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Abstract
The uncertain production-inventory problem with deteriorating items is investigated
and an optimal control model is developed in the present paper. The uncertain
production-inventory problem is perturbed by an uncertain canonical process. Based
on uncertainty theory, an optimistic-value optimal-based control model is
established. The present study aims to find the optimistic value of revenue at a certain
confidence level. The uncertainty theory is used to obtain the equation of optimality.
Using the Hamilton–Jacobi–Bellman principle, a nonlinear partial differential equation
that has to be satisfied by a value function is obtained. Assuming a specific form of
the solution, backsubstituting the partial differential equation to find functions of
time is conducted, and the functions are then used to solve the partial differential
equation. Numerical experiments with different demand functions are used to assess
the feasibility of this model and this method.

Keywords: Uncertain; Production inventory; Deteriorating items; Canonical process;
Optimal control

1 Introduction
With the development of economic globalization, manufacturing-inventory management
plays an important role in the production and operation of enterprises. The production-
inventory problem has aroused increasing attention in recent years. Making reasonable
strategies is a matter of concern to enterprises. Optimal control theory is one of the main
branches of modern control theory, which mainly focuses on the basic conditions and
comprehensive methods of performance optimization for control systems. Thus far, many
scholars have used optimal control theory to address the production-inventory problem.
Dobos and Kistner [15] investigated strategies of optimizing production-inventory man-
agement for a reverse logistics system, and applied a modified forward Arrow–Karlin al-
gorithm to the construction of an optimal trajectory. Dobos [14] investigated a reverse
logistics system with special structure where the demand rate and rate of return from
used items were given functions. The model deals with an optimal control problem with
two state variables and three control variables. The aim of the model is to minimize the
sum of secondary deviations in inventory level and manufacturing, remanufacturing, and
disposal rates. Khmelnitsky and Gerchak [27] proposed an optimal control model for a
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production system with inventory-level-dependent demand, and obtained three possible
singular regimes through application of the maximum principle. Yang [55] investigated a
two-warehouse inventory problem for deteriorating items with constant demand rate and
supply shortage under inflation, and showed that the proposed model was less expensive
to operate than the traditional one if the inflation rate was nonnegative. Tadj et al. [50]
used an optimal control method to obtain the optimal production rate in a production-
inventory system with deteriorating items, and proposed analytical solutions to a cost-
minimization problem and a profit-maximization problem. Hedjar et al. [20] studied a
periodic-review inventory system with deteriorating items and proposed the self-tuning
optimal control scheme. Benhadid et al. [3] adopted an optimal control method to solve
two production-inventory models with deteriorating items and dynamic costs, and de-
rived explicit optimal control policies. Alshamrani and El-Gohary [1] established an opti-
mal control model for a two-item inventory system with different types of deterioration,
and obtained the optimal solution based on Pontryagin’s principle. Li [33, 34] proposed
optimal control models of a production-maintenance system with deteriorating items, and
applied Pontryagin’s principle to solve the models. Pan and Li [39] investigated a stochastic
production inventory system with deteriorating items and environmental constraints, and
used the Hamilton–Jacobi–Bellman equation to solve the stochastic model. Roul et al. [41]
developed an optimal control model for a multiitem production-inventory system with
known dynamic demands, and derived several particular cases from the general model.
Gayon et al. [19] investigated an optimal control problem of a production-inventory sys-
tem with product returns and two disposal options, and proved that the optimal policy
was a threshold policy with three policy parameters. Azoury and Miyaoka [2] studied a
production-inventory system where the demand was a compound Poisson process, and
derived the steady-state distribution and the exact expression. Dizbin and Tan [13] pro-
posed a matrix geometric method to determine the optimal thresholds for production-
inventory systems, and the results suggested that an effective production-control pol-
icy must consider the correlation between service and demand. Das et al. [8] proposed
a production-inventory model with a deteriorating item, and a hybrid genetic algorithm
was designed. Das et al. [9] developed a production-inventory model with deteriorating
items under permissible delay in payments, and an improved genetic algorithm was ap-
plied to solve the problem. Das et al. [10] considered a production-inventory model with
random machine failure, and the global criteria method was used to solve the multiobjec-
tive optimization problem.

As the scale of the supply chain continues to expand, the market environment becomes
more intricate, the uncertainties in the supply chain are increasing, and the operation be-
comes more difficult. Uncertainty in the supply chain means that a decision is made with
outcomes that are unknown or unpredictable in advance. The manufacturing uncertainty
mainly comes from the inability to ensure a smooth manufacturing process, which may be
caused by interruptions, delays, and unreasonable production process design as a result
of equipment failure. In addition, nonconforming products and workers’ wrong opera-
tions are also uncertain factors. Demand uncertainty mainly comes from market changes,
customers’ purchasing ability, pressure from new products, and price fluctuations, etc.
Due to the complexity of the situation, there is a lack of historical data for many uncer-
tain factors, or the existing data is not credible. In this case, it is difficult to obtain the
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probability distribution of these uncertain factors and only experienced experts can as-
sess the degree of belief to be placed in these events. To address the degrees of belief, the
uncertainty theory was proposed by Liu [35] and later refined by Liu [38] on the basis of
normality, duality, subadditivity, and product axioms. Since there are many uncertain fac-
tors that are in short supply in historical data in reality, the uncertainty theory exhibits
its incomparable superiority in solving such problems. Nowadays, the uncertainty theory
has developed into a branch of axiomatic mathematics, e.g., uncertain differential equa-
tion [16, 17, 21, 22, 49, 53, 56, 57], uncertain programming [5, 18, 24, 40, 51, 52, 54, 61],
uncertain supply chain [4, 23, 25, 26], uncertain scheduling [42–47], uncertain control
[6, 7, 11, 12, 28–32, 62], and uncertain process [58–60].

In practice, supply-chain operations are subject to increasing uncertainty such as cli-
mate change, market fluctuation, manufacturing equipment, and traffic conditions. These
uncertainties make business decision making difficult, leading to overproduction and in-
creased inventory costs. In this case, reasonable control of the production inventory in
the supply chain can significantly reduce costs and improve the operational efficiency of
the supply chain. Due to the rapidly changing market environment, many statistics are
not available in a timely manner. Therefore, in an uncertain environment, how to arrange
production and inventory will exert a direct impact on a company’s profits. In this paper,
an uncertain production-inventory problem with deteriorating items is investigated. Since
the dynamic system is affected by uncertain noises, the parameters of the objective func-
tion are not easy to obtain and are difficult to achieve in reality. Meanwhile, policymakers
may have different personal preferences as some may be cautious while others may take
risks. Therefore, we use an optimistic value-based criterion in the model formulation. Due
to the lack of historical data, the probability theory was no longer applicable. Thus, we re-
place the Wiener process in stochastic perturbation with an uncertain canonical process.
To address these uncertainties, an optimistic value-based optimal control model is devel-
oped. This kind of model can be applied to a system with uncertain disturbance, and it can
also be used to control the production inventory of some tangible products, such as food,
medicine and chemicals. The aim of this paper is to obtain the optimality equation. Then,
the HJB principle is used to solve the optimality equation. Finally, the optimal production
rate and inventory level are discussed.

The rest of this paper is structured as follows. In Sect. 2, the basic concepts of the un-
certainty theory are reviewed. Section 3 describes the uncertain optimistic value-based
optimal control model, and the optimality equation inspired by uncertainty theory. Mean-
while, the optimal production rate and inventory level we obtained by using the HJB prin-
ciple will also be discussed. In Sect. 4, the numerical experiments for different cases we
performed will be described.

2 Preliminaries of the uncertainty theory
Let � be a nonempty set, L is a σ -algebra over �, and each element � in L is called an
event. A set function M from L to [0, 1] is called an uncertain measure if it satisfies the
normality axiom, duality axiom, subadditivity axiom, and product axiom [35, 37].

The uncertain distribution � of an uncertain variable ξ is defined by �(x) = M{ξ ≤ x}
for any real number x. The uncertain variables ξ1, ξ2, . . . , ξm are said to be independent (Liu
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[37]) if

M
{ m⋂

i=1

(ξi ∈ Bi)

}
= min

1≤i≤m
M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bn of real numbers.
The expected value of ξ is defined by E[ξ ] =

∫ +∞
0 M{ξ ≥ r}dr–

∫ 0
–∞ M{ξ ≤ r}dr provided

that at least one of the two integrals is finite.

Definition 1 ([35]) Let ξ be an uncertain variable, and α ∈ (0, 1]. Then,

ξsup(α) = sup
{

r | M{ξ ≥ r} ≥ α
}

is called the α-optimistic value to ξ , and

ξinf(α) = inf
{

r | M{ξ ≤ r} ≥ α
}

is called the α-pessimistic value to ξ .

Example 1 An uncertain variable ξ is called normal if it has a normal uncertainty distri-
bution

�(x) =
(

1 + exp

(
π (e – x)√

3σ

))–1

, x ∈ �

denoted by N (e,σ ), where e and σ are real numbers with σ > 0.

Theorem 1 ([35]) Assume that ξ is an uncertain variable. We have
(a) if λ ≥ 0, then (λξ )sup(α) = λξsup(α), and (λξ )inf(α) = λξinf(α);
(b) if λ < 0, then (λξ )sup(α) = λξinf(α), and (λξ )sup(α) = λξsup(α);
(c) (ξ + η)sup(α) = ξsup(α) + ηsup(α) if ξ and η are independent.

Definition 2 ([36]) An uncertain process Ct is said to be a canonical process if
(1) C0 = 0 and almost all sample paths are Lipschitz continuous;
(2) Ct has stationary and independent increments;
(3) every increment Cs+t – Cs is a normal uncertain variable with expected value 0 and

variance t2.

dXt = f (t, Xt) dt + g(t, Xt) dCt is called an uncertain differential equation, where f and g
are some given functions, and Xt is an uncertain vector.

3 Optimistic model under uncertain environment
Consider the scenario that a manufacturer produces, sells, and stores a single product.
This commodity is perishable when stored and the market demand changes with passing
time. Due to the lack of historical data about this commodity, the uncertain canonical
process is considered in the model development. Before developing the model, we define
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the relevant parameters and variables as follows:

X(t) the inventory level at time t (state variable),

u(t) the production rate at time t (control variable),

D(t) the demand rate at time t,

h the inventory holding cost coefficient,

c the production cost coefficient,

x0 the initial inventory level,

Ct the canonical processes,

θ the deterioration coefficient,

β the diffusion coefficient.

The state equation of this model can be described by an uncertain differential equation
listed as:

dX(t) =
[
u(t) – D(t) – θX(t)

]
dt + β dCt , X(0) = x0, (1)

where Ct refers to the sales fluctuation of goods caused by unexpected events in reality,
such as wars, rumors, and natural disasters. Assume that all parameters and variables are
nonnegative.

For nondeterministic factors, in many cases we consider using an expected value to eval-
uate. However, in other cases, if the decisionmaker wants to make the goal as close to a
predetermined value as possible, then we must consider adopting the optimistic value
model. Accordingly, an optimistic-value optimal-control model is conceived.

⎧⎨
⎩J(t, x) ≡ supu(t) Fsup(α)

subject to: (1),
(2)

where F =
∫ T

0 [–c(u(t) – u1)2 – h(X(t) – x1)2] dt + BXT , and Fsup denotes the optimistic value
of F . u1 and x1 represent the expected production rate and inventory level, respectively.
B denotes the salvage value per unit of the inventory at time T and α refers to a given
confidence level. All functions are continuous. The aim is to determine the optimal prod-
uct rate u(t) under the optimistic value of total cost. First, we have the following theorem
about the optimistic value.

Theorem 2 For any (t, x) ∈ [0, T) × Rn, and t > 0 with t + t < T , it yields

J(t, x) = sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + J(t + t, x + Xt) + o(t)

}
, (3)

where x + Xt = Xt+t .
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Proof According to the definition of the optimistic value, it yields

J(t, x) ≥
[∫ t+t

t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]∣∣
(t,t+t) ds

+
∫ T

t+t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]∣∣
(t+t,T) ds + BXT

]
sup

(α),
(4)

where (t, t + t) and (t + t, T) represent the interval of the control vector.
Note that

∫ t+t

t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]∣∣
(t,t+t) ds

=
[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + o(t),

(5)

which yields

J(t, x) ≥ [
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + o(t)

+
[∫ T

t+t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]|(t+t,T) ds + BXT

]
sup

(α).
(6)

Both sides of the formula (6) takes supremum on the interval [t + t, T], which yields

J(t, x) ≥ sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + J(t + t, x + Xt) + o(t)

}
. (7)

According to the following formula

[∫ T

t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]ds + BXT

]
sup

(α)

=
[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + o(t)

+
[∫ T

t+t

[
–c

(
u(s) – u1

)2 – h
(
X(s) – x1

)2]∣∣
(t+t,T) ds + BXT

]
sup

(α)

≤ [
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + o(t) + J(t + t, x + Xt)

≤ sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + J(t + t, x + Xt) + o(t)

}
,

(8)

therefore,

J(t, x) ≤ sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + J(t + t, x + Xt) + o(t)

}
.

In conclusion, the theorem is proved. �
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Theorem 3 Let J(t, x) be twice differentiable on [0, T) × Rn, then we can obtain the opti-
mality equation:

–Jt(t, x) = sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2] + Jx(t, x)
[
u(t) – D(t) – θX(t)

]

+
√

3
π

ln
1 – α

α

∣∣Jx(t, x)β
∣∣},

(9)

where J•(t, x) represents the partial derivative of the function J(t, x). The boundary condi-
tion is J(T , x) = BXt .

Proof We can obtain the following formula by adopting a Taylor-series expansion:

J(t + t, x + Xt) = J(t, x) + Jt(t, x)t + Jx(t, x)Xt +
1
2

Jtt(t, x)t2

+
1
2

Jxx(t, x)X2
t + Jtx(t, x)tXt + o(t).

(10)

Substituting Eq. (10) into Eq. (3), yields

0 = sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]dt + Jt(t, x)t

+
[

Jx(t, x)Xt +
1
2

Jtt(t, x)t2

+
1
2

Jxx(t, x)X2
t + Jtx(t, x)tXt

]
sup

(α) + o(t)
}

.

(11)

According to Eq. (1), it yields

X(t) =
[
u(t) – D(t) – θX(t)

]
t + βCt . (12)

Substituting Eq. (12) into Eq. (11), yields

0 = sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]dt + Jt(t, x)t

+ Jx(t, x)
[
u(t) – D(t) – θX(t)

]
t +

[(
Jx(t, x)

+ Jxx(t, x)
[
u(t) – D(t) – θX(t)

]
t + Jtx(t, x)t

)
βCt

+
1
2

Jxx(t, x)β2C2
t

]
sup

(α) + o(t)
}

.

(13)

Let A = Jx(t, x) + Jxx(t, x)[u(t) – D(t) – θX(t)]t + Jtx(t, x)t, C = 1
2 Jxx(t, x), ξ = βCt . The

key to Eq. (13) is to solve [Aξ + Cξ 2]sup(α).
According to the Theorem 4 in [48], it yields:
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If C > 0,

[
Aξ + Cξ 2]

sup(α) ≥
√

3
π

ln
1 – α

α
|A|σ +

(√
3

π
ln

1 – α

α

)2

Cσ ,

[
Aξ + Cξ 2]

sup(α) ≤
√

3
π

ln
1 – α + ε

α – ε
|A|σ +

(√
3

π
ln

2 – ε

ε

)2

Cσ ,

(14)

where σ denotes the variance of the normal uncertain variable ξ .
If C < 0,

[
Aξ + Cξ 2]

sup(α) ≥
√

3
π

ln
1 – α – ε

α + ε
|A|σ +

(√
3

π
ln

2 – ε

ε

)2

Cσ ,

[
Aξ + Cξ 2]

sup(α) ≤
√

3
π

ln
1 – α

α
|A|σ +

(√
3

π
ln

1 – α

α

)2

Cσ .

(15)

If C = 0,

[
Aξ + Cξ 2]

sup(α) ≥
√

3
π

ln
1 – α

α
|A|σ . (16)

Without loss of generality, we discuss Eq. (13) when C > 0.
According to Eq. (13) and Eq. (14), it yields

–εt ≤ [
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + Jt(t, x)t

+ Jx(t, x)
[
u(t) – D(t) – θX(t)

]
t +

[(
Jx(t, x)

+ Jxx(t, x)
[
u(t) – D(t) – θX(t)

]
t + Jtx(t, x)t

)
βCt

+
1
2

Jxx(t, x)β2C2
t

]
sup

(α) + o(t)

≤ [
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2]
t + Jt(t, x)t

+ Jx(t, x)
[
u(t) – D(t) – θX(t)

]
t +

√
3

π
ln

1 – α + ε

α – ε
|A|t

+
(√

3
π

ln
2 – ε

ε

)2

Ct2 + o(t).

(17)

Therefore, we have

–ε ≤ [
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2] + Jt(t, x) + Jx(t, x)
[
u(t) – D(t) – θX(t)

]
+

√
3

π
ln

1 – α + ε

α – ε

∣∣Jx(t, x)β
∣∣t + m1(ε,t) + m2(t)

≤ Jt(t, x) + sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2] + Jx(t, x)
[
u(t) – D(t) – θX(t)

]

+
√

3
π

ln
1 – α + ε

α – ε

∣∣Jx(t, x)β
∣∣ + m1(ε,t) + m2(t)

}
.

(18)
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We have ε → 0 when t → 0, it yields

0 ≤ Jt(t, x) + sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2] + Jx(t, x)
[
u(t) – D(t) – θX(t)

]

+
√

3
π

ln
1 – α

α

∣∣Jx(t, x)β
∣∣}.

(19)

Similarly, we can obtain

0 ≥ Jt(t, x) + sup
u(t)

{[
–c

(
u(t) – u1

)2 – h
(
X(t) – x1

)2] + Jx(t, x)
[
u(t) – D(t) – θX(t)

]

+
√

3
π

ln
1 – α

α

∣∣Jx(t, x)β
∣∣}.

(20)

In conclusion, the theorem is proved. �

Since Eq. (9) is actually a partial differential equation, the HJB principle is used to solve
this problem.

Assume that J(t, x) denotes that the total cost from time t to the end. X(t) = x. Take the
partial derivative of both sides of Eq. (9) with respect to u and set it equal to zero, yielding

Jx(t, x) – 2c(u – u1) = 0. (21)

It follows that

u = u1 +
1
2c

Jx(t, x). (22)

Substituting Eq. (22) into Eq. (9), yields

Jt(t, x) + Jx(t, x)
[
u1 – D(t) – θX(t)

]
–

1
4c

J2
x (t, x) – h

(
X(t) – x1

)2

+
√

3
π

ln
1 – α

α

∣∣Jx(t, x)β
∣∣ = 0.

(23)

Note that this is a nonlinear partial differential equation, assuming its solution is

J(t, x) = Q(t)x2 + R(t)x + M(t). (24)

Substituting Eq. (24) into Eq. (23), yields

Q′(t) +
Q2(t)

c
– 2θQ(t) = h,

R′(t) + 2u1Q(t) – 2D(t)Q(t) – θR(t) +
Q(t)R(t)

c
+

2
√

3
π

βQ(t) ln
1 – α

α
+ 2hx1 = 0,

M′(t) + u1R(t) – D(t)R(t) –
1
4c

R2(t) +
√

3
π

β ln
1 – α

α
– hx2

1 = 0.

(25)
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The formula (25) is a hierarchic system of equations. According to the terminal condi-
tions: Q(T) = 0, R(T) = B, M(T) = 0, the solution of the system can be obtained:

Q(t) =
ch(e 2

√
ch+c2θ2

c (t–T) – 1)
√

ch + c2θ2 + cθ + (
√

ch + c2θ2 – cθ )e 2
√

ch+c2θ2
c (t–T)

,

R(t) = e–
∫ Q(t)–cθ

c dt
{∫ {

–2chx1 – 2cQ(t)
[
u1 – D(t)

]

–
2
√

3
π

βcQ(t) ln
1 – α

α

}
e
∫ Q(t)–cθ

c dt dt + C1

}
,

M(t) =
1
4c

∫
–R2(t) + 4chx2

1 – 4c
[
u1 – D(t)

]
R(t) –

4
√

3
π

cR(t)β ln
1 – α

α
dt + C2,

(26)

where C1 and C2 are solved by the terminal conditions R(T) = B, M(T) = 0.
Substituting Eq. (26) into Eq. (22), we have the optimal production rate

u = u1 +
h(e 2

√
ch+c2θ2

c (t–T) – 1)
√

ch + c2θ2 + cθ + (
√

ch + c2θ2 – cθ )e 2
√

ch+c2θ2
c (t–T)

x

–
R(t)
2c

.

(27)

The optimistic value of the inventory level is:

xsup(α) =
{

x0 +
∫ [

u1 +
1
2c

R(t) – D(t)
]

e
∫

(θ–Q(t)/2c) dt dt
}

e–
∫

(θ–Q(t)/2c) dt . (28)

4 A suitable real example
In this section, we illustrate the effectiveness of modeling through a practical example.
Assume that the demand rate D(t) is a constant equal to the expected production rate
u1 = 30. x0 = x1 = 20, c = h = 1, α = 0.9, β = 0.05, θ = 0.1, T = 2, B = 300. According to
Eq. (26), it yields

Q(t) =
e2.01(t–2) – 1

1.105 + 0.905e2.01(t–2) ,

R(t) = e–
∫

(Q(t)–0.1) dt
{∫ [

–40 –
√

3
10π

Q(t) ln
1
9

]
e
∫

(Q(t)–0.1) dt dt + C1

}
,

M(t) =
1
4

∫
–R2(t) + 1600 –

√
3

5π
R(t)β ln

1
9

dt + C2.

(29)

According to terminal conditions: Q(2) = 0, R(2) = B = 300, M(2) = 0, we have C1 = 380
e0.2 ,

C2 = 44,202. Substituting Eq. (29) into Eq. (22), we have the optimal production rate

u = 30 +
e2.01(t–2) – 1

1.105 + 0.905e2.01(t–2) x

–
R(t)
2c

.
(30)
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Then, we have the optimistic value of the inventory level:

xsup(0.9) =
{

20 +
∫ 1

2
R(t)e

∫
(0.1–Q(t)/2) dt dt

}
e–

∫
(0.1–Q(t)/2) dt . (31)

It is obvious that the production rate and the inventory level would increase the func-
tions of confidence level α. When α = 0.8, ln 1–α

α
= ln 1

4 > ln 1
9 , and it yields that u(α=0.9) >

u(α=0.8) and xsup(0.9) > xsup(0.8). That is to say, when policymakers are relatively optimistic
about the market based on their past experience, the production rate and the inventory
level will be higher.

5 Numerical experiment
To verify the feasibility of the proposed uncertain optimistic value model, numerical ex-
periments are conducted in the present section. The demand function is used to express
the relationship between the demand quantity of a commodity and various factors that
affect the demand quantity. That is, various factors that affect the quantity demand are
used as the independent variables, and the quantity demanded is the dependent variable.
Following [39], we study the solution of the model under different demand-rate functions.
B = 25.

1. D(t) = 30 (constant). The parameters in the model are set out in Table 1.
2. D(t) = 30 + t (linear function). The parameters in the model are set out in Table 2.
3. D(t) = 30 + 0.2t + 0.01t2 (quadratic function). The parameters in the model are set

out in Table 3.
4. D(t) = e(t–T) (exponential function). The parameters in the model are set out in

Table 4.
The numerical results are reported in Figs. 1–4. The results suggest that the optimal

inventory level and production rate can finally reach their respective target values. Fur-
thermore, when the demand function is a quadratic function or an exponential function,
the optimal production rate does not decrease significantly when it is approaching the
target value, and it is basically in a state of monotonous increase during this process.

Table 1 Parameters in the optimistic value model

x0 x1 u1 c h α β θ T

30 30 50 1 1 0.9 0.05 0.1 2

Table 2 Parameters in the optimistic value model

x0 x1 u1 c h α β θ T

25 20 30 2 0.5 0.9 0.01 0.05 2

Table 3 Parameters in the optimistic value model

x0 x1 u1 c h α β θ T

20 20 40 2 0.85 0.9 0.01 0.05 2

Table 4 Parameters in the optimistic value model

x0 x1 u1 c h α β θ T

35 30 45 2 0.75 0.9 0.01 0.05 2
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Figure 1 (a) The optimal inventory level, (b) The optimal production rate (constant)

Figure 2 (a) The optimal inventory level, (b) The optimal production rate (linear function)

Figure 3 (a) The optimal inventory level, (b) The optimal production rate (quadratic function)
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Figure 4 (a) The optimal inventory level, (b) The optimal production rate (exponential function)

6 Conclusions
In this paper, an uncertain production-inventory problem with deteriorating items was
studied. To achieve more accurate decision making in a complex modern societal envi-
ronment, many uncertainty factors were considered. The uncertain disturbance was ex-
pressed as an uncertain canonical process. To study the effects of the uncertain canonical
process on the problem, an optimistic value-based optimal control model was proposed.
According to the uncertainty theory, the optimality principle and the optimality equation
were obtained. A nonlinear partial differential equation was derived by the Hamilton–
Jacobi–Bellman principle. The partial differential equation was solved by assuming a spe-
cific form of solution and substituting it in an inverse manner. Then, the optimal pro-
duction rate and inventory level were obtained. Numerical experiments illustrated the
effectiveness of the model and the method we adopted under different demand functions.

Future studies are recommended to focus on more complex production and inventory
problems, such as cash discount, government intervention, green level, exhaust emission,
and pollution-control investment, etc. Some more complex random or uncertain inter-
ference factors should also be considered, such as machine breakdown, random defects,
human operation error, and warehouse fire, etc. In addition, different modeling methods
could also be considered, such as opportunity optimization, critical-value optimization,
and robust optimization, etc.
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