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Abstract
The theory of fractional integral inequalities plays an intrinsic role in approximation
theory also it has been a key in establishing the uniqueness of solutions for some
fractional differential equations. Fractional calculus has been found to be the best for
modeling physical and engineering processes. More precisely, the proportional
fractional operators are one of the recent important notions of fractional calculus. Our
aim in this research paper is developing some novel ways of fractional integral
Hermite–Hadamard inequalities in the frame of a proportional fractional integral with
respect to another strictly increasing continuous function. The considered fractional
integral is applied to establish some new fractional integral Hermite–Hadamard-type
inequalities. Moreover, we present some special cases throughout discussing this
work.
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1 Introduction
The theory of fractional calculus, which is interested in differential and integral opera-
tors of noninteger orders, is just about as old as the classical calculus, which deals with
integer orders. Since not the totality of the real phenomena can be modeled by employing
the operators in the classical calculus, scientists and authors looked for generalizations of
these operators. As of now, we can say that the theory of fractional calculus is of consider-
able interest for a large number of researchers. There is a large amount of exploration and
literature especially on the classical fractional calculus like the definitions of Riemann–
Liouville (RL) and Caputo. The RL derivative is a general common concept and, in some
definitions, the most uniform and natural. However, it has some disadvantages when em-
ploying in modeling physical problems in view of the fact that the requisite initial con-
ditions are themselves fractional, which is perhaps inappropriate for physical conditions.
The Caputo derivative has the advantage of being suitable for physical conditions because
it requires only initial conditions of the traditional type [1].
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Be that as it may, these are by no means the only methods of describing and defin-
ing fractional calculus. In fact, there are multiple definitions of fractional operators;
RL, Caputo, Hilfer, Riesz, Hadamard, Erdélyi–Kober, Katugampola, Caputo–Fabrizio,
Atangana–Baleanu definitions are just a few examples to make reference to [2–6]. Each
concept has its own conditions and rules, due to which a some of these definitions are
not identical to each other. In practice, the physical framework under regard decides the
placement of an appropriate fractional operator. As a consequence, researchers have in-
troduced various definitions of inequivalent fractional operators, every one of which is
helpful in its own specific context. In view of the foregoing, it is natural for mathemati-
cians to develop and explore fractional operators that are generalized categories of the
current specific cases. For some applications and recent contributions of fractional calcu-
lus, we refer the readers to [7–11].

Our focus here is on mathematical inequalities, which are critically important in many
useful applications, especially, in classical differential equations and integrals. Accord-
ingly, in the last two centuries, several useful mathematical inequalities have been pre-
sented by mathematicians. Among mathematical inequalities, one inequality has a well-
known area along with the inequality theory. It is the well-known Hermite–Hadamard
inequality. The first suggest of this inequality is attributed to Hermite (1881), but until
1893, this result was not taken into a consideration in the literature and was not vastly
known as Hermite’s inequality. Beckenbach [12] wrote that the inequality

ϕ

(
a + b

2

)
≤ 1

(a – b)

∫ b

a
ϕ(u) du ≤ ϕ(a) + ϕ(b)

2
, a, b ∈R, a < b, (1.1)

which holds for convex function ϕ, was proved by Hadamard in (1893) and called it the
Hermite–Hadamard inequality, and since then, it had several generalizations and exten-
sions for univariable, bivariable, and multivariable convex functions (see [13]). Signifi-
cantly, this inequality has become the focus of attention of many researchers and mathe-
maticians due to its important applications and wide uses in many fields. As a result, a lot
of works have appeared that include generalizations and extensions of this inequality; see
[14–16].

Mathematical inequalities had to take their share of the theory of fractional calculus,
concerning the Hermite–Hadamard inequality. Sarikaya et al. [17] in 2013 presented an
RL-type fractional integral inequality formula for convex functions.

Theorem 1.1 ([17]) Let ϕ : [a, b] −→R be a positive convex function on [a, b] with 0 ≤ a <
b. Then for all μ > 0, we have the following inequalities:

ϕ(a) + ϕ(b)
2

≤ �(μ + 1)
2(a + b)μ

[
Iμ

a+ϕ(b) + Iμ

b–ϕ(a)
] ≤ ϕ

(
a + b

2

)
. (1.2)

Chen [18] in 2016 proved the following Riemann–Liouville fractional integral Hermite–
Hadamard type inequalities.

Theorem 1.2 Let ϕ : [a, b] −→ R with 0 ≤ a < b be a positive twice differentiable function
on (a, b), which is integrable [a, b]. If ϕ′′ is bounded in [a, b], then we have the following
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inequalities:

μC1

2(b – a)μ

∫ ( a+b
2 )

a

(
a + b

2
– u

)2{
(b – u)μ–1 + (u – a)μ–1}du

≤ �(μ + 1)
2(b – a)μ

{
Iμ

a+ϕ(b) + Iμ

b–ϕ(a)
}

– ϕ

{
a + b

2

}

≤ μC2

2(b – a)μ

∫ ( a+b
2 )

a

(
a + b

2
– u

)2{
(b – u)μ–1 + (u – a)μ–1}du. (1.3)

Theorem 1.3 Let ϕ : [a, b] −→ R with 0 ≤ a < b be a positive twice differentiable function
on (a, b), which is integrable function on [a, b]. If ϕ′′ is bounded in [a, b], then we have the
following inequalities:

–μC2

2(b – a)μ

∫ ( a+b
2 )

a

[
(b – u)(u – a)

]{
(b – u)μ–1 + (u – a)μ–1}du

≤ �(μ + 1)
2(b – a)μ

{
Iμ

a+ϕ(b) + Iμ

b–ϕ(a)
}

–
ϕ(a) + ϕ(b)

2

≤ –μC1

2(b – a)μ

∫ ( a+b
2 )

a

[
(b – u)(u – a)

]{
(b – u)μ–1 + (u – a)μ–1}du. (1.4)

Chen [18] also proved the fractional integral Hermite–Hadamard inequality (1.2) with-
out using the convexity of the function ϕ.

Liu [19] in (2019) presented inequality (1.2) with respect to another positive increasing
monotone function.

Theorem 1.4 Let ϕ : [a, b] −→R with 0 ≤ a < b be a positive convex function on [a, b], and
let ψ(u) be an increasing positive function having a continuous derivative on (a, b). Then
we have the following inequalities:

ϕ

(
a + b

2

)
≤ �(μ + 1)

2(b – a)μ
{

ψIμ

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

≤ ϕ(a) + ϕ(b)
2

. (1.5)

As an application of the Hermite–Hadamard inequality, Nowicka and Witkowski [20]
showed how certain its improvements can be applied to some (not necessarily convex) pla-
nar figures and three-dimensional bodies satisfying some kind of regularity. Dahmani [21]
in (2010) employed concave functions to present Hermite–Hadamard-type inequalities
using the Riemann–Liouville fractional integral. Set et al. in (2014) studied the Hermite–
Hadamard inequality for the second sense of s-convex functions, which was proved by
Dragomir et al. [22], and m-convex functions employing the fractional integrals. Noor
et al. [23] in (2015) by using the q-differentiable convex functions and q-differentiable
quasi-convex functions derived some quantum estimates for Hermite–Hadamard-type
inequalities. Agarwal et al. [24] in (2017), employing the (k,s)-Riemann–Liouville frac-
tional integrals, obtained some Hermite–Hadamard-type inequalities for convex func-
tions. Khan [25] in (2018) introduced some new Hermite–Hadamard-type inequalities
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employing the convex functions, s-convex, and coordinate convex functions via the con-
formable fractional integral. Pshtiwan and Brevik [26] in (2020) introduced a new ver-
sion of the Hermite–Hadamard inequality for the Riemann–Liouville fractional inte-
grals. For n-polynomial harmonically convex functions, Awan et al. [27] in the same
year proved some new Hermite–Hadamard-type inequalities. Also, Chudziak and Ołdak
[28]presented a notion of coordinated (F , G)-convex functions defined on an interval in
R

2. Recently, in (2021), Khan [29] studied the Hermite–Hadamard inequality for coordi-
nates of convex fuzzy interval-valued functions. A lot of the authors studied the Hermite–
Hadamard inequalities for several different types of convexity of the functions via several
different types of fractional integral and derivative operators; for more detail, we refer the
readers to [30–34].

Motivated by the above argumentation and inspired by the appreciated works intro-
duced by Sarikaya [17] and Chen [18], and by taking advantage of the generalized pro-
portional fractional integral operator concerning another strictly increasing continuous
function, in this work, we establish some new generalized fractional integral Hermite–
Hadamard inequalities in the frame of generalized proportional fractional integral opera-
tors, which, to the best of our knowledge, have not yet been considered until the current
day. With the help of the considered proportional fractional operator, we also introduce
some fractional integral Hermite–Hadamard-type inequalities. Moreover, we enrich this
work by discussing some particular cases related to the current research paper.

The organization of this research paper is as follows. Throughout the next section, we
point some definitions, notations, and introductory acquaintance used in this work. Sec-
tions 3 and 4 are devoted to our major results on Hermite–Hadamard inequalities and
Hermite–Hadamard-type inequalities, respectively.

2 Essential preliminaries
Here we recall some basic definitions and properties of elementary fractional integral op-
erators.

Definition 2.1 A function ϕ : ([a, b] ⊆R) → R is said to be a convex function if

ϕ
(
λr + (1 – λ)s

) ≤ λϕ(r) + (1 – λ)ϕ(s) (2.1)

for all r, s ∈ [a, b] and λ ∈ [0, 1]. We say that ϕ is concave if inequality (2.1) is reversed.

Definition 2.2 ([2]) For an integrable function ϕ on [a, b] and a ≥ 0, we have, for all μ > 0,

Iμ

a+ϕ(t) =
1

�(μ)

∫ t

a
(t – u)μ–1ϕ(u) du, u > a (2.2)

and

Iμ

b–ϕ(t) =
1

�(μ)

∫ b

t
(u – t)μ–1ϕ(u) du, t < b, (2.3)

where �(μ) =
∫ ∞

0 e–x xμ–1 dx is the gamma function, and I0
a+ϕ(t) = I0

b–ϕ(t) = ϕ(t). The
functions Iμ

a+ϕ(t) and Iμ

b–ϕ(t) are called the left- and right-sided Riemann–Liouville frac-
tional integrals, respectively, of the function ϕ for the order μ.
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Definition 2.3 ([2, 3]) For an integrable function ϕ on the interval � and for an increasing
function ψ ∈ C1(�,R) such that ψ ′(t) 
= 0, t ∈ �, we have, for all μ > 0,

ψIμ

a+ϕ(t) =
1

�(μ)

∫ t

a
ψ ′(u)

[
ψ(t) – ψ(u)

]μ–1
ϕ(u) du (2.4)

and

ψIμ

b–ϕ(t) =
1

�(μ)

∫ b

t
ψ ′(u)

[
ψ(u) – ψ(t)

]μ–1
ϕ(u) du. (2.5)

The functions ψIμ

a+ϕ(t) and ψIμ

b–ϕ(t) are called the left- and right-sided ψ-Riemann–
Liouville fractional integrals, respectively, of the function ϕ for the order μ.

Definition 2.4 ([35]) For an integrable function ϕ and ω > 0, we have, for all μ ∈ C,
Re(μ) ≥ 0,

(
Dμ,ω

a+ ϕ
)
(t) = Dm,ωIm–μ,ω

a+ ϕ(t) (2.6)

=
Dm,ω

t

ωm–μ�(m – μ)

∫ t

a
exp

[
ω – 1

ω
(t – u)

]
(t – u)m–μ–1ϕ(u) du

and

(
Dμ,ω

b– ϕ
)
(t) =γ Dm,ωIm–μ,ω

b– ϕ(t) (2.7)

= γ Dm,ω
t

ωm–μ�(m – μ)

∫ b

t
exp

[
ω – 1

ω
(u – t)

]
(u – t)m–μ–1ϕ(u) du,

where

Dm,ω = DωDω · · ·Dω︸ ︷︷ ︸
m-times

, m =
[
Re(μ)

]
+ 1

and

(
γ Dωϕ

)
(t) = (1 – ω)ϕ(t) – ωϕ′(t), γ Dm,ω = γ Dω

γ Dω · · · γ Dω

︸ ︷︷ ︸
m-times

.

The functions (Dμ,ω
a+ ϕ)(t) and (Dμ,ω

b– ϕ)(t) are called the left- and right-sided proportional
fractional derivatives, respectively, of the function ϕ for the order μ.

Definition 2.5 ([35]) For an integrable function ϕ and ω > 0, we have, for all μ ∈ C,
Re(μ) ≥ 0,

(
Iμ,ω

a+ ϕ
)
(t) =

1
ωμ�(μ)

∫ t

a
exp

[
ω – 1

ω
(t – u)

]
(t – u)μ–1ϕ(u) du (2.8)

and

(
Iμ,ω

b– ϕ
)
(t) =

1
ωμ�(μ)

∫ b

t
exp

[
ω – 1

ω
(u – t)

]
(u – t)μ–1ϕ(u) du (2.9)
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The functions (Iμ,ω
a+ ϕ)(t) and (Iμ,ω

b– ϕ)(t) are called the left- and right-sided proportional
fractional integrals, respectively, of the function ϕ for the order μ.

Definition 2.6 ([36]) For an integrable function ϕ, a strictly increasing continuous func-
tion ψ on [a, b], and ω ∈ (0, 1], we have, for all μ ∈ C, Re(μ) ≥ 0,

(ψDμ,ω
a+ ϕ

)
(t) = ψDm,ωψIm–μ,ω

a+ ϕ(t) (2.10)

=
ψDm,ω

t

ωm–μ�(m – μ)

∫ t

a
exp

[
ω – 1

ω

(
ψ(t) – ψ(u)

)]

× (
ψ(t) – ψ(u)

)m–μ–1
ψ ′(u)ϕ(u) du

and

(ψDμ,ω
b– ϕ

)
(t) = ψ

γ Dm,ωψIm–μ,ω
b– ϕ(t) (2.11)

=
ψ
γ Dm,ω

t

ωm–μ�(m – μ)

∫ b

t
exp

[
ω – 1

ω

(
ψ(u) – ψ(t)

)]

× (
ψ(u) – ψ(t)

)m–μ–1
ψ ′(u)ϕ(u) du,

where

ψDm,ω = ψDωψDω · · ·ψDω︸ ︷︷ ︸
m-times

, m =
[
Re(μ)

]
+ 1

and

(
ψ
γ Dωϕ

)
(t) = (1 – ω)ϕ(t) – ω

ϕ′(t)
ψ ′(t)

, ψ
γ Dm,ω = ψ

γ Dωψ
γ Dω · · ·ψ

γ Dω

︸ ︷︷ ︸
m-times

.

The functions (ψDμ,ω
a+ ϕ)(t) and (ψDμ,ω

b– ϕ)(t) are called, respectively, the left- and right-sided
proportional fractional derivatives of the function ϕ with respect to the function ψ for the
order μ.

Definition 2.7 ([36]) For an integrable function ϕ, a strictly increasing continuous func-
tion ψ on [a, b], and ω ∈ (0, 1], we have, for all μ ∈ C, Re(μ) ≥ 0,

(
ψIμ,ω

a+ ϕ
)
(t)

=
1

ωμ�(μ)

∫ t

a
exp

[
ω – 1

ω

(
ψ(t) – ψ(u)

)](
ψ(t) – ψ(u)

)μ–1
ψ ′(u)ϕ(u) du (2.12)

and

(
ψIμ,ω

b– ϕ
)
(t)

=
1

ωμ�(μ)

∫ b

t
exp

[
ω – 1

ω

(
ψ(u) – ψ(t)

)](
ψ(u) – ψ(t)

)μ–1
ψ ′(u)ϕ(u) du. (2.13)
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The functions (ψIμ,ω
a+ ϕ)(t) and (ψIμ,ω

b– ϕ)(t) are called, respectively, the left- and right-sided
proportional fractional integrals of the function ϕ with respect to the function ψ for the
order μ.

Lemma 2.1 ([36]) Let ω ∈ (0, 1], Re(α) > 0 and Re(μ) > 0. Then, if ψ be continuous func-
tion and defined for t ≥ a or t ≤ b, we have

ψIμ,ω
a+

(
ψIα,ω

a+ ϕ
)
(t) = ψIα,ω

a+
(
ψIμ,ω

a+ ϕ
)
(t) =

(
ψIμ+α,ω

a+ ϕ
)
(t), (2.14)

ψIμ,ω
b–

(
ψIα,ω

b– ϕ
)
(t) = ψIμ,υ

b–
(
ψIα,ω

b– ϕ
)
(t) =

(
ψIμ+α,ω

b– ϕ
)
(t). (2.15)

Lemma 2.2 ([36]) Let 0 ≤ m < [Re(μ)] + 1. Then, we have

ψDm,ω(
ψIμ,ω

a+ ϕ
)
(t) =

(
ψIμ–m,ω

a+ ϕ
)
(t), (2.16)

ψ
γ Dm,ω(

ψIμ,ω
b– ϕ

)
(t) =

(
ψIμ–m,ω

b– ϕ
)
(t). (2.17)

Along this paper, we need the following identity from [37]:
Let ω ∈ (0, 1], μ ∈ C, Re(μ) ≥ 0, and let ψ be a strictly increasing continuous function.

Then for any constant k, we have

(ψIμ,ω
a+ k

)
(b) =

(ψ(b) – ψ(a))μ

ωμ�(μ + 1)
k. (2.18)

3 Proportional fractional integral Hermite–Hadamard’s inequalities
concerning the function ψ

The first part of our main contributions is within this section. Here we give Hermite–
Hadamard’s inequalities involving a convex function for proportional fractional integral
operators concerning another strictly increasing continuous function ψ .

Theorem 3.1 Let ψ : � → [a, b] ⊆ R with 0 ≤ a < b be a strictly increasing continuous
function, and let ϕ : [a, b] → R be a differentiable convex function on (a, b) such that (ϕ ◦
ψ) : � →R is an integrable function on �. Then we have the following inequalities:

ϕ

(
a + b

2

)
≤ ωμ�(μ + 1)

2(b – a)μ
{

ψIμ,ω
{ψ–1(a)}+ (ϕ ◦ ψ)

(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

≤ ϕ(a) + ϕ(b)
2

. (3.1)

Proof By the convexity of ϕ, for any r, s ∈ [a, b], we can write

ϕ
(
λr + (1 – λ)s

) ≤ λϕ(r) + (1 – λ)ϕ(s). (3.2)

Putting λ = 1
2 , we have

ϕ

(
r + s

2

)
≤ ϕ(r) + ϕ(s)

2
. (3.3)

Let

r = ηa + (1 – η)b (3.4)
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and

s = (1 – η)a + ηb. (3.5)

Substituting (3.4) and (3.5) into (3.3), we obtain

2ϕ

(
a + b

2

)
≤ ϕ

{
ηa + (1 – η)b

}
+ ϕ

{
(1 – η)a + ηb

}
. (3.6)

Multiplying both sides of (3.6) by exp[ ω–1
ω

η(b – a)]ημ–1 and then integrating the resulting
inequality with respect to η over [0, 1], we obtain

2ϕ

(
a + b

2

)∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1 dη

≤
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
ηa + (1 – η)b

}
dη

+
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
(1 – η)a + ηb

}
dη. (3.7)

Substituting η = b–ψ(u)
b–a into to the left-hand side of (3.7) and employing the fact that

ψ
a Iμ,ω(1) = (ψ(b)–ψ(a))μ

ωμ�(μ+1) , we obtain

2
μ

ϕ

(
a + b

2

)

≤
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
ηa + (1 – η)b

}
dη

+
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
(1 – η)a + ηb

}
dη. (3.8)

Next,

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

=
μ

2(b – a)μ

{∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1
ϕ
{
ψ(u)

}
ψ ′(u) du

+
∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
ψ(v) – a

)](
ψ(v) – a

)μ–1
ϕ
{
ψ(v)

}
ψ ′(v) dv

}

=
μ

2

{∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

b – a

)μ–1

ϕ
{
ψ(u)

}ψ ′(u)
b – a

du

+
∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
ψ(v) – a

)](
ψ(v) – a

b – a

)μ–1

ϕ
{
ψ(v)

}ψ ′(v)
b – a

dv
}

.
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Putting ψ(u) = ηa + (1 – η)b and ψ(v) = (1 – η)a + ηb, we obtain

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

=
μ

2

{∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
ηa + (1 – η)b

}
dη

+
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

{
(1 – η)a + ηb

}
dη

}

≥ ϕ

(
a + b

2

)
. (3.9)

So the first inequality in (3.1) is proved. To prove the second inequality, by the convexity
of ϕ we have

ϕ
(
ηa + (1 – η)b

) ≤ ηϕ(a) + (1 – η)ϕ(b) (3.10)

and

ϕ
(
(1 – η)a + ηb

) ≤ (1 – η)ϕ(a) + ηϕ(b). (3.11)

Adding (3.10) and (3.11), we obtain

ϕ
(
ηa + (1 – η)b

)
+ ϕ

(
(1 – η)a + ηb

)
≤ ϕ(a) + ϕ(b). (3.12)

Now multiplying both sides of (3.12) by exp[ ω–1
ω

η(b – a)]ημ–1 and then integrating the
resulting inequality with respect to η over [0, 1], we obtain

∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

(
ηa + (1 – η)b

)
dη

+
∫ 1

0
exp

[
ω – 1

ω
η(b – a)

]
ημ–1ϕ

(
(1 – η)a + ηb

)
dη

≤ ϕ(a) + ϕ(b)
μ

.

So we have

ωμ�(μ)
(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

≤ ϕ(a) + ϕ(b)
μ

. (3.13)

Hence, in view of inequalities (3.9) and (3.13), we get the desired inequality (3.1). �

Remark 3.1
(i) If we put ω = 1, then Theorem 3.1 reduces to Theorem 1.4 proved by Liu [19] in

2019 for the ψ-Riemann–Liouville fractional integral.
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(ii) If we put ω = 1, ψ(0) = 0, and ψ(1) = 1, and if ϕ is a concave function, then both
inequalities (3.1) are reversed, and Theorem 3.1 reduces to Theorem 6 obtained by
Aljaaidi and Pachpatte [38] in 2020 for the ψ-Riemann–Liouville fractional integral.

(iii) If we put ω = 1 and ψ(r) = r, r ∈ [a, b], then Theorem 3.1 reduces to Theorem 1.2
proved by Sarikaya et al. [17] in 2013 for the classical Riemann–Liouville fractional
integral.

(iv) Applying inequalities (3.1) for ψ(r) = r, r ∈ [a, b], and ω = 1, μ = 1, we obtain the
classical Hermite–Hadamard inequalities for the classical integral (1.1).

Theorem 3.2 Let ψ : � → [a, b] ⊆ R with 0 ≤ a < b be a strictly increasing continuous
function, and let ϕ : [a, b] → R be a differentiable convex function on (a, b) such that (ϕ ◦
ψ) : � →R is an integrable function on �. Then we have the following inequalities:

ϕ

(
a + b

2

)

≤ ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1( a+b
2 )}– (ϕ ◦ ψ)

(
ψ–1(a)

)
+ ψIμ,ω

{ψ–1( a+b
2 )}+ (ϕ ◦ ψ)

(
ψ–1(b)

)}

≤ ϕ(a) + ϕ(b)
2

(3.14)

Proof By the convexity of the function ϕ, for all r, s ∈ [a, b], we have

ϕ

(
r + s

2

)
≤ ϕ(r) + ϕ(s)

2
.

Putting r = η

2 b + 2–η

2 a and s = 2–η

2 b + η

2 a, it follows that for all r, s ∈ [a, b] and η ∈ [0, 1],

ϕ

(
a + b

2

)
≤ 1

2

{
ϕ

(
η

2
b +

2 – η

2
a
)

+ ϕ

(
2 – η

2
b +

η

2
a
)}

. (3.15)

Multiplying both sides of (3.15) by exp[ ω–1
ω

η

2 (b – a)]( η

2 )μ–1 and then integrating the result-
ing inequality with respect to η over [0, 1], we obtain

1
μ

ϕ

(
a + b

2

)

≤
∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
η

2
b +

2 – η

2
a
)

dη (3.16)

+
∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
2 – η

2
b +

η

2
a
)

dη.

Next,

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1( a+b
2 )}– (ϕ ◦ ψ)

(
ψ–1(a)

)
+ ψIμ,ω

{ψ–1( a+b
2 )}+ (ϕ ◦ ψ)

(
ψ–1(b)

)}

=
μ

2(b – a)μ

{∫ ψ–1( a+b
2 )

ψ–1(a)
exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1(ϕ ◦ ψ)(u)ψ ′(u) du

+
∫ ψ–1(b)

ψ–1( a+b
2 )

exp

[
ω – 1

ω

(
b – ψ(v)

)](
b – ψ(v)

)μ–1(ϕ ◦ ψ)(v)ψ ′(v) dv
}
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= μ

{∫ ψ–1( a+b
2 )

ψ–1(a)
exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

b – a

)μ–1

(ϕ ◦ ψ)(u)
ψ ′(u)
b – a

du

+
∫ ψ–1(b)

ψ–1( a+b
2 )

exp

[
ω – 1

ω

(
b – ψ(v)

)](
b – ψ(v)

b – a

)μ–1

(ϕ ◦ ψ)(v)
ψ ′(v)
b – a

dv
}

Putting ψ(u) = η

2 b + 2–η

2 a and ψ(v) = 2–η

2 b + η

2 a, we obtain

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1( a+b
2 )}– (ϕ ◦ ψ)

(
ψ–1(a)

)
+ ψIμ,ω

{ψ–1( a+b
2 )}+ (ϕ ◦ ψ)

(
ψ–1(b)

)}

= μ

{∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
η

2
b +

2 – η

2
a
)

dη

+
∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
2 – η

2
b +

η

2
a
)

dη

}

≥ ϕ

(
a + b

2

)
, (3.17)

which proves the first inequality in (3.14). To prove the second inequality, using the the
convexity of the function ϕ, we have

ϕ

(
η

2
b +

2 – η

2
a
)

≤ η

2
ϕ(b) +

2 – η

2
ϕ(a), (3.18)

ϕ

(
2 – η

2
b +

η

2
a
)

≤
(

2 – η

2
ϕ(b) +

η

2
ϕ(a)

)
. (3.19)

Adding inequalities (3.18) and (3.19), we get

ϕ

(
η

2
b +

2 – η

2
a
)

+ ϕ

(
2 – η

2
b +

η

2
a
)

≤ ϕ(a) + ϕ(b). (3.20)

Multiplying both sides of (3.20) by exp[ ω–1
ω

η

2 (b – a)]( η

2 )μ–1 and then integrating the result-
ing inequality with respect to η over [0, 1], we obtain

μ

{∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
η

2
b +

2 – η

2
a
)

dη

+
∫ 1

0
exp

[
ω – 1

ω

η

2
(b – a)

](
η

2

)μ–1

ϕ

(
2 – η

2
b +

η

2
a
)

dη

}

≤ ϕ(a) + ϕ(b). (3.21)

By comparing the left-hand-side of inequality (3.17) with the left-hand-side of inequality
(3.21) we can deduce

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1( a+b
2 )}– (ϕ ◦ ψ)

(
ψ–1(a)

)
+ ψIμ,ω

{ψ–1( a+b
2 )}+ (ϕ ◦ ψ)

(
ψ–1(b)

)}

≤ ϕ(a) + ϕ(b)
2

,

which is the second inequality in (3.14). The proof is thus completed. �
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4 Proportional fractional integral Hermite–Hadamard-type inequalities
concerning the function ψ

This section is devoted to the second part of our contributions, which involve a generaliza-
tion of some Hermite–Hadamard-type inequalities introduced by Chen via the Riemann–
Liouville fractional integral. For the current generalization, we use the fractional integral
[36] introduced by Jarad (2020).

Theorem 4.1 Let ψ : [a, b] →� ⊆R, with 0 ≤ a < b be a strictly increasing function, and
let ϕ : � →R be a positive twice differentiable function on �

◦ such that (ϕ ◦ψ) : [a, b] →R

is an integrable function on [a, b]. If ϕ′′ is bounded in [a, b], then, we have the following
inequalities:

μC1

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

(
a + b

2
– ψ(u)

)2{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du

≤ ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

– ϕ

{
a + b

2

}

≤ μC2

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

(
a + b

2
– ψ(u)

)2{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du. (4.1)

Proof We have

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

=
μ

2(b – a)μ

{∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1
ϕ
{
ψ(u)

}
ψ ′(u) du

+
∫ ψ–1(b)

ψ–1(a)
exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
ϕ
{
ψ(u)

}
ψ ′(u) du

}

=
μ

2(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ϕ
{
ψ(u)

}
ψ ′(u) du

=
μ

2(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ϕ
{

a + b – ψ(u)
}
ψ ′(u) du.

So we can write

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
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=
μ

4(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1 (4.2)

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}(

ϕ
{
ψ(u)

}
+ ϕ

{
a + b – ψ(u)

})
ψ ′(u) du,

which we can rewrite as

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
– ϕ

{
a + b

2

}

=
μ

4(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

×
(

ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
– 2ϕ

{
a + b

2

})
ψ ′(u) du.

Since
{

exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1 + exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

×
(

ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
– 2ϕ

{
a + b

2

})
(4.3)

is symmetric about u = ψ–1( a+b
2 ), we have

μ

4(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

×
(

ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
– 2ϕ

{
a + b

2

})
ψ ′(u) du

=
μ

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

×
(

ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
– 2ϕ

{
a + b

2

})
ψ ′(u) du,

which yields

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
– ϕ

{
a + b

2

}

=
μ

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

(4.4)
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×
(

ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
– 2ϕ

{
a + b

2

})
ψ ′(u) du.

Since

ϕ
{

a + b – ψ(u)
}

– ϕ

{
a + b

2

}
=

∫ a+b–ψ(u)

a+b
2

ϕ′{ψ(t)
}

d
{
ψ(t)

}

and

ϕ

{
a + b

2

}
– ϕ

{
ψ(u)

}
=

∫ a+b
2

ψ(u)
ϕ′{ψ(t)

}
d
{
ψ(t)

}
,

we have

ϕ
{
ψ(u)

}
+ ϕ

{
a + b – ψ(u)

}
– 2ϕ

{
a + b

2

}

=
∫ a+b–ψ(u)

a+b
2

ϕ′{ψ(t)
}

d
{
ψ(t)

}
–

∫ a+b
2

ψ(u)
ϕ′{ψ(t)

}
d
{
ψ(t)

}

=
∫ a+b

2

ψ(u)
ϕ′{a + b – ψ(t)

}
d
{
ψ(t)

}
–

∫ a+b
2

ψ(u)
ϕ′{ψ(t)

}
d
{
ψ(t)

}

=
∫ a+b

2

ψ(u)

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

}
. (4.5)

Since

ϕ′{a + b – ψ(t)
}

– ϕ′{ψ(t)
}

=
∫ a+b–ψ(t)

ψ(t)
ϕ′′{ψ(y)

}
d
{
ψ(y)

}
,

for ψ(t) ∈ [a, a+b
2 ], where t ∈ �, we have

C1
(
a + b – 2ψ(t)

) ≤ ϕ′{a + b – ψ(t)
}

– ϕ′{ψ(t)
} ≤ C2

(
a + b – 2ψ(t)

)
,

which leads to

C1

(
a + b

2
– ψ(u)

)2

≤
∫ a+b

2

ψ(u)

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

}

≤ C2

(
a + b

2
– ψ(u)

)2

,

that is,

C1

(
a + b

2
– ψ(u)

)2

≤ ϕ
{
ψ(u)

}
+ ϕ

{
a + b – ψ(u)

}
– 2ϕ

{
a + b

2

}

≤ C2

(
a + b

2
– ψ(u)

)2

. (4.6)

In view of inequality (4.6) and equality (4.4), we get the required inequality (4.1), which
completes the proof. �
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Theorem 4.2 Let ψ : [a, b] →� ⊆R, with 0 ≤ a < b be a strictly increasing function, and
let ϕ : � →R be a positive twice differentiable function on�

◦ such that (ϕ◦ψ) : [a, b] −→R

is an integrable function on [a, b]. If ϕ′′ is bounded in [a, b], then we have the following
inequalities:

–μC2

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

[(
b – ψ(u)

)(
ψ(u) – a

)]{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du

≤ ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

–
ϕ(a) + ϕ(b)

2

≤ –μC1

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

[(
b – ψ(u)

)(
ψ(u) – a

)]

×
{

exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du. (4.7)

Proof In view of Theorem 4.1, using the inequality (4.2), we can write

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
–

ϕ(a) + ϕ(b)
2

=
μ

4(b – a)μ

∫ ψ–1(b)

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

× (
ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
–

[
ϕ(a) + ϕ(a)

])
ψ ′(u) du.

Since
{

exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1 + exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

× (
ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
–

[
ϕ(a) + ϕ(a)

])

is symmetric about u = ψ–1( a+b
2 ), we have

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
–

ϕ(a) + ϕ(b)
2

=
μ

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

{
exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}

(4.8)

× (
ϕ
{

a + b – ψ(u)
}

+ ϕ
{
ψ(u)

}
–

[
ϕ(a) + ϕ(b)

])
ψ ′(u) du.
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Since

ϕ{b} – ϕ
{

a + b – ψ(u)
}

=
∫ b

a+b–ψ(u)
ϕ′{ψ(t)

}
d
{
ψ(t)

}

and

ϕ
{
ψ(u)

}
– ϕ{a} =

∫ ψ(u)

a
ϕ′{ψ(t)

}
d
{
ψ(t)

}
,

we get

ϕ
{
ψ(u)

}
+ ϕ

{
a + b – ψ(u)

}
–

[
ϕ{a} + ϕ{b}]

=
∫ ψ(u)

a
ϕ′{ψ(t)

}
d
{
ψ(t)

}
–

∫ b

a+b–ψ(u)
ϕ′{ψ(t)

}
d
{
ψ(t)

}

=
∫ ψ(u)

a
ϕ′{ψ(t)

}
d
{
ψ(t)

}
–

∫ ψ(u)

a
ϕ′{a + b – ψ(t)

}
d
{
ψ(t)

}

= –
∫ ψ(u)

a

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

}
. (4.9)

Since

ϕ′{a + b – ψ(t)
}

– ϕ′{ψ(t)
}

=
∫ a+b–ψ(t)

ψ(t)
ϕ′′{ψ(y)

}
d
{
ψ(y)

}
,

for ψ(t) ∈ [a, a+b
2 ], where t ∈ �, we have

C1
(
a + b – 2ψ(t)

) ≤ ϕ′{a + b – ψ(t)
}

– ϕ′{ψ(t)
} ≤ C2

(
a + b – 2ψ(t)

)
,

which leads to

–C2
[(

b – ψ(u)
)(

ψ(u) – a
)] ≤

∫ ψ(u)

a

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

}

≤ –C1
[(

b – ψ(u)
)(

ψ(u) – a
)]

,

that is,

–C2
[(

b – ψ(u)
)(

ψ(u) – a
)] ≤ ϕ

{
ψ(u)

}
+ ϕ

{
a + b – ψ(u)

}
–

[
ϕ{a} + ϕ{b}]

≤ –C1
[(

b – ψ(u)
)(

ψ(u) – a
)]

. (4.10)

In view of inequality (4.10) and equality (4.8), we get the required inequality (4.7), which
completes the proof. �

Remark 4.1 If we put ω = 1 and ψ(r) = r, r ∈ [a, b], then Theorems 4.1 and 4.2 reduce to
Theorems 1.2 and 1.3, respectively, proved by Chen [18] in 2013 for classical Riemann–
Liouville fractional integral.
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The next result is reproof of inequality (3.3) without using the convexity of the function
ϕ by employing Theorems 4.1 and 4.2.

Theorem 4.3 Let ψ : � → [a, b] ⊆ R, with 0 ≤ a < b be a strictly increasing continuous
function, and let ϕ : [a, b] −→ R be a positive differentiable function on (a, b) such that
(ϕ ◦ψ) : �→ R is an integrable function on �. If ϕ′{a + b –ψ(u)} ≥ ϕ′{ψ(u)} for all ψ(u) ∈
[a, a+b

2 ], then we have the following inequalities:

ϕ

(
a + b

2

)
≤ ωμ�(μ + 1)

2(b – a)μ
{

ψIμ,ω
{ψ–1(a)}+ (ϕ ◦ ψ)

(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}

≤ ϕ(a) + ϕ(b)
2

.

Proof Using the assumption of Theorem 4.1, from (4.4) and (4.5) we have

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
– ϕ

{
a + b

2

}

=
μ

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

(∫ a+b
2

ψ(u)

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

})

×
{

exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1 (4.11)

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du ≥ 0.

Similarly, using the assumption of Theorem 4.2, from (4.8) and (4.9) we have

ωμ�(μ + 1)
2(b – a)μ

{
ψIμ,ω

{ψ–1(a)}+ (ϕ ◦ ψ)
(
ψ–1(b)

)
+ ψIμ,ω

{ψ–1(b)}– (ϕ ◦ ψ)
(
ψ–1(a)

)}
–

ϕ(a) + ϕ(a)
2

=
μ

2(b – a)μ

∫ ψ–1( a+b
2 )

ψ–1(a)

(
–

∫ ψ(u)

a

[
ϕ′{a + b – ψ(t)

}
– ϕ′{ψ(t)

}]
d
{
ψ(t)

})

×
{

exp

[
ω – 1

ω

(
b – ψ(u)

)](
b – ψ(u)

)μ–1 (4.12)

+ exp

[
ω – 1

ω

(
ψ(u) – a

)](
ψ(u) – a

)μ–1
}
ψ ′(u) du ≤ 0.

This completes the proof. �

5 Conclusions
Nowadays, we need to develop and refine our capabilities to generalize some recent results
directly related to the topic of fractional calculus because this topic is interesting and has
many applications in modeling natural phenomena in the world. Many researchers have
generalized some different fractional operators using classical tools and operators in frac-
tional calculus. One of these operators is the generalized proportional fractional integral.
In this work, we have developed some new techniques of fractional integral Hermite–
Hadamard inequalities concerning the generalized proportional fractional integral with
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respect to another strictly increasing continuous function. The current fractional inte-
gral has been employed to establish some new fractional integral Hermite–Hadamard-
type inequalities. Furthermore, through our discussion of this work, we have succeeded
in presenting some special cases related to the within results. In future work, we recom-
mend researchers study the current inequality via recent fractional operators such as the
Atangana–Baleanu operator [6] or Caputo–Fabrizio operator [39].
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