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Abstract
This paper discusses different types of Ulam stability of first-order nonlinear Volterra
delay integro-differential equations with impulses. Such types of equations allow the
presence of two kinds of memory effects represented by the delay and the kernel of
the used fractional integral operator. Our analysis is based on Pachpatte’s inequality
and the fixed point approach represented by the Picard operators. Applications are
provided to illustrate the stability results obtained in the case of a finite interval.
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1 Introduction
There has been a considerable interest in studying Ulam type stability, as soon as it was
formulated in 1940 [39]. Several modifications and generalizations appeared in the liter-
ature in the category of various types of differential, fractional, integral, and difference
equations to show that the investigated equations are nonlocal.

More recently, Kucche and Shikhare [21] discussed the Ulam–Hyers stability of semi-
linear Volterra integro-differential equations in Banach spaces. The same authors in [22]
were motivated by the results obtained by Rus [33], Otrocol [27], and Otrocol et al. [28] to
discuss the existence and uniqueness of solutions and Ulam stability for nonlinear Volterra
delay integro-differential equations

x′(t) = f
(

t, x(t), x
(
g(t)

)
,
∫ t

0
h
(
t, s, x(s), x

(
g(s)

))
ds

)
, t ∈ I = [0, b], b > 0,

where f ∈ C(I ×R
3 ×R), h ∈ C(I × I ×R

2 ×R), g ∈ C(I, [–r, b]), 0 < r < ∞, and g(t) ≤ t.
In their results, the authors in [22] employed Picard’s operator technique, the abstract

Gronwall lemma, and Pachpatte’s inequality. Their results improve and generalize those
obtained by the authors in [10, 15, 27, 28, 33, 35, 38].

In recent years, there have been a lot of interest in Hyers–Ulam type stability of impul-
sive differential equations. One of the reasons for this is the fact that impulsive differential
equations arise in several applied problems in engineering and natural sciences.

Fractional differential and integral equations play a very important role in modeling sev-
eral phenomena in dynamical systems, control systems, and various trends in physics.
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Their importance is due to the fact that they are more practical and realistic than deriva-
tives and integrals of integer order. For more information on impulsive differential equa-
tions, we recommend [30, 37].

In 2013, Gülyaz et al. [13] established a solution to the following integral equation:

u(t) =
∫ T

0
G(t, s)f

(
s, u(s)

)
ds, ∀t ∈ [0, T],

where T > 0, f : [0, T] ×R →R and G : [0, T] × [0, T] → [0,∞) are continuous functions.
Also they obtained some auxiliary fixed point results which generalize, improve, and unify
some fixed point theorems in the literature. For more works on more general metric type
spaces, we refer to [6].

In 2014, Chauhan et al. [11] extended the tangential property to a hybrid pair of map-
pings, which generalizes the idea of tangential property due to Pathak and Shahzad [31].
In fact, they introduced the notion of strong tangential property and utilized the same to
prove an integral type metrical common fixed point theorem for non-self mappings.

Alsulami et al. [7] introduced classes of α-admissible generalized contractive type map-
pings of integral type and discussed the existence of fixed points for these mappings in
complete metric spaces. The results therein improved and generalized fixed point re-
sults in the literature. Karapinar et al. [20], introduced two classes of generalized α – ψ-
contractive type mappings of integral type to analyze the existence of fixed points for these
mappings in complete metric spaces. His results improved versions of a multitude of rel-
evant fixed point theorems in the existing literature.

In 2015, Karapinar [16] introduced generalized (α,ψ)-contractive mappings of integral
type in the context of generalized metric spaces. The results of this paper generalized and
improved several results on the topic in literature.

In 2016, Zada et al. [40] used an abstract Gronwall lemma with integral inequality of
Gronwall type for piecewise continuous functions to study Ulam type stability for non-
linear first-order differential equations with single constant delay and finite impulses on a
compact interval. Luo et al. in [24] established existence and Hyers–Ulam stability of so-
lutions for a mixed fractional-order nonlinear delay difference equation with parameters.

More recently, Zada et al. [41] employed the same technique of [40] to discuss Ulam–
Hyers stability, Ulam–Hyers–Rassias stability of the first-order nonlinear delay differential
equations with fractional integrable impulses. Salim et al. [34] examined the existence and
Ulam stability for impulsive generalized Hilfer type fractional differential equations. Has-
san [14] considered some extension of MKC mappings in the framework of complete dislo-
cated metric spaces. Alsulami [6] defined a class of general type α-admissible contraction
mappings on quasi-b-metric-like spaces. And they discussed the existence and uniqueness
of fixed points for this class of mappings and the results applied to Ulam stability problems.
Various consequences of the main results were obtained. Flhi [12] established some fixed
point results for α – λ-contractions in the class of quasi b-metric spaces, where he pro-
vided some examples and an application on a solution of an integral equation. Moreover,
he studied the stability of Ulam–Hyers and well-posedness of a fixed point problem.

In 2018, Bouteraa et al. [9] applied the iterative method to establish the existence of a
positive solution for a type of nonlinear singular higher-order fractional differential equa-
tion with fractional multi-point boundary conditions. Alqahtani et al. [5] in the setting of
�-symmetric quasi-metric spaces carefully examined the existence and uniqueness of a
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fixed point of certain operators using simulation functions. The most interesting aspect
of these operators is that they do not form a contraction. As an application, in the same
framework, the stability of the Ulam for such actuators has been verified.

In 2019, Alqahtani et al. [4] proposed a solution for Volterra type fractional integral
equations by using a hybrid type contraction that unifies both nonlinear and linear type in-
equalities in the context of metric spaces. Besides this main goal, the authors merged sev-
eral existing fixed point theorems that were formulated by linear and nonlinear contrac-
tions. Abdeljawad et al. [1] defined three new notions: �e-contraction, a Hardy—Rogers
type �-contraction, and an interpolative �-contraction in the framework of an extended
b-metric space. Moreover, some fixed point results have been proposed using these new
concepts in order to study endeavors towards a practical solution of the nonlinear inte-
gral Volterra–Fredholm equations of certain types, as well as a solution to a nonlinear
fractional differential equation of the Caputo type. Karapınar et al. [18] introduced a new
hybrid contraction that unifies several nonlinear and linear contractions in the set-up of a
complete metric space. Ardjounia et al. [8] used the contraction mapping principle to ob-
tain the existence, interval of existence, and uniqueness of solutions for nonlinear hybrid
implicit Caputo–Hadamard fractional differential equations and used the generalization
of Gronwall’s inequality to give the estimate of the solutions.

In 2020, Adigüzel et al. [2] studied the problem of the existence and uniqueness of solu-
tions of boundary value problems (BVPs) for a nonlinear fractional differential equation
of order 2 < α ≤ 3. The BVP considered there was transformed into an integral equation
and discussed by means of a fixed point problem for an integral operator, then certain con-
ditions were derived to proceed for the existence and uniqueness of a fixed point for the
integral operator via b-comparison functions on complete b-metric spaces. In addition,
some estimations were for the convergence of the Picard iteration sequence provided an
estimate for Green’s function was related to the problem and employed in the proof of
the existence and uniqueness theorem for the solution of the given problem. Karapınar et
al. in [19] considered an inverse-source-time-space-fraction problem diffusion equation.
Actually, in the Hadamard sense, they proved that the problem is very bad posture. More-
over, by applying the semi-inverse settlement method, the way to solve the problem was
suggested. After that, they gave an error and an estimate between the desired solution
and the organized solution under a precedent parameter selection rule and subsequent
parameter selection rule, respectively. More fixed point techniques using different types
of contractions in the frame of different type metric and metric like spaces can be found
in [3, 17, 23, 25, 26, 29].

This paper aims to discuss Ulam’s stability for the first-order nonlinear Volterra delay
integro-differential equations with impulses of the form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η1(t) = Iα
t0,t f (t,η1(t),η1(h(t)),

∫ t
t0

g(t, τ ,η1(τ ),η1(h(τ ))) dτ ),

t ∈ I = [t0, tf ] \ {t1, t2, . . . , tm},
�η1(tk) = η1(t+

k ) – η1(t–
k ) = βk

∫ tk –θk
tk –τk

Uk(η1(s)) ds, k = 1, 2, . . . , m,

η1(t) = φ(t), t ∈ [t0 – λ, t0],

(1.1)

where λ > 0, βk ≥ 0, 0 ≤ θk ≤ τk ≤ tk –tk–1 for k = 1, 2, . . . , m, tf > t0 ≥ 0, f : [t0, tf ]×R
3 →R

and g : [t0, tf ] × [t0, tf ] ×R
2 →R are continuous functions, φ : [t0 – λ, t0] →R is a history
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function, and Iα
t0,t f is Riemann–Liouville fractional integral of order α given as follows:

Iα
t0,t f

(
t,η1(t),η1

(
h(t)

)
,
∫ t

t0

g
(
t, τ ,η1(τ ),η1

(
h(τ )

))
dτ

)

=
1

�(α)

∫ t

t0

((t – s)α–1f
(

s,η1(s),η1
(
h(s)

)
,
∫ s

t0

g
(
s, τ ,η1(τ ),η1

(
h(τ )

))
dτ

)
ds.

(1.2)

Moreover, we assume that h : [t0, tf ] → [t0 – λ, tf ] is a continuous delay function such
that h(t) ≤ t. Such types of equations unify two kinds of memory effects represented by the
delay and the kernel of the used fractional integral operator. Also, it is worth mentioning
that the presence of impulse makes it possible to model several real-world problems. At
the end of the paper, we give some illustrative applications.

2 Preliminaries
In this section we present some basic concepts and notations that will be used to pro-
ceed in our main results. Ulam type stability definitions will be mentioned specially. The
following function spaces will be used intensively within this study (see [36, 40, 41]).

i) The Banach space of all continuous real-valued functions from I with norm
‖v‖C = sup{|v(t)| : t ∈ I}, where I = [t0 – λ, tf ] and R is the set of real numbers, is
denoted by C(I,R).

ii) The Banach space of all functions v : I →R, with the norm ‖v‖C = sup{|v(t)| : t ∈ J}
such that v ∈ C([t0 – λ, t0],R] ∩ C((tk , tk+1],R], k = 0, 1, 2, . . . , m, and there exist v(t–

k )
and v(t+

k ), k = 0, 1, 2, . . . , m, such that v(t–
k ) = v(tk) with norm

‖v‖PC = sup{|v(t)| : t ∈ I}, is denoted by PC(I,R).
iii) The Banach space PC1(I,R) = {v ∈ PC(I,R) : v́ ∈ PC(I,R)} with norm

‖v‖PC1 = sup{‖v(t)‖PC,‖v́(t)‖PC}.
Now we consider the inequalities

⎧⎨
⎩

|η1(t) – Iα
t0,t f (t,η1(t),η1(h(t)),

∫ t
t0

g(t, τ ,η1(τ ),η1(h(τ ))) dτ )| ≤ ε, t ∈ I,

|�η1(tk) – βk
∫ tk –θk

tk –τk
Uk(η1(s)) ds| ≤ ε, k = 1, 2, . . . , m,

(2.1)

⎧⎨
⎩

|η1(t) – Iα
t0,t f (t,η1(t),η1(h(t)),

∫ t
t0

g(t, τ ,η1(τ ),η1(h(τ ))) dτ )| ≤ ϕ(t), t ∈ I,

|�η1(tk) – βk
∫ tk –θk

tk –τk
Uk(η1(s)) ds| ≤ K , k = 1, 2, . . . , m,

(2.2)

where ε > 0, K > 0 and ϕ(t) ∈ PC(I,R+) with ϕ′(t) > 0.

Definition 2.1 If for every η1 ∈ PC[t0 – λ, tf ] ∩ PC1([t0, tf ] satisfying (2.1) there exists a
solution η0 ∈ PC[t0 – λ, tf ] ∩ PC1([t0, tf ] of (1.1) with |η0(t) – η1(t)| ≤ cε, c > 0 for all t ∈ I ,
then Eq. (1.1) is said to be Ulam–Hyers stable on I .

Definition 2.2 If there exists ψ(ε) ∈ PC1(R+,R+) such that for each solution η1 ∈ PC[t0 –
λ, tf ] ∩ PC1([t0, tf ] of (2.1) there exists a solution η0 ∈ PC[t0 – λ, tf ] ∩ PC1([t0, tf ] of (1.1)
with |η0(t) – η1(t)| ≤ ψ(ε) for all t ∈ I , then Eq. (1.1) is said to be generalized Ulam–Hyers
stable on I .

Definition 2.3 If for every η1 ∈ PC[t0 – λ, tf ] ∩ PC1[t0, tf ] satisfying (2.2) there exists a
solution = η0 ∈ PC[t0 – λ, tf ] ∩ PC1([t0, tf ] of (1.1) with |η0(t) – η1(t)| ≤ Mϕ(t), M > 0 for
all t ∈ I , then Eq. (1.1) is said to be Ulam–Hyers–Rassias stable on I with respect to (ϕ, k).
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Remark 2.4 Any function η1 ∈ PC1[t0, tf ] is a solution of (2.1) if and only if there exist a
function g ∈ PC[t0 – λ, tf ] and a sequence of functions gk depending on y such that

(i) |g(t)| ≤ ε for all t ∈ [t0 – λ, tf ], |gl| ≤ ε for all l = 1, 2, . . . , m,
(ii) ⎧⎨

⎩
η1(t) = Iα

t0,t f (t,η1(t),η1(h(t)),
∫ t

t0
g(t, τ ,η1(τ ),η1(h(τ ))) dτ ) + g(t), t ∈ I ′,

�η1(tk) = βk
∫ tk –θk

tk –τk
Uk(η1(s)) ds + gk , k = 1, 2, . . . , m.

Similar arguments hold for inequalities (2.2).

Lemma 2.5 Every solution η ∈ PC1[t0, tf ] of (2.1) satisfies the integral inequality

∣∣∣∣∣η(t) – φ(t0) –
k∑

j=1

βk

∫ tk –θk

tk –τk

U
(
η(s)

)
ds

– Iα
t0,t f

(
t,η(t),η

(
h(t)

)
,
∫ t

t0

g
(
t, τ ,η(τ ),η

(
h(τ )

))
dτ

)∣∣∣∣∣ ≤ (m + t – t0)ε.

Proof The proof follows the same lines as that of Lemma 7 in [40], and so it is omitted. �

Theorem 2.6 (Pachpatte’s inequality [37]) Let f (t) and q(t) be nonnegative continuous
functions defined on R+, and let n(t) be a nonnegative constant for which the inequality

η1(t) ≤ n(t) +
∫ t

0
f (s)

[
η1(s) +

∫ s

0
q(τ )η1(τ ) dτ

]
ds +

∑
0<tl<t

ζl

∫ tl–θl

tl–τl

η1(s) ds

holds for t ∈R+, where ζl ≥ 0 and 0 ≤ θl ≤ τl ≤ tl – tl–1 for l = 1, 2, . . . and n(t) is a nonneg-
ative constant. Then

η1(t) ≤ n(t)
∏

0<tl<t

Cl exp

(∫ t

tα
f (s)

[
1 +

∫ s

0
q(τ ) dτ

]
ds

)
, t ≥ 0,

for t ∈R+,
where

Cl = exp

(∫ tl

tl–1
f (s)

[
1 +

∫ s

0
q(τ ) dτ

]
ds

)

+ ζl

∫ tl–θl

tl–τl

exp

(∫ s

tl–1
f (τ )

[
1 +

∫ σ

0
q(ξ ) dξ

]
dτ

)
ds.

Definition 2.7 (Picard operator [32]) Let (V , d) be a metric space. An operator A : V → V
is said to be a Picard operator if there exists v∗ ∈ V such that:

(i) FA = {v∗}, where FA = {v ∈ V : A(v) = v} is the fixed point set of A;
(ii) the sequence (An(v0))n∈N converges to v∗ for all v0 ∈ X .

Lemma 2.8 (Gronwall lemma [32]) Let (V , d,≤) be an ordered metric space and let A :
V → V be an increasing Picard operator (FA = v∗

A). Then, for v ∈ V , v ≤ A(v) implies v ≤ v∗
A,

while v ≥ A(v) implies v ≥ v∗
A.
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3 Main results
To establish our results on Ulam type stability outlined in (1.1), we need the following
assumptions:

(A1) f : [t0, tf ]×R
3 →R, g : [t0, tf ]× [t0, tf ]×R

2 →R are continuous with the Lipschitz
condition:

∣∣f (t,η1,η2,η3) – f (t,�1,�2,�3)
∣∣ ≤

3∑
k=1

Lf |ηi – �i|;

∣∣g(t, s,η1,η2) – g(t, s,�1,�2)
∣∣ ≤

2∑
k=1

Lg |ηi – �i|;

Lf , Lg > 0, for all t, s ∈ I ′ and ηi,�i ∈R (i = 1, 2, 3).
(A2) Uk : R → R is such that |Uk(η1) – Uk(η2)| ≤ Mk|η1 – η2|, Ml > 0, for all k ∈

{1, 2, . . . , m} and η1,η2 ∈ R.
(A3) ( 2Lf

�(α+1) [1 + Lg (tf –t0)
α+1 ](tf – t0)α +

∑m
j=1 Mjβj(τk – θk)) < 1.

(A4) There exists an increasing function ϕ : [t0 – λ, t0] →R such that, for some ρ > 0,

∫ t

t0

ϕ(r) dr ≤ ρϕ(t).

Theorem 3.1 Suppose that (A1)–(A4) hold. Then
(i) there exists a unique solution of (1.1) in PC[t0 – λ, tf ] ∩ PC1[t0, tf ];

(ii) Eq. (1.1) has Ulam–Hyers–Rassias stability on I .

Proof i) Consider an operator � : PC[t0 – λ, tf ] → PC[t0 – λ, tf ] defined as

(�η)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [t0 – λ, t0],

φ(t0) + Iα
t0,t f (si,η(si),η(h(si)),

∫ t
t0

g(si, τ ,η(τ ),η(h(τ ))) dτ ), t ∈ [t0, t1],

φ(t0) + β1
∫ tk –θk

tk –τk
U1(η(s)) ds

+ Iα
t0,t f (si,η(si),η(h(si)),

∫ t
t1

g(si, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [t1, t2],

φ(t0) +
∑2

j=1 βj
∫ tk –θk

tk –τk
Uj(y(s)) ds

+ Iα
t0,t f (si,η(si),η(h(si)),

∫ t
t2

g(si, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [t2, t3],
...

φ(t0) +
∑m

j=1 βj
∫ tk –θk

tk –τk
Uj(η(s)) ds

+ Iα
t0,t f (si,η(si),η(h(si)),

∫ t
tm

g(si, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [tm, tm+1].

(3.1)

It is clear that the mapping � is well defined on the given function space domain. More-
over, in order to verify that it is a Picard operator on PC[t0 –λ, tf ]∩PC1[t0, tf ], we consider
two functions η,� ∈ PC[t0 – λ, tf ]. Then

∣∣(�η)(t) – (��)(t)
∣∣ ≤

∣∣∣∣Iα
t0,t f

(
si,η(si),η

(
h(si)

)
,
∫ t

t0

g
(
si, τ ,η(τ ),η

(
h(τ )

))
dτ

)



Refaai et al. Advances in Difference Equations        (2021) 2021:477 Page 7 of 13

× Iα
t0,t f

(
si,�(si),�

(
h(si)

)
,
∫ t

t0

g
(
si, τ ,�(τ ),�

(
h(τ )

))
dτ

)∣∣∣∣

+
k∑

j=1

βj

∫ tk –θk

tk –τk

∣∣Uj
(
η(sj)

)
– Uj

(
�(sj)

)∣∣ds.

Thus in the light of the Lipschitz condition, it is clear by (1.2) that

∣∣(�η)(t) – (��)(t)
∣∣ ≤ Lf

�(α)

∫ t

t0

(t – s)α–1
{

sup
t∈[t0–λ,tf ]

2
∣∣η(s) – �(s)

∣∣

+ 2
∫ s

t0

Lg sup
t∈[t0–λ,tf ]i

∣∣η(τ ) – �(τ )
∣∣dτ

}
ds

+
k∑

j=1

Mjβj

∫ tk –θk

tk –τk

∣∣η(s) – �(s))
∣∣ds

≤ |η(s) – �(s)|Lf

�(α)

∫ t

t0

(t – s)α–1{2 + 2Lg(s – t0)
}

ds

+
m∑

j=1

Mjβj

∫ tk –θk

tk –τk

∣∣η(s) – �(s))
∣∣ds

≤
(

2Lf

�(α)

∫ t

t0

(t – s)α–1{1 + Lg(s – t0)
}

ds

+
m∑

j=1

Mjβj(τk – θk)

)∣∣η(s) – �(s)
∣∣.

≤
(

2Lf

�(α + 1)

[
1 +

Lg(tf – t0)
α + 1

]
(tf – t0)α

+
m∑

j=1

Mjβj(τk – θk)

)∣∣�(s) – �(s)
∣∣.

But since by (A3) it follows that the operator is strictly contraction on (tk , tk+1], and hence
a Picard operator on PC[t0 – λ, tf ]. Moreover, it follows from (3.1) that the unique fixed
point of the operator � is the unique solution of (1.1) in PC[t0 – λ, tf ] ∩ PC1[t0, tf ].

ii) The unique solution η ∈ PC[t0 – λ, tf ] ∩ PC1[t0, tf ] of (1.1) is given by

η(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t), t ∈ [t0 – λ, t0],
φ(t0) + Iα

t0,t f (t,η(t),η(h(t)),
∫ t

t0
g(t, τ ,η(τ ),η(h(τ ))) dτ ), t ∈ [t0, t1],

φ(t0) +
∫ tk –θk

tk –τk
β1U1(η(s)) ds + Iα

t0,t f (t,η(t),η(h(t)),
∫ t

t1
g(t, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [t1, t2],
φ(t0) +

∑2
j=1 βj

∫ tk –θk
tk –τk

Uj(η(s)) ds
+ Iα

t0,t f (t,η(t),η(h(t)),
∫ t

t2
g(t, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [t2, t3],
...
φ(t0) +

∑m
j=1 βj

∫ tk –θk
tk –τk

Uj(η(s)) ds
+ Iα

t0,t f (t,η(t),η(h(t)),
∫ t

tm
g(t, τ ,η(τ ),η(h(τ ))) dτ ),

t ∈ [tm, tm+1].
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If � ∈ PC[t0 – λ, tf ] ∩ PC1[t0, tf ] satisfies inequality (2.2), then by (A4) and Remark 2.4, it
follows that

∣∣∣∣∣�(t) – φ(t0) –
m∑

j=1

βj

∫ tk –θk

tk –τk

Uj
(
�(s)

)
ds

– Iα
t0,t f

(
t,�(t),�

(
h(t)

)
,
∫ t

t0

g
(
t, τ ,�(τ ),�

(
h(τ )

))
dτ

)∣∣∣∣∣

≤
∫ t

t0

∣∣g(s)
∣∣ds +

m∑
j=1

|gj| ≤
∫ t

t0

εϕ(s) ds + mK ≤ ρεϕ(t) + mK ≤ λεϕ(t).

For all λ > 0, we note that |�(t) – η(t)| = 0 for all t ∈ [t0 – λ, t0]. Now, for t ∈ [tk , tk+1], we
have

∣∣�(t) – η(t)
∣∣ =

∣∣∣∣∣�(t) – φ(t0) –
k∑

j=1

βj

∫ tk –θk

tk –τk

Uj
(
η(s)

)
ds

– Iα
t0,tgi

(
t,η(t),η

(
h(t)

)
,
∫ t

t0

g
(
τ , s,η(τ ),η

(
h(τ )

))
dτ

)∣∣∣∣∣

≤
∣∣∣∣∣�(t) – φ(t0) –

k∑
j=1

βj

∫ tk –θk

tk –τk

Uj
(
�(s)

)
ds

– Iα
t0,tgi

(
t,�(t),�

(
h(t)

)
,
∫ t

t0

g
(
τ , s,�(τ ),�

(
h(τ )

))
dτ

)∣∣∣∣∣

+
k∑

j=1

βj

∫ tk –θk

tk –τk

∣∣Uj
(
�(sj)

)
– Uj

(
η(s)

)∣∣ds

+
∣∣∣∣Iα

t0,tgi

(
t,�(t),�

(
h(t)

)
,
∫ t

t0

g
(
τ , s,�(τ ),�

(
h(τ )

))
dτ

)

– Iα
t0,tgi

(
t,η(t),η

(
h(t)

)
,
∫ t

t0

g
(
τ , s,η(τ ),η

(
h(τ )

))
dτ

)∣∣∣∣

≤ λεϕ(t) +
k∑

j=1

Mjβj

∫ tk –θk

tk –τk

∣∣η(s) – �(s))
∣∣ds

+
Lf

�(α)

∫ si

t0

(si – s)α–1
{∣∣η(s) – �(s)

∣∣ +
∣∣η(

h(s)
)

– �
(
h(s)

)∣∣

+
∫ s

t0

Lh
[∣∣η(τ ) – �(τ )

∣∣ +
∣∣η(

h(τ )
)

– �
(
h(τ )

)∣∣]dτ

}
ds.

Now we are going to show that the operator T : PC[t0 – λ, tf ] → PC[t0 – λ, tf ], which is
given below, is an increasing Picard operator.

∣∣T(m)(t) – T(n)(t)
∣∣

≤
k∑

j=1

Mjβj

∫ tk –θk

tk –τk

∣∣m(s) – n(s))
∣∣ds
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+
Lf

�(α)

∫ t

t0

(t – s)α–1
{∣∣m(s) – n(s)

∣∣ +
∣∣m(

h(s)
)

– n
(
h(s)

)∣∣

+
∫ t

t0

Lg
[∣∣m(τ ) – n(τ )

∣∣ +
∣∣m(

h(τ )
)

– n
(
h(τ )

)∣∣]dτ

}
ds

≤
m∑

j=1

Mjβj

∫ tk –θk

tk –τk

sup
t∈[t0–λ,tf ]

∣∣m(s) – n(s))
∣∣ds

+
Lf

�(α)

∫ t

t0

(t – s)α–1
{

sup
t∈[t0–λ,tf ]

2
∣∣m(s) – n(s)

∣∣

+ 2
∫ s

t0

Lg sup
t∈[t0–λ,tf ]

∣∣m(τ ) – n(τ )
∣∣dτ

}
ds

≤
( m∑

j=1

Mjβj(τk – θk) +
2Lf

�(α + 1)

[
1 +

Lg(tf – t0)
α + 1

]
(tf – t0)α

)
|m – n|.

Again by (A3), the operator is contractive on t ∈ [t0 – λ, tf ] and hence a Picard operator on
PC[t0 – λ, tf ] ∩ PC1[t0, tf ]. Then, by the Banach contraction principle, we conclude that T
is a Picard operator and fT = {m∗}, and

m∗(t) = λεϕ(t) +
k∑

j=1

Mjβj

∫ tk –θk

tk –τk

m∗(s) ds

+
Lf

�(α)

∫ t

t0

(t – s)α–1
{

m∗(s) + m∗(h(s)
)

+
∫ s

t0

Lg
[
m∗(τ ) + m∗(h(τ )

)]
dτ

}
ds.

But since m∗ is an increasing function and h(t) ≤ t, then clearly m∗(h(t)) ≤ m∗(t), and
so we can write

m∗(t) ≤ λεϕ(t) +
k∑

j=1

Mjβj

∫ tk –θk

tk –τk

m∗(s) ds

+
2Lf

�(α)

∫ t

t0

(t – s)α–1
{

m∗(s) + Lg

∫ s

t0

m∗(h(τ )
)

dτ

}
ds.

Thus, by applying Pachpatte’s inequality given in Theorem 2.6, we have

m∗(t) ≤ λεϕ(t)
∏

t0<tk <t
Ck exp

(∫ t

t0

2Lf

�(α)
(t – s)α–1

[
1 +

∫ s

t0

Lg dτ

])
ds,

where

Ck = exp

(∫ tk

tk–1

2Lf

�(α)
(t – s)α–1

[
1 +

∫ s

t0

Lg dτ

]
ds

)

+ βj

∫ tk –θk

tk –τk

exp

(∫ t

tk–1

2Lf

�(α)
(t – τ )α–1

[
1 +

∫ ζ

t0

Lg dξ

]
dτ

)
ds.
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Taking cϕ = λ
∏

0<tk <t Ck exp(
∫ t

t0

2Lf
�(α) (t – s)α–1[1 +

∫ s
t0

Lg dτ ]) ds, we get m∗(t) ≤ cϕεϕ(t),
t ∈ [t0 – λ, tf ].

Now setting m = |�(t) – η(t)|, then m(t) ≤ (Tm)(t) from which by using the abstract
Gronwall lemma (Lemma 2.5) it follows that m(t) ≤ m∗. Therefore

∣∣�(t) – η(t)
∣∣ ≤ cϕεϕ(t), t ∈ [t0 – λ, tf ]. (3.2)

Consequently, Eq. (1.1) is Ulam–Hyers–Rassias stable, and the proof is completed. �

Corollary 3.2 Suppose that (A1)–(A4) hold. Then (1.1) has a unique solution and is
Ulam–Hyers stable.

Proof Putting ϕ(t) = 1 for all t ∈ [t0 – λ, tf ] in the proof of Theorem 3.1, we get

∣∣�(t) – η(t)
∣∣ ≤ cε, t ∈ [t0 – λ, tf ],

and the result follows. �

Remark 3.3 Choosing ψ(ε) = cε in Corollary 3.2, it follows that (1.1) has a unique solution
and is generalized Ulam–Hyers stable.

4 An application
In this section, we consider some examples which represent vital special cases of Eq. (1.1).

Example 4.1 For any r > 0, define h1(t) = t – r, t ∈ I . In this case Eq. (1.1) takes the form

⎧⎪⎪⎨
⎪⎪⎩

η(t) = Iα
t0,t f1(t,η(t),η(t – r),

∫ t
t0

g(t, τ ,η(τ ),η((τ – r))) dτ ), t ∈ I,

�η(tk) = βk
∫ tk –θk

tk –τk
Uk(η(sk)) ds, k = 1, 2, . . . , m,

η(t) = φ(t), t ∈ [t0 – λ, t0].

(4.1)

This is an initial value problem for nonlinear Volterra delay integro-differential equations
with fractional integrable impulses. Now consider the following inequality:

⎧⎨
⎩

|η(t) – Iα
t0,t f1(t,η(t), = η(t – r),

∫ t
t0

g(t, τ ,η(τ ),η((τ – r))) dτ )| ≤ ϕ(t), t ∈ I,

|�η(tk) – βk
∫ tk –θk

tk –τk
Uk(η(sk)) ds| ≤ K , k = 1, 2, . . . , m,

where ε and ϕ are as specified in Sect. 2.
As an application of Theorem 3.1, we have the following theorem for problem (4.1).

Theorem 4.1 Eq. (4.1) has a unique solution and is Ulam–Hyers–Rassias stable if f1 and
each Uk , k = 1, 2, . . . , m satisfy (A1), (A2), (A3), and (A4).

Example 4.2 Consider the special case of (1.1) with the delay h2(t) = t2, t ∈ I = [0, 1]. In
this case we have

⎧⎪⎪⎨
⎪⎪⎩

η(t) = Iα
t0,t f2(t,η(t),η(t2),

∫ t
t0

g(t, τ ,η(τ ),η(τ 2)) dτ ), t ∈ I = [0, 1],

�η(tk) = βk
∫ tk –θk

tk –τk
Uk(η(sk)) ds, k = 1, 2, . . . , m,

η(t) = φ(t), t ∈ [t0 – λ, t0].

(4.2)
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Consider the following inequality:

⎧⎨
⎩

|η(t) – Iα
t0,t f2(t,η(t),η(t2),

∫ t
t0

g(t, τ ,η(τ ),η(τ 2)) dτ )| ≤ ϕ(t), t ∈ I = [0, 1],

|�η(tk) – βk
∫ tk –θk

tk –τk
Uk(η(sk)) ds| ≤ K , k = 1, 2, . . . , m,

where ε and ϕ are as specified in Sect. 2.
In this case, Theorem 3.1 leads to the following theorem for problem (4.2).

Theorem 4.2 Eq. (4.2) has a unique solution and is Ulam–Hyers–Rassias stable if f2 and
each Uk satisfy (A1), (A2), (A3), and (A4).

Remark 4.3 Theorem 4.1 and Theorem 4.2 partially generalize the results of [22].

5 Conclusion
This paper has established several Ulam stability results for the first-order nonlinear
Volterra delay integro-differential equations with impulses using Pachpatte’s inequality
and the fixed point approach via Picard operators. The right-hand side of (1.1) is non-
localized by imposing the Riemann–Liouville fractional integrals under the presence of
delay and impulse. Our obtained results improve those of [40] and [22]. We finally pre-
sented some applications to illustrate the stability results obtained in the case of a finite
interval.
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