed
and cover the whole space R?, and affine functions are continuous.

Theorem 16 (Universal expression) Every ReLU neural network function us: R — R is
a piecewise-linear function. Conversely, every piecewise-linear function f : R* — R can be
expressed by an ReLU network of depth at most [log,(d + 1)] + 1.

For the proof of this statement, we refer to Arora et al. [2]. We turn now to the approxi-

mation capabilities of piecewise linear functions.

Lemma 17 Let ¢ € C*(R?) be a smooth function with compact support. Then for every
& > 0 there is a piecewise-linear function s, such that for all p € [1, 00] it holds

lse = @llwir@a) <& and supp(s:) < supp(p) + B:(0).
Here, we set B.(0) to be the e-ball around zero, i.e., B,(0) = {x e R | |x| < &}.

Proof In the following we will denote by ||-||» the uniform norm on R?. To show the as-
sertion, choose a triangulation 7~ of R? of width § = §(¢) > 0, consisting of rotations and
translations of one nondegenerate simplex K. We choose s, to agree with ¢ on all vertices
of elements in 7. Since ¢ is compactly supported, it is uniformly continuous, and hence
it is clear that ||¢ — s; ||« < € if § is chosen small enough.

To show convergence of the gradients, we show that also ||[Vg — Vs, || < ¢ which will
be shown on one element K € 7 and as the estimate is independent of K is understood
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to hold on all of R?. So let K € T be given and denote its vertices by x1,...,%g,1. We set
vi=xi1—%1,i=1,...,d to be the vectors spanning K. By the one-dimensional mean value
theorem, we find &; on the line segment joining x; and x; such that

81,ng (Vl) = 314‘/’(51’)'

Note that 9,,s, is constant on all of K where it is defined. Now for arbitrary x € K, we
compute with setting w = Zil a;v; for w € R with |w| < 1. Note that the «; are bounded
uniformly in w, where we use that all elements are the same up to rotations and transla-

tions,

|V<p(x) - ng(x)| = sup |Vgo(x)w - ng(x)w|

[wl<1
d
< sup Y ol By 0(x) - By, (x)],
wi<177 _

=)

where again (x) is uniformly small due to the uniform continuity of V. Noting that the
WL _case implies the claim for all p € [1, 00) finishes the proof. O

We turn to the proof of Theorem 2 which we state again for the convenience of the
reader.

Theorem 18 (Universal approximation with zero boundary values) Consider an open set
QC R and let u € Wol‘p(Q) with p € [1,00). Then for all ¢ > 0 there exists a function
U, € Wol P(Q) that can be expressed by an ReLU network of depth [log,(d + 1)1 + 1 such
that

lut — e llwipg) < &

Proof Letu € Wol’p(Q) and ¢ > 0. By the density of C2°(€2) in Wol’p(Q), see, for instance,
Brezis [5], we choose a smooth function ¢, € C*(R2) such that |u — @[l < €/2.
Furthermore, we use Lemma 17 and choose a piecewise-linear function i, such that
lpe — uellwir(q) < &/2 and such that u, has compact support in 2. This yields

llet — e llwipqy < 1t = @ellwip) + ll@e — Uellwipg) <&

and, by Theorem 16, we know that u, is in fact a realization of a neural network with depth
at most [log,(d + 1)] + 1. O
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