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Abstract
that fix the function e–2x for x ≥ 0. Then, we provide the approximation properties of
these newly defined operators for different types of function spaces. In addition, we
focus on the rate of convergence utilizing appropriate moduli of continuity. Then, we
provide the Voronovskaya-type theorem for these new operators. Finally, in order to
validate our theoretical results, we provide some numerical experiments that are
produced by a MATLAB complier.
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1 Introduction
In approximation theory, the main target is to obtain the representation of an arbitrary
function in terms of simpler and more useful functions. In 1912, Bernstein [12] gave the
following definition, which was referred to by his name, for the proof of the Weierstrass
approximation theorem. In more detail, Bernstein polynomials are defined as

Bn(f ; x) =
n∑

k=0

f
(

k
n

)(
n
k

)
xk(1 – x)n–k ,

for every bounded function on [0, 1], n ≥ 1 and x ∈ [0, 1]. Bernstein polynomials have been
an active study subject for more than a century with their useful structure and applications
in many disciplines (physics, engineering sciences, computer technologies, etc.). In addi-
tion to these, a number of generalizations and modifications of Bernstein polynomials
have been studied in the literature. Some of the main objectives in these generalizations
and modifications can be said to move Bernstein polynomials over unbounded intervals,
which allow us to approximate continuous functions on compact intervals, and to expand
the class to which the desired function belongs. For example, Chlodowsky [16] moved
polynomials from [0, 1] to [0, pn] (pn → ∞, pn

n → 0) by obtaining a new modification of
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Bernstein polynomials. In detail, for n ≥ 1 and x ≥ 0, Chlodowsky introduced the follow-
ing Berstein-type operators

Bn,pn (f ; x) =
n∑

k=0

f
(

pn
k
n

)(
n
k

)(
x

pn

)k(
1 –

x
pn

)n–k

,

where (pn)n≥1 is a sequence of strictly positive real numbers such that

lim
n→∞ pn = ∞ and lim

n→∞
pn

n
= 0.

As can be seen, the operator given above is not a positive operator. For this reason, the
following operators, called Berstein–Chlodowsky operators, are defined as

B∗
n,pn (f ; x) =

⎧
⎨

⎩

∑n
k=0 f (pn

k
n )

( n
k
)
( x

pn
)k(1 – x

pn
)n–k , if 0 ≤ x ≤ pn,

f (x), if x ≥ pn,

and were studied in [7, 11] in detail.
Another aim of the ongoing studies on Bernstein polynomials is to increase the speed

of approximation and to decrease the number of errors that are the natural result of the
approximation process. One of these studies was done by Gadjiev and Ghorbanalizadeh
[17] in 2010. In this study, the authors defined the following operators

Bα,β
n (f ; x) =

⎧
⎪⎪⎨

⎪⎪⎩

( n+β2
n )n ∑n

k=0 f ( k+α1
n+β1

)
(n

k
)

× (x – α2
n+β2

)k( n+α2
n+β2

– x)n–k , if α2
n+β2

≤ x ≤ n+α2
n+β2

,

f (x), if x ∈ [0, α2
n+β2

] ∪ [ n+α2
n+β2

, 1],

where α1,β1,α2,β2 ∈ R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1. In this study, the authors focused on
the convergence properties of these operators in a moving interval as it enlarges to [0, 1].
Motivating by this study, Aral and Acar [8] introduced a new interpretation of Bernstein–
Chlodowsky–Gadjiev-type linear positive operators as follows

Bα,β
n,pn (f ; x) =

⎧
⎪⎪⎨

⎪⎪⎩

( n+β2
n )n ∑n

k=0 f (α3x + pn
k+α1
n+β1

β3)
(n

k
)
( x

pn
– α2

n+β2
)k( n+α2

n+β2
– x

pn
)n–k ,

if pn
α2

n+β2
≤ x ≤ pn

n+α2
n+β2

,

f (x), if x ∈ [0, pn
α2

n+β2
] ∪ [pn

n+α2
n+β2

,∞],

(1.1)

where α1,β1,α2,β2 ∈R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1, α3 +β3 = 1 and pn are defined as above.
Aral and Acar first studied the weighted approximation properties of these newly defined
operators and showed their superior properties. Secondly, they focused on the derivative
of these new operators and gave a weighted approximation theorem in Lipchits space.

On the other hand, King’s inspiration [25] made a tremendous impact on approxima-
tion theory and has been successfully applied to a number of well-known sequences of
operators. The main motivation of King was fixing the function x2 instead of function x
for the classical Bernstein operators that approximate better compared to previous ones.
Regarding King’s brilliant idea, the innovative papers presented by Acar et al. [1, 2], who
introduced modified Szasz–Mirakyan operators preserving constants and e2ax, a > 0. This
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idea has been the source of inspiration of a number of qualified papers in approximation
theory and was successfully applied to several well-known sequences of operators too. In
more detail, in [13, 27], constant and eax for a > 0, in [9, 10, 26], eax and e2ax for a > 0 have
been preserved with modified version of some positive linear operators. Soon after, in
[19, 20, 22], constant and e–x, in [5, 19, 21], constant and e–2x were fixed in a similar man-
ner. Regarding a similar motivation, the most recent paper is due to Acar et al. [4], who
obtained a general class of linear positive approximation processes defined on bounded
and unbounded intervals designed using an appropriate function and Voronovskaya-type
theorems.

This paper aims to introduce a modified version of Bernstein–Chlodowsky–Gadjiev-
Type operators that preserve constant and e–2x for α3 = 0 and β3 = 1. In the meantime, we
present the approximation properties of these newly defined operators for both in spaces
of continuous functions and in some weighted functions spaces. In addition to these,
we provide a Voronoskaya-type theorem for the newly defined Bernstein–Chlodowsky–
Gadjiev-Type operator.

The overall structure of the paper takes the form of six sections including this section.
The remainder of this work is organized as follows: In Sect. 2, the main facts and defini-
tions are reviewed, while the new type Bernstein–Chlodowsky–Gadjiev-Type operators
that fix the constant and e–2x are introduced in Sect. 3. In Sect. 4, the approximation prop-
erties of the newly define operators are provided. In Sect. 5, a Voronovskaya-type theorem
is given, while numerical experiments are given in Sect. 6. Some conclusions and further
directions of research are discussed in Sect. 7.

2 Preliminaries
Throughout this and the next sections, we shall denote by S the set of [0,∞). We will
use the notation C(S) for the space of all continuous real-valued functions on S . In this
manner, we shall use Cb(S) for the space consisting of all bounded functions in C(S).
Additionally, let C∗(S) and C0(S) be the Banach sublattices of all real-valued bounded
continuous functions on S , (Cb(S)), endowed with the natural order and the supremum
norm ‖ · ‖∞, which are

C∗(S) =
{

f ∈ C(S) : ∃ lim
x→∞ f (x) ∈ R

}
,

and

C0(S) =
{

f ∈ C∗(S) : lim
x→∞ f (x) = 0

}
,

respectively.
Now, let us consider the weighted space

�k :=
{

f ∈ C(S) : sup
x≥0

�k(x)
∣∣f (x)

∣∣ ∈R

}
,

where �k(x) = 1
1+xk is the weight function for k ≥ 1 and x ≥ 0. It is clear that this weighted

space is endowed with the norm

‖f ‖k = sup
x≥0

�k(x)
∣∣f (x)

∣∣,
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where f ∈ �k and its natural subspaces

�∗
k =

{
f ∈ �k : ∃ lim

x→∞�k(x)f (x) ∈R

}
,

and

�0
k =

{
f ∈ �k : lim

x→∞�k(x)f (x) = 0
}

.

It must be noted that C0(S) is dense in �0
k as a consequence of the Stone–Weierstrass

theorem.
In addition, throughout this and the next sections, we consider a fixed real parameter

μ > 0 and consider the exponential function fμ as

fμ(t) = e–μt . (2.1)

Additionally, as usual, we denote by ei the polynomial functions defined by ei(t) = ti (t ≥ 0,
i ∈ N).

Now, for convenience, to obtain the new operator for α3 = 0 and β3 = 1, we need to
deduce Gα,β

n (fμ; x) for every n ≥ 1 and x ≤ pn, that is,

Bα,β
n,pn (fμ)(x)

=
[

1 +
α2

n
(
1 – e–μpn/(n+β1)) – x

(
n + β2

npn

(
1 – e–μpn/(n+β1))

)]n

e–μpnα1/(n+β1), (2.2)

where α1,β1,α2,β2 ∈ R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1. Hence, it can be easily deduced that
for each f ∈ C∗(S),

lim
n→∞ Bα,β

n,pn (f ) = f

uniformly on S , under the given hypothesis,

lim
n→∞

pn

n
= 0 and lim

n→∞ pn = ∞. (2.3)

3 Bernstein–Chlodowsky–Gadjiev-type operators that fix e–2x

Now, we can introduce a general version of Bernstein–Chlodowsky–Gadjiev-Type oper-
ators that preserve the function f2. For that, first, we need to introduce a sequence (sn)n≥1

of real functions such that the operators,

Gα,β
n := Gα,β

n ◦ sn, (3.1)

preserve the function f2(x). Now, in order to construct a new operator that preserves f2(x),
we need to compute the sn(x) with the help of (2.2), that is,

[
1 +

α2

n
(
1 – e–2pn/(n+β1)) – sn(x)

(
n + β2

npn

(
1 – e–2pn/n+β1

))]n

e–2pnα1/n+β1 = f2,
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where α1,β1,α2,β2 ∈ R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1, which yields,

sn(x) =
pn

n + β2

(
α2 + n

1 – e2pnα1/n(n+β1)–2x/n

1 – e–2pn/(n+β1)

)

for sn(x) ≤ pn. The point to be considered here is

lim
n→∞ sn(x) = x.

Additionally, thanks to the fact that 1 – e–x ≤ x for x ≥ pnα1
n+β1

, we can easily deduce that

sn

(
pnα1

n + β1

)
=

pnα2

n + β2

and

pnα2

n + β2
≤ sn(x) ≤ pnα2

n + β2
+ Nnx, (3.2)

where

Nn :=
2pn

(n + β2)(1 – e–2pn/(n+β1))

for n ≥ 1. In addition, with the help of (2.3), one can deduce that

lim
n→∞ Nn = 1.

Considering all of these, for each n ≥ 1, x ≥ 0 and f ∈ C∗(S), the new Bernstein–
Chlodowsky–Gadjiev-Type Operators (Gα1,β1

n )n≥1 can be defined as,

Gα1,β1
n (f ; x) =

⎧
⎪⎪⎨

⎪⎪⎩

∑n
k=0 f (pn

k+α1
n+β1

)
(n

k
)
( 1–e2pnα1/n(n+β1)–2x/n

1–e–2pn/(n+β1) )k

× (1 – 1–e2pnα1/n(n+β1)–2x/n

1–e–2pn/(n+β1) )n–k , if x ∈ In,

f (x), if x ∈ S/In,

(3.3)

where In = [pn
α1

n+β1
, pn

n+α1
n+β1

], α1,β1 ∈ R and 0 ≤ α1 ≤ β1. The relation between the pro-
posed operator and its classical counterpart is now observed as

Gα1,β1
n f (x) = Bα,β

n,pn f
(
sn(x)

)
. (3.4)

Now, we can obtain the moments of the newly defined operators utilizing the above-
mentioned equalities.

Lemma 1 For each x ∈ In and n ∈ N, then the following identities hold:
(i) Gα1,β1

n (e0; x) = 1,
(ii) Gα1,β1

n (e1; x) = pn
n+β1

(α1 – α2 + sn(x) n+β2
pn

) = pn
n+β1

(α1 + n 1–e2pnα1/n(n+β1)–2x/n

1–e–2pn/(n+β1) ),
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(iii)

Gα1,β1
n (e2; x) =

[
2pn

α1

n + β1
+

n – 1
n

(
n + β2

n + β1

)(
sn(x) – pn

α2

n + β2

)
+ pn

1
n + β1

]

×
(

n + β2

n + β1

)(
sn(x) – pn

α2

n + β2

)

+
(

pn
α1

n + β1

)2

,

where α1,β1 ∈R and 0 ≤ α1 ≤ β1.

It can be easily seen that the results in (ii) and (iii) convergence to e1(x) and e2(x) in the
limit case (n → ∞), which shows that the new operators introduced in (3.3) preserve the
Korovkin test functions.

All the results given so far and hereinafter were computed by MAPLE software that is
a Computer Algebra System on attitudes towards mathematics. In addition, these results
also show that the newly defined operator protects Korovkin test functions in the limit
case.

In particular, if one considers the function described for each x ≥ 0, as

Em
t =

(
e1(t) – xe0(t)

)m

we have the following lemma.

Lemma 2 For each x ∈ In and n ∈ N, then the following identities hold:
(i) Gα1,β1

n (E0
t ; x) = 0,

(ii) Gα1,β1
n (E1

t ; x) = pn
n+β1

(α1 + n 1–e2pnα1/n(n+β1)–2x/n

1–e–2pn/(n+β1) ) – x,
(iii)

Gα1,β1
n

(
E2

t ; x
)

=
(

2pn
α1

n + β1
+

n – 1
n

(
n + β2

n + β1

)(
sn(x) – pn

α2

n + β2

)
+ pn

1
n + β1

)

×
(

n + β2

n + β1

)(
sn(x) – pn

α2

n + β2

)
+

(
pn

α1

n + β1

)2

– 2x
pn

n + β1

(
α1 – α2 + sn(x)

n + β2

pn

)
+ x2,

where α1,β1 ∈R and 0 ≤ α1 ≤ β1.

In conclusion, one can easily deduce the following equality for the exponential function
given in (2.1),

Gα1,β1
n (fμ; x) = e–μpnα1/(n+β1)

[
1 –

(
1 – e–μpn/(n+β1))

(
sn(x)

n + β2

npn
–

α2

n

)]n

, (3.5)

= e–μpnα1/(n+β1)
[

1 –
(
1 – e–μpn/(n+β1))

(
1 – e2pnα1/n(n+β1)–2x/n

1 – e–2pn/(n+β1)

)]n

.
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It is clear that Gα1,β1
n (fμ; x) → fμ as n → ∞. As a result, (Gα1,β1

n )n≥1 is an approximation
process in C(S); i.e., for every f ∈ C(S),

lim
n→∞Gα1,β1

n (f ) = f ,

uniformly on S .
In particular, if one considers the function described for each x ≥ 0, as

Fm
t =

(
e–t – e–x)m

then we can easily deduce the following lemma.

Lemma 3 For each x ∈ S and n ∈N, then the following identities hold:
(i) Gα1,β1

n (F0
t ; x) = 1,

(ii) Gα1,β1
n (F1

t ; x) = e–pnα1/(n+β1)[1 – ( 1–e2pnα1/n(n+β1)–2x/n

1+e–pn/(n+β1) )]n – e–x,

(iii) Gα1,β1
n (F2

t ; x) = 2e–2x – 2e–xe–pnα1/(n+β1)[1 – ( 1–e2pnα1/n(n+β1)–2x/n

1+e–pn/(n+β1) )]n,
where α1,β1 ∈R and 0 ≤ α1 ≤ β1.

Now, let us focus on the properties of the function sn(x).

Proposition 1 For each n ≥ 1 and any x ∈ S , we have

sn(x) ≥
(

n + β1

n + β2

)
x – pn

α1 – α2

n + β2
, (3.6)

where α1,β1,α2,β2 ∈ R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1.

Proof To begin with, for n ≥ 1 we know that sn is a convex down increasing function in
In since it is a function of –f2/n(x). In addition, since sn(pn

α1
n+β1

) = pn
α2

n+β2
and sn(pn

n+α1
n+β1

) =
pn

n+α2
n+β2

, we can easily deduce that sn(x) ≥ ( n+β1
n+β2

)x – pn
α1–α2
n+β2

for x ∈ In, thus the proof is
completed. �

Proposition 2 For α1,β1,α2,β2 ∈R and 0 ≤ α2 ≤ α1 ≤ β2 ≤ β1,

lim
n→∞ sn = e1(x)

uniformly on compact subintervals of S .

Proof It is clear that, limn→∞ sn = e1(x) pointwise on S . Additionally, each sn(x) is concave
and the convergence is indeed uniform on every compact interval of S . �

4 Approximation properties of (Gα1,β1
n )n≥1

Previously, we have provided the properties of the newly defined Bernstein–Chlodowsky–
Gadjiev-Type operators that fix the function e–2x. Now, we can introduce some approxi-
mation properties of these new operators for the different spaces of continuous functions.
Additionally, we provide the rate of convergence of Gα1,β1

n .
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Theorem 1 Let x > 0 be fixed and Gα1,β1
n , n ≥ 1, be the operator defined in (3.3). Then,

Gα1,β1
n is a linear positive operator from C∗(S) into itself. In addition, ‖Gα1,β1

n ‖C∗(S) = 1.

Proof It can be easily shown that for each n ∈ N, sn(x) is an increasing and convex real
continuous function satisfying

sn

(
pn

α1

n + β1

)
= pn

α2

n + β2
and sn

(
pn

n + α1

n + β1

)
= pn

n + α2

n + β2
.

As an explicit consequence of equations (3.1) and (3.2), one can conclude that Gα1,β1
n is

a positive operator. Additionally, if f ∈ C∗(S), one can say that Bα,β
n,pn (f ) ∈ C∗(S) result-

ing from (1.1), which yields Bα,β
n,pn (f ) ∈ C(S). Then, it can be easily seen that Gα1,β1

n (f ) ∈
C(S) since sn(x) satisfy the above properties and the relation (3.4). Moreover, it is ob-
vious that limx→∞ Gα1,β1

n (f )(x) = limx→∞(f )(x) ∈ R. As a consequence, ‖Gα1,β1
n ‖C∗(S) =

‖Gα1,β1
n (e0)‖∞ = 1 due to the positivity of each Gα1,β1

n . �

Theorem 2 For the same assumptions of Theorem 1, the following expression

Gα1,β1
n

(
C0(S)

) ⊂ C0(S)

holds.

Proof From the direct consequence of Theorem 1 and limx→∞ Gα1,β1
n (f )(x) =

limx→∞(f )(x) = 0 whenever f ∈ C0(S), one can easily show the proof of the theorem. �

Theorem 3 For the fixed n ≥ 1, consider the operators Gα1,β1
n defined by (3.3). Then,

lim
n→∞Gα1,β1

n (f ) = f uniformly on S

if f ∈ C∗(S).

Proof In an attempt to prove the theorem we need to show that

lim
n→∞Gα1,β1

n (fμ) = fμ uniformly on S , (4.1)

for every μ > 0. In line with this objective, for every z > 0, we use the following useful
inequality given in [23, Lemma 3.1]

e–zϑn – e–z <
zn

2e
, n ≥ 1, (4.2)

where ϑn = 1–e–zn
zn

and (zn)n≥1 is a sequence of strictly positive real numbers. Then, by
following the similar steps of the proof of [23, Corollary 3.4], we can obtain that

∣∣Gα1,β1
n (fμ)(x) – (fμ)(x)

∣∣

≤ e–μpnα1/(n+β1)
[

1 –
(
1 – e–μpn/(n+β1))

(
sn(x)

n + β2

npn
–

α2

n

)]
– e–μx,

= e–μpnα1/(n+β1)en ln[1–(1–e–μpn/(n+β1))(sn(x) n+β2
npn – α2

n )] – e–μx,
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≤ e–μpnα1/(n+β1)e–nsn(x)[(n+β2)/npn][1–e–μpn/(n+β1)]eα2[1–e–μpn/(n+β1)] – e–μx,

= e–μpnα1/(n+β1)e[α2μpn/(n+β1)] [1–e–μpn/(n+β1)]
μpn/(n+β1) e–nsn(x)[(n+β2)/npn][μpn/(n+β1)] [1–e–μpn/(n+β1)]

μpn/(n+β1)

– e–μx,

≤ e–μpn(α1–α2)/(n+β1)(e–μsn(x)[(n+β2)/(n+β1)] [1–e–μpn/(n+β1)]
μpn/(n+β1) – e–μsn(x)[(n+β2)/(n+β1)])

since ln x ≤ x – 1, [1–e–μpn/(n+β1)]
μpn/(n+β1) ≤ 1 for (2.3) and the inequality (3.6) holds. Then, using

(4.2) for

z = –μsn(x)
(n + β2)
(n + β1)

and zn =
μpn

(n + β1)
,

we deduce that

∣∣Gα1,β1
n (fμ)(x) – fμ(x)

∣∣ ≤ e–μpn(α1–α2)/(n+β1) μpn

2e(n + β1)

and

∥∥Gα1,β1
n (fμ) – fμ

∥∥∞ ≤ e–μpn(α1–α2)/(n+β1) μpn

2e(n + β1)
(4.3)

for x ∈ S and the proof of (4.1) is completed. Then, relying on the direct result of (4.1) and
[14], we can prove the theorem. �

Theorem 4 For the same assumptions of Theorem 3, then

lim
n→∞Gα1,β1

n (f ) = f uniformly on compact subsets of S

if f ∈ Cb(S).

Proof From the the results provided above, we note that

|Gα1,β1
n (e0)(x) – e0(x) = 0,

∣∣Gα1,β1
n (e1)(x) – e1(x)

∣∣ ≤ pn
α1 – α2

n + β2
+ pn

α2

n + β1
+ x

(
Nn

n + β2

n + β1
– 1

)
,

and

∣∣Gα1,β1
n (e2)(x) – e2(x)

∣∣

≤ x2
(

n – 1
n

(
n + β2

n + β1

)2

N2
n – 1

)
+ pn

(2α1 + 1)(n + β2)
(n + β1)2 Nnx +

(
pn

α1

n + β1

)2

,

thereby, limn→∞ Gα1,β1
n ({e0, e1, e2}) = {e0, e1, e2} uniformly on compact subsets of S , due to

the fact that limn→∞ Nn = 1. As a result, as {e0, e1, e2} ⊂ �∗
2, the consequence follows from

[6, Theorem 3.5]. �
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In order to estimate the rate of convergence of (Gα1,β1
n (f )) for n ≥ 1 to f in Theorem 3,

we need to increase our knowledge about the modulus of continuity. In this estimation,
we will take advantage of the following definition of the modulus of continuity introduced
in [23]:

Definition 1 Let f ∈ C∗(S). Then, the modulus of continuity of a function, ω∗(f , δ), is
defined for δ ≥ 0 by

ω∗(f , δ) = sup
x,t≥0

|e–x–e–t |≤δ

∣∣f (x) – f (t)
∣∣. (4.4)

In other words, this modulus of continuity can be stated concerning the standard modulus
of continuity by

ω∗(f , δ) = ω(f , δ),

where f : C∗(S) → C(S) is the continuous function defined by

f(θ ) =

⎧
⎨

⎩
f (– ln θ ), if θ ∈ (0, 1],

1, if θ = 0.

Then, the following theorem would be helpful in order to express the next theorems.

Theorem 5 ([23]) If Qn : C∗(S) → C∗(S) is a sequence of positive linear operators for n ≥ 1
with

ρn =
∥∥Qn(e0) – e0

∥∥∞,

ξn =
∥∥Qn(f1) – f1

∥∥∞,

κn =
∥∥Qn(f2) – f2

∥∥∞,

where ρn, ξn,κn → 0 as n → ∞, then,

∥∥Qn(f ) – f
∥∥∞ ≤ ‖f ‖∞ρn + (2 + ρn)ω∗(f ,

√
ρn + 2ξn + κn),

for f ∈ C∗(S).

In this regard, it is clear that there is a close relation between ω∗(f , δ) and the particular
Korovkin subset chosen for the space C∗(S), (see [23]). Then, we can state the following
theorem with the help of the above.

Theorem 6 For every f ∈ C∗(S) and n ≥ 1,

∥∥Gα1,β1
n (f ) – f

∥∥∞ ≤ 2ω∗
(

f ,
√

e–pn(α1–α2)/(n+β1) pn

e(n + β1)

)
,

under the same assumptions of Theorem 3.
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Proof It is obvious that, ρn and κn equal zero due to their definitions. On the other hand,
it is easy to show that

ξn = e–pn(α1–α2)/(n+β1) pn

2e(n + β1)
,

from (4.3) with λ = 1 for every n ≥ 1. Hence, the proof is completed. �

5 Voronovksya type theorem
In this section, the pointwise convergence of the Bernstein–Chlodowsky–Gadjiev-Type
operators that fix e–2x is provided. To present the convergence we present Voronovskaja-
type theorem in quantitative mean that allows us to find both the degree of aimed conver-
gence and the upper bound for the error of approximation.

The quantitative Voronovskaja-type theorem for the Bernstein–Chlodowsky–Gadjiev-
Type operators acting on bounded intervals and unbounded intervals can be found in the
papers [3, 15, 18, 24], respectively. Here, we consider the modulus of continuity given in
(4.4). Now, we can present the theorem of this section.

Theorem 7 Let f , f ′′ ∈ C∗(S). Then, the inequality

∣∣∣∣
n
pn

[
Gα1,β1

n (f ; x) – f (x)
]

– xf ′(x) –
1
2

xf ′′(x)
∣∣∣∣

≤ ∣∣f ′(x)
∣∣∣∣An(x)

∣∣ +
∣∣f ′′(x)

∣∣∣∣Bn(x)
∣∣ + 2

∣∣2Bn(x) + x
∣∣ + 2Cn(x)ω∗

(
f ′′,

1√
n

)
,

holds for any x ∈ S , α1,β1 ∈R and 0 ≤ α1 ≤ β1, where

An(x) =
n
pn

Gα1,β1
n

(
E1

t ; x
)

– x,

Bn(x) =
1
2

n
pn

Gα1,β1
n

(
E2

t ; x
)

– x,

Cn(x) =
n2

pn

√
Gα1,β1

n
(
E4

t ; x
)√

Gα1,β1
n

(
F4

t ; x
)
.

Proof With the help of a Taylor expansion of f at the point x ∈ S , one can easily deduce
that

f (t) = f (x) + f ′(x)(t – x) +
f ′′(x)

2
(t – x)2 + �(t, x)(t – x)2, (5.1)

where

�(t, x) :=
f ′′(ε) – f ′′(x)

2

and ε is a number between x and t. Then, by applying the Bernstein–Chlodowsky–
Gadjiev-Type operators Gα1,β1

n to both sides of equality (5.1) and utilizing Gα1,β1
n (e0) = e0,

we immediately deduce that

∣∣∣∣G
α1,β1
n (f ; x) – f (x) – f ′(x)Gα1,β1

n
(
E1

t ; x
)

–
1
2

f ′′(x)Gα1,β1
n

(
E2

t ; x
)∣∣∣∣ ≤ ∣∣Gα1,β1

n
(
�E2

t ; x
)∣∣.
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Then, by rearranging the above inequality, one easily obtains that

∣∣∣∣
n
pn

[
Gα1,β1

n (f ; x) – f (x)
]

– xf ′(x) –
1
2

xf ′′(x)
∣∣∣∣

≤ ∣∣f ′(x)
∣∣
∣∣∣∣

n
pn

Gα1,β1
n

(
E1

t ; x
)

– x
∣∣∣∣ +

1
2
∣∣f ′′(x)

∣∣
∣∣∣∣

n
pn

Gα1,β1
n

(
E2

t ; x
)

– x
∣∣∣∣

+
∣∣∣∣

n
pn

Gα1,β1
n

(
�E2

t ; x
)∣∣∣∣.

For the sake of convenience, we shall denote by

An(x) =
n
pn

Gα1,β1
n

(
E1

t ; x
)

– x,

and

Bn(x) =
1
2

n
pn

Gα1,β1
n

(
E2

t ; x
)

– x.

From the consequences of Lemma 2, it is clear that An → 0 and Bn(x) → 0 as n → ∞ at
any point x ∈ S . Hence, we have that

∣∣∣∣
n
pn

[
Gα1,β1

n (f ; x) – f (x)
]

– xf ′(x) –
1
2

xf ′′(x)
∣∣∣∣

≤ ∣∣f ′(x)
∣∣∣∣An(x)

∣∣ +
∣∣f ′′(x)

∣∣∣∣Bn(x)
∣∣ +

∣∣∣∣
n
pn

Gα1,β1
n

(
�E2

t ; x
)∣∣∣∣.

As a last step to finalize the proof of the theorem, we must estimate the last term
| n

pn
Gα1,β1

n (�E2
t ; x)|. With the help of the inequality in Holhos’s paper [23], we obtain that

∣∣�(t, x)
∣∣ ≤

(
1 +

(e–x – e–t)2

δ2

)
ω∗(f ′′; δ

)

and
⎧
⎨

⎩
|�(t, x)| ≤ 2ω∗(f ′′; δ) if |e–x – e–t| ≤ δ,

|�(t, x)| ≤ 2 (e–x–e–t )2

δ2 ω∗(f ′′; δ) if |e–x – e–t| > δ.

As a consequence, we have |�(t, x)| ≤ 2(1 + (e–x–e–t )2

δ2 )ω∗(f ′′; δ). With the help of this, we
can easily obtain that

∣∣∣∣
n
pn

Gα1,β1
n

(
�E2

t ; x
)∣∣∣∣ ≤ 2n

pn
ω∗(f ′′; δ

)
Gα1,β1

n
(
E2

t ; x
)

+
2n

δ2pn
ω∗(f ′′; δ

)
Gα1,β1

n
(
E2

t F2
t ; x

)
,

and applying the long-familiar Cauchy–Schwarz inequality, we obtain

n
pn

Gα1,β1
n

(∣∣�E2
t
∣∣; x

) ≤ 2n
pn

ω∗(f ′′; δ
)
Gα1,β1

n
(
E2

t ; x
)

+
2n

δ2pn
ω∗(f ′′; δ

)√
Gα1,β1

n
(
E4

t ; x
)√

Gα1,β1
n

(
F4

t ; x
)
.
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By choosing δ = 1√
n and denoting by Cn(x) = n2

pn

√
Gα1,β1

n (E4
t ; x)

√
Gα1,β1

n (F4
t ; x), we deduce that

∣∣∣∣
n
pn

[
Gα1,β1

n (f ; x) – f (x)
]

– xf ′(x) –
1
2

xf ′′(x)
∣∣∣∣

≤ ∣∣f ′(x)
∣∣∣∣An(x)

∣∣ +
∣∣f ′′(x)

∣∣∣∣Bn(x)
∣∣

+ 2
∣∣2Bn(x) + x

∣∣ + 2Cn(x)ω∗
(

f ′′,
1√
n

)
,

thus the proof is completed. �

Corollary 1 Let f , f ′′ ∈ C∗(S). Then, the inequality

lim
n→∞

n
pn

[
Gα1,β1

n (f ; x) – f (x)
]

= xf ′(x) +
1
2

xf ′′(x),

holds for any x ∈ S .

6 Numerical examples
In this part of the paper, we provide a series of numerical experiments for the newly de-
fined operators. For this purpose, we present the graphical presentations for a classical
Bernstein–Chlodowsky operator, a Bernstein–Chlodowsky–Gadjiev operator and our op-
erators introduced above. In these experiments, we have used three different test functions
and different parameters. All the implementations of the newly defined operators are per-
formed in MATLAB.

Example 1 We shall now illustrate the convergence of the new type Bernstein–
Chlodowsky–Gadjiev operator based on its classical counterparts. The new construc-
tion of the Bernstein–Chlodowsky–Gadjiev operator and its standard version algorithm
is applied to the test function f (x) : [0, 1] →R, where pn = n1/2 and n = 100 with

f (x) = e–2x,

such that α2 = 1, α1 = 2, α3 = 0, β1 = 3, β2 = 4 and β3 = 1.
In Fig. 1 we draw the results of standard Bernstein–Chlodowsky operators, a Bernstein–

Chlodowsky–Gadjiev operator, the new construction of Bernstein–Chlodowsky–Gadjiev
operators and a test function. Clearly, the proposed operator shows better convergence
behavior than its classic counterparts.

Example 2 Secondly, we will show the convergence of the new type Bernstein–
Chlodowsky–Gadjiev operator based on its classical counterparts. The new construc-
tion of the Bernstein–Chlodowsky–Gadjiev operator and its standard version algorithm
is applied to the test function f (x) : [0.1, 2] →R, where pn = n1/2 and n = 100 with

f (x) =
1

1 + 25x2 ,

such that α2 = 1, α1 = 2, α3 = 0, β1 = 3, β2 = 4 and β3 = 1.
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Figure 1 f (x) = e–2x , the classical Bernstein–Chlodowsky operator, the Bernstein–Chlodowsky–Gadjiev
operator and the newly defined Bernstein–Chlodowsky–Gadjiev-Type operator versus x with cn = n1/2, α2 = 1,
α1 = 2, α3 = 0, β1 = 3, β2 = 4 and β3 = 1: Exact function (Red), classical Bernstein–Chlodowsky operator
(Green – Diamond), Bernstein–Chlodowsky–Gadjiev operator (Blue – Circle) and newly defined
Bernstein–Chlodowsky–Gadjiev operator (Magenta – Star) on an equally spaced evaluation grid

Figure 2 f (x) = 1
1+25x2

, the classical Bernstein–Chlodowsky operator, the Bernstein–Chlodowsky–Gadjiev

operator and the newly defined Bernstein–Chlodowsky–Gadjiev-Type operator versus x with cn = n1/2, α2 = 1,
α1 = 2, α3 = 0, β1 = 3, β2 = 4 and β3 = 1: Exact function (Red), classical Bernstein–Chlodowsky operator
(Green – Diamond), Bernstein–Chlodowsky–Gadjiev operator (Blue – Circle) and newly defined
Bernstein–Chlodowsky–Gadjiev operator (Magenta – Star) on an equally spaced evaluation grid

Similarly, in Fig. 2, we draw the results of standard Bernstein–Chlodowsky opera-
tors, a Bernstein–Chlodowsky–Gadjiev operator, the new construction of Bernstein–
Chlodowsky–Gadjiev operators and a test function. Clearly, the proposed operator shows
better convergence behavior than its classic counterparts to the test function.
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7 Concluding remarks
In this paper, we introduced a generalization of Bernstein–Chlodowsky–Gadjiev-Type op-
erators that preserve constant and e–2x for x ≥ 0. In order to show the approximation
properties of these newly defined operators, we used several different function spaces.
Additionally, we provide the rate and convergence and a Voronovksya-type theorem for
Bernstein–Chlodowsky–Gadjiev-Type operators.
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Babeş–Bolyai, Math. LV(2), 133–142 (2010)
24. Karsli, H.: A Voronovskaya-type theory for the second derivative of the Bernstein–Chlodovsky polynomials. Proc. Est.

Acad. Sci. 61, 9–19 (2012)
25. King, J.P.: Positive linear operators which preserve x2 . Acta Math. Hung. 99(3), 203–208 (2003)
26. Ozsarac, F., Acar, T.: Reconstruction of Baskakov operators preserving some exponential functions. Math. Methods

Appl. Sci., 1–9 (2018). https://doi.org/10.1002/mma.5228
27. Yilmaz, O.G., Gupta, V., Aral, A.: On Baskakov operators preserving the exponential function. J. Numer. Anal. Approx.

Theory 46(2), 150–161 (2017)

https://doi.org/10.1002/mma.5228

	On approximation of Bernstein-Chlodowsky-Gadjiev type operators that ﬁx e-2x
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Bernstein-Chlodowsky-Gadjiev-type operators that ﬁx  e-2x 
	Approximation properties of  (Gnalpha1,beta1)n>=1 
	Voronovksya type theorem
	Numerical examples
	Concluding remarks
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


