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Abstract
In this manuscript, we deal with the nonlocal controllability results for the fractional
evolution system of 1 < r < 2 in a Banach space. The main results of this article are
tested by using fractional calculations, the measure of noncompactness, cosine
families, Mainardi’s Wright-type function, and fixed point techniques. First, we
investigate the controllability results of a mild solution for the fractional evolution
system with nonlocal conditions using the Mönch fixed point theorem. Furthermore,
we develop the nonlocal controllability results for fractional integrodifferential
evolution system by applying the Banach fixed point theorem. Finally, an application
is presented for drawing the theory of the main results.
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1 Introduction
Fractional differential equations have arisen as a new branch of applied mathematics that
has been utilized to build a variety of mathematical models in science, signal, image pro-
cessing, biological, control theory, engineering problems, etc. The reason for this is be-
cause fractional calculus may be used to create a realistic model of a physical occurrence
that is dependent not only on the current instant, but also on the prior time history. Many
authors have addressed the theory of the existence of solutions for fractional differential
equations. For more specifics, refer to books [1–6] and the research articles [7–29].

In mathematical control theory, the concept of controllability is very important. Under
the assumption that the system is controllable, many fundamental problems in control
theory can be solved, such as pole assignment, stabilizability, and optimum control. It in-
dicates that an acceptable control can be used to steer any system’s beginning state to any
final state in a finite amount of time. Controllability is important in systems described by
ordinary differential equations and partial differential equations in both finite and infi-
nite dimensional environments. Significant progress has been achieved in the controlla-
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bility of linear and nonlinear deterministic systems in recent years [30–41]. Physical issues
prompted the concept of nonlocal situations. Byszewski established for the first time mild
solutions to nonlocal differential equations for existence and uniqueness results in [42, 43].
In [44, 45] the authors developed the ideas in fractional evolution equations. Recently, the
researchers established the nonlocal fractional differential systems with or without de-
lay by referring to the nondense domain, semigroup, cosine families, several fixed point
techniques, and a measure of noncompactness. Refer to the articles for more information
[46–50].

In addition, integrodifferential equations are used in a variety of scientific fields where
an aftereffect or delay must be considered, for example, in biology, control theory, ecol-
ogy, and medicine. In practice, integrodifferential equations are always used to describe a
model that has hereditary features, one can refer to the researcher’s articles [51–55].

In recent years, authors have signified controllability results of Caputo fractional evolu-
tion systems with order α ∈ (1, 2) referring to the cosine families, Laplace transforms, and
different fixed point techniques [56]. Likewise, the researchers developed nonlocal condi-
tions in fractional evolution inclusion with order α ∈ (1, 2) using the measure of noncom-
pactness, condensing multivalued map, and Laplace transform [46]. For fractional evolu-
tion equations of order r ∈ (1, 2) with delay or without delay, numerous researchers have
proved their existence, exact and approximate controllability by applying the nonlocal
conditions, mixed Volterra–Fredholm type, cosine families, measure of noncompactness,
and different fixed point techniques [41, 48, 50, 51, 54]. Furthermore, in [30, 40, 49, 53, 57]
the authors used the Sobolev type, hemivariational inequalities, stochastic systems, inte-
grodifferential systems, Clarke’s subdifferential type, and various fixed point techniques
to develop approximate controllability results for fractional evolution inclusions with or
without delay of order 1 < r < 2.

Controllability results for fractional differential systems with the nonlocal condition of
order 1 < r < 2 by referring to the thoughts of Mainardi’s Wright-type function, the mea-
sure of noncompactness, Mönch fixed point theorem, and cosine families are still un-
treated in the area [58]. The preceding facts are based on the current work. Hence, con-
sider that the semilinear fractional evolution system of order 1 < r < 2 with nonlocal con-
ditions has the form

⎧
⎨

⎩

CDr
t z(t) = Az(t) + g(t, z(t)) + Bx(t), t ∈ V ,

z(t) + F(z) = z0, z′(0) = z1 ∈ Z,
(1.1)

where CDr
t is the Caputo fractional derivative of order 1 < r < 2; A is the infinitesimal

generator of a strongly continuous cosine family {C(t)}t≥0 in a Banach space Z. Let Y be
another Banach space; the state z takes values in Z and the control function x is given
in L2(V , U), with U as a Banach space; B is a bounded linear operator from U into Z;
g : V × Z → Z is a given Z-valued function, and nonlocal term F : C(V , Z) → Z and z0, z1

are elements of space Z.
We partition our article into the following sections: We recall a few fundamental defi-

nitions and preparation results in Sect. 2. In Sect. 3, we present the controllability results
for system (1.1). Further, we discuss another fixed point theorem for fractional integrod-
ifferential evolution system in Sect. 4. Finally, an application is presented for drawing the
law of the main results.
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2 Preliminaries
Here, we present well-known essential facts, basic definitions, lemmas, and results.

Throughout this paper, we denote by C the Banach space C(V , Z) : V → Z equipped with
the sup-norm ‖z‖C = supt∈V ‖z(t)‖ for z ∈ C . Lc(Z, Y ) stands for the space of all bounded
linear operators from Z to Y equipped with ‖ · ‖Lc(Z,Y ).

The domain and range of an operator A are defined by D(A) and R(A) respectively, the
resolvent set of A is denoted by ρ(A) and the resolvent of A is defined by

R(�, A) = (�I – A)–1 ∈ Lc(Z).

Consider that ‖g‖Lν (V ,R+) denotes the Lν(V ,R+) norm of g whenever g in Lν(V ,R+),
ν ≥ 1. Let Lν(V , Z) denote the Banach space of function g : V → Z is Bochner integrable
normed by ‖g‖Lν (V ,Z).

Definition 2.1 ([3]) The Riemann–Liouville fractional integral of order γ with the lower
limit zero for g : [0,∞) →R is given by

Iγ g(t) =
1

�(γ )

∫ t

0

g(s)
(t – s)1–γ

ds, t > 0,γ ∈R
+

if the right-hand side is point-wise defined on [0,∞).

Definition 2.2 ([3]) The Riemann–Liouville derivative of order γ with the lower limit
zero for g : [0,∞) →R is given by

LDγ g(t) =
1

�(n – γ )
dn

dtn

∫ t

0

g(n)(s)
(t – s)γ +1–n ds,

(
t > 0, n – 1 < γ < n,γ ∈ R

+)
.

Definition 2.3 ([3]) The Caputo derivative of order γ with the lower limit zero for g is
given by

CDγ g(t) = LDγ

(

g(t) –
n–1∑

n=0

g(n)(0)
n!

tn

)
(
t > 0, n – 1 < γ < n,γ ∈R

+)
.

Remark 2.4
(1) If g(t) ∈ Cn[0,∞), then

CDγ g(t) =
1

�(n – γ )

∫ t

0

g(n)(s)
(t – s)γ +1–n ds = In–γ g(n)(t), (t > 0, n – 1 < γ < n).

(2) If g is an abstract function with values in Z, then the integrals that appear in Defini-
tions 2.2 and 2.3 are taken in Bochner’s sense.

(3) Caputo derivative of a constant function is equal to zero.

Definition 2.5 ([59]) A one parameter family {C(t)}t∈R of bounded linear operators map-
ping Z into itself is said to be a strongly continuous cosine family if and only if

(a) C(0) = I ;
(b) C(s + t) + C(s – t) = 2C(s)C(t) for all s, t ∈R;
(c) C(t)z is strongly continuous in t on R for each fixed point z ∈ Z.
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The sine family {S(t)}t∈R is associated with the strongly continuous cosine family
{C(t)}t∈R which is defined by

S(t)z =
∫ t

0
C(s)z ds, z ∈ Z, t ∈R. (2.1)

Further, an operator A is said to be an infinitesimal generator of {C(t)}t∈R if

Az =
d2

dt2 C(0)z for all z ∈ D(A),

where the domain of A is defined by

D(A) =
{

z ∈ Z : C(t)z ∈ C2(R, Z)
}

.

Denote a set

E =
{

z ∈ Z : C(t)z ∈ C1(R, Z)
}

.

Clearly, A is a closed, densely-defined operator in Z, there exists P ≥ 1 such that
‖C(t)‖Lc(Z) ≤ P for t ≥ 0. In the sequel, we always set b = r

2 for r ∈ (1, 2), as stated in [5, 46].

Definition 2.6 ([60]) Let N+ be the positive cone of an order Banach space (N ,≤). A func-
tion � defined on the set of all bounded subsets of the Banach space Z with values in N+

is said to be a measure of noncompactness on Z iff

�(coζ ) = �(ζ )

for any bounded subsets ζ ⊂ Z, where coζ denotes the closed convex hull of ζ .
The measure of noncompactness � is said to be:

(i) monotone iff for all bounded subsets ζ1, ζ2 of Z, we get

(ζ1 ⊆ ζ2) ⇒ (
�(ζ1) ≤ �(ζ2)

)
;

(ii) nonsigular iff �({a} ∪ ζ ) = �(ζ ) for any a ∈ Z and every nonempty subset ζ ⊆ Z;
(iii) regular iff �(ζ ) = 0 iff ζ in Z, where ζ is relatively compact.

One of the most important examples of measure of noncompactness is the non-
compactness measure of Hausdorff β defined on each bounded subset ζ of Z by

β(ζ ) = inf{ε > 0; ζ can be covered by a finite number of balls

of radii smaller than ε}.

For any bounded subsets ζ , ζ1, ζ2 of Z.
(iv) β(ζ1 + ζ2) ≤ β(ζ1) + β(ζ2), where ζ1 + ζ2 = {z + w : z ∈ ζ1, w ∈ ζ2};
(v) β(ζ1 ∪ ζ2) ≤ max{β(ζ1),β(ζ2)};

(vi) β(℘ζ ) ≤ |℘|β(ζ ) for any ℘ ∈R;
(vii) If the Lipschitz continuous function φ : D(φ) ⊆ Z → X with constant �, then

βX(φζ ) ≤ �β(ζ ) for any bounded subset ζ ⊆D(φ), where X is a Banach space.
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Definition 2.7 ([46]) z ∈ C(V , Z) is said to be a mild solution of system (1.1) if z(0)+F(z) =
z0, z′(0) = z1 such that

z(t) = Cb(t)
(
z0 – F(z)

)
+ Kb(t)z1 +

∫ t

0
(t – s)b–1Tb(t – s)g

(
s, z(s)

)
ds

×
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ V , (2.2)

where Cb(·), Kb(·), and Tb(·) are called the characteristic solution operators and given by

Cb(t) =
∫ ∞

0
Sb(ξ )C

(
tbξ

)
dξ , Kb(t) =

∫ t

0
Cb(s) ds,

Tb(t) =
∫ ∞

0
bξSb(ξ )S

(
tbξ

)
dξ , Sb(ξ ) =

1
b
ξ–1– 1

b ζb
(
ξ– 1

b
) ≥ 0,

ζb(ξ ) =
1
π

∞∑

n=1

(–1)n–1ξ–nb–1 �(nb + 1)
n!

sin(nπb), ξ ∈ (0,∞),

and Sb(·) is the Mainardi’s Wright-type function defined on (0,∞) such that

Sb(ξ ) ≥ 0 for ξ ∈ (0,∞) and
∫ ∞

0
Sb(ξ ) dξ = 1.

Lemma 2.8 ([46]) The operators Cb(t), Kb(t), and Tb(t) have the following properties:
(a) For any fixed t ≥ 0, the operators Cb(t), Kb(t), and Tb(t) are linear and bounded op-

erators, i.e., for any z ∈ Z, the following estimates hold:

∥
∥Cb(t)z

∥
∥ ≤ P‖z‖,

∥
∥Kb(t)z

∥
∥ ≤ P‖z‖t,

∥
∥Tb(t)z

∥
∥ ≤ P

�(2b)
‖z‖tb;

(b) {Cb(t), t ≥ 0}, {Kb(t), t ≥ 0}, and {tb–1Tb(t), t ≥ 0} are strongly continuous.
(c) For any t ∈ V and any bounded subsets D ⊂ Z, t → {Cb(t)z : z ∈D}, t → {Kb(t)z : z ∈

D} and t → {Tb(t)z : z ∈ D} are equicontinuous if ‖C(tb
2(ξ ))z – C(tb

1(ξ ))z‖ → 0 with
respect to z ∈ D as t2 → t1 for any fixed ξ ∈ (0,∞) and ‖K(tb

2(ξ ))z – K(tb
1(ξ ))z‖ → 0

with respect to z ∈D as t2 → t1 for any fixed ξ ∈ (0,∞).

Lemma 2.9 ([59])
(i) There exist P ≥ 1 and ω ≥ 0 such that ‖C(t)‖Lc(Z) ≤ Peω|t| for all t ∈R;

(ii) ‖S(t2) – S(t1)‖Lc(Z) ≤ P| ∫ t2
t1

eω|s| ds| for all t2, t1 ∈ R.
(iii) If z ∈ E, then S(t)z ∈ D(A) and d

dt C(t)z = AS(t)z.

Lemma 2.10 Let {C(t)}t∈R be a strongly continuous cosine family in Z, then

lim
t→0

1
t

S(t)z = z for every z ∈ Z.

Lemma 2.11 ([59]) Let {C(t)}t∈R be a strongly continuous cosine family in Z satisfying
‖C(t)‖Lc(Z) ≤ Peω|t|, t ∈R. Then for Re� > ω, �2 ∈ ρ(A) and

�R
(
�2; A

)
z =

∫ ∞

0
e–�tC(t)z dt, R

(
�2; A

)
z =

∫ ∞

0
e–�tS(t)z dt, ∀z ∈ Z,

where A is the infinitesimal generator of {C(t)}t∈R.
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Theorem 2.12 ([41]) If {xn}∞n=1 is a sequence of Bochner integrable functions from V into
Z with the estimation ‖xn(t)‖ ≤ δ(t) for almost all t ∈ V and for every n ≥ 1, where δ ∈
L1(V ,R), then ϕ(t) = β({xn(t) : n ≥ 1}) in L1(V ,R) and satisfies

β

({∫ t

0
xn(s) ds : n ≥ 1

})

≤ 2
∫ t

0
ϕ(s) ds.

Definition 2.13 (Nonlocal controllability) System (1.1) is called nonlocally controllable
on V iff, for every z0, z1, y ∈ Z, there exists x ∈ L2(V , U) such that a mild solution z of
system (1.1) satisfies z(c) + F(z) = y.

Lemma 2.14 ([61]) Let D be a closed convex set of a Banach space Z and 0 ∈D. Consider
that N : D → Z is a continuous map which satisfies Mönch’s condition, i.e., if

H ⊆D is countable and H ⊆ co
({0} ∪ N(H)

) ⇒H is compact.

Then N has a fixed point in D.

3 Main results
We propose and demonstrate the requirements for the existence of system (1.1). In order
to establish the results, we need the following hypotheses:

(H1) (i) {C(t) : t ≥ 0} in Z;
(ii) For any bounded subsets D ⊂ Z and z ∈ D, ‖C(tb

2(ξ ))z – C(tb
1(ξ ))z‖ → 0 as

t2 → t1 for each fixed ξ ∈ (0,∞).
(H2) The function g : V × Z → Z satisfies:

(i) Carathéodory condition: g(·, z) is measurable for every z ∈ Z and g(t, ·) is
continuous for a.e. t ∈ V ;

(ii) There exist a constant b1 ∈ (0, b) and q ∈ L
1

b1 (V ,R+) and a nondecreasing
continuous function ζ : R+ →R

+ such that

∥
∥g(t, z)

∥
∥ ≤ q(t)ζ

(‖z‖), z ∈ Z, t ∈ V ,

where ζ satisfies lim infn→∞ ζ (n)
n = 0.

(iii) There exist a constant b2 ∈ (0, b) and j ∈ L
1

b2 (V ,R+) such that, for any
bounded subset D ⊂ Z,

β
(
g(t,D)

) ≤ j(t)β(D) for a.e. t ∈ V ,

where β is the Hausdorff measure of noncompactness.
(H3) (i) The linear operator B : L2(V , U) → L1(V , Z) is bounded, W : L2(V , U) → Z

defined by

Wx =
∫ c

0
(c – s)b–1Tb(c – s)Bx(s) ds

has an inverse operator W –1 which takes values in L2(V , U)/ ker W , and there
exist P1, P2 ≥ 0 such that ‖B‖Lc(U ,Z) ≤ P1,

∥
∥W –1∥∥

Lc(Z,L2(V ,U)/ ker W ) ≤ P2;
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(ii) There exist a constant b0 ∈ (0, b) and KW ∈ L
1

b0 (V ,R+) such that, for any
bounded set φ ⊂ Z,

β
((

W –1φ
)
(t)

) ≤KW (t)β(φ).

(H4) (i) The continuous and compact operator F : C(V , Z) → Z;
(ii) F satisfies lim‖v‖C→∞ ‖F(v)‖

‖v‖C = 0.
For our convenience, let us take

On :=
[(

1 – bn

2b – bn

)

c
2b–bn
1–bn

]1–bn

, n = 0, 1, 2;

P3 := O1‖q‖
L

1
b1 (V ,R+)

, P4 := O0‖KW ‖
L

1
b0 (V ,R+)

, P5 = O2‖j‖
L

1
b2 (V ,R+)

.

Theorem 3.1 If (H1)–(H4) are satisfied, then system (1.1) has a mild solution on V if

L̂ =
(

1 +
2PP1P4

�(2b)

)
2PP5

�(2b)
< 1 for some

3
2

< b < 2. (3.1)

Proof Using (H3)(i), for an arbitrary function z ∈ C , we define the control xz(t) by

xz(t) = W –1
[

y – F(z) – Cb(c)
(
z0 – F(z)

)
– Kb(c)z1

–
∫ c

0
(c – s)b–1Tb(c – s)g

(
s, z(s)

)
ds

]

(t), t ∈ V . (3.2)

Define the operator � : C → C such that

(�z)(t) = Cb(t)
(
z0 – F(z)

)
+ Kb(t)z1 + �(g + Bxz)(t), (3.3)

where �(g + Bxz) ∈ C defined by

�(g + Bxz)(t) =
∫ t

0
(t – s)b–1Tb(t – s)g

(
s, z(s)

)
ds

+
∫ t

0
(t – s)b–1Tb(t – s)BW –1

[

y – F(z) – Cb(c)
(
z0 – F(z)

)

– Kb(c)z1 –
∫ c

0
(c – ι)b–1Tb(c – ι)g

(
ι, z(ι)

)
dι

]

(s) ds

has a fixed point z, which is a mild solution of system (1.1). Clearly, (�z)(c) = y – F(z); this
means that xz moves system (1.1) from z0 to y in finite time c. This implies that system
(1.1) is completely controllable on V .

Now, we introduce the operators �1 and �2 defined by

(�1z)(t) = Cb(t)
(
z0 – F(z)

)
+ Kb(t)z1, t ∈ V ,

and

(�2z)(t) = �(g + Bxz)(t), t ∈ V .
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It is clear that

� = �1 + �2.

We prove that � satisfies the results of Lemma 2.14.
Step 1: To demonstrate that there is � > 0 such that

�(B�) ⊆ B�,

where B� = {z ∈ C : ‖z‖C ≤ �}. If not, then for each positive number �, there exists z�(·) in
B� ; however, �(z�) /∈ B� , i.e.,

∥
∥�

(
z�

)
(t)

∥
∥ > � for some t ∈ V .

Using Lemma 2.8, (H2)(ii), (H3), and Hölder’s inequality, we have

∥
∥x(t)

∥
∥

= P2

[

‖y‖ +
∥
∥F(z)

∥
∥ +

∥
∥Cb(c)

(
z0 – F(z)

)∥
∥ +

∥
∥Kb(c)z1

∥
∥

+
∫ c

0
(c – s)b–1∥∥Tb(c – s)g

(
s, z(s)

)∥
∥ds

]

≤ P2

[

‖y‖ +
∥
∥F(z)

∥
∥ + P‖z0‖ + P

∥
∥F(z)

∥
∥ + Pc‖z1‖

+
P

�(2b)

∫ c

0
(c – s)2b–1∥∥g

(
s, z(s)

)∥
∥ds

]

≤ P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖ + PP2c‖z1‖

+
PP2

�(2b)

∫ c

0
(c – s)2b–1q(s)ζ

(‖z‖)ds

≤ P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖ + PP2c‖z1‖ +

PP2P3

�(2b)
ζ
(‖z‖C

)
.

Then

∥
∥z�

∥
∥
C ≤ � <

∥
∥
(
�z�

)
(t)

∥
∥

≤ ∥
∥Cb(t)

(
z0 – F(z)

)∥
∥ +

∥
∥Kb(t)z1

∥
∥ +

∫ t

0
(t – s)b–1

× ∥
∥Tb(t – s)g

(
s, z(s)

)∥
∥ds +

∫ t

0
(t – s)b–1∥∥Tb(t – s)Bx(s)

∥
∥ds

≤ P
[

1 +
PP1P2

�(2b)

(
c4b–1

4b – 1

) 1
2
]

‖z0‖ + P
[

1 +
(1 + P)P1P2

�(2b)

(
c4b–1

4b – 1

) 1
2
]
∥
∥F(z)

∥
∥

+ Pc
[

1 +
PP1P2

�(2b)

(
c4b–1

4b – 1

) 1
2
]

‖z1‖ +
PP1P2

�(2b)

(
c4b–1

4b – 1

) 1
2 ‖y‖

+
PP3

�(2b)

[

1 +
PP1P2

�(2b)

(
c4b–1

4b – 1

) 1
2
]

ζ
(∥
∥z�

∥
∥
)
,
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dividing both sides of the above inequality ‖z�‖C and taking the limit as ‖z�‖C tends to ∞,
one can obtain 0 ≥ 1, which is a contradiction. Therefore, � > 0, �(B�) ⊆ B� .

Step 2: We prove that � is continuous on B� .
Let z(n) → z in B� . From (H4)(i) and Lemma 2.8, we have

‖�1zn – �1z‖ ≤ P
∥
∥F(zn) – F(z)

∥
∥ → 0 as n → ∞. (3.4)

Using Lebesgue’s dominated convergence theorem and (H2)(i)(ii), we have

∫ t

0
(t – s)b–1∥∥Gn(s) – G(s)

∥
∥ds → 0 as n → ∞, t ∈ V , (3.5)

where Gn(s) = g(s, zn(s)) and G(s) = g(s, z(s)). Then

‖�2zn – �2z‖C ≤ P
�(2b)

∫ t

0
(t – s)2b–1∥∥Gn(s) – G(s)

∥
∥ds

+
(

c4b–1

4b – 1

) 1
2 P
�(2b)

‖xzn – xz‖L2(V ,U), (3.6)

where

‖xzn – xz‖L2(V ,U) ≤ P2(1 + P)
∥
∥F(zn) – F(z)

∥
∥

+
PP2

�(2b)

∫ c

0
(c – s)2b–1∥∥Gn(s) – G(s)

∥
∥ds. (3.7)

Using (3.4), (3.5), (3.6), (3.7), we easily conclude that

‖�2zn – �2z‖C → 0 as n → ∞,

⇒ �2 is continuous on B� .
Step 3: Mönch’s condition holds.
Let D ⊆ B� be countable and D ⊆ conv({0} ∪ �(D)). We prove that β(D) = 0, where β

is the Hausdorff measure of noncompactness. Without loss of generality, let D = {zn}∞n=1.
Now, we prove that {�zn}∞n=1 is equicontinuous on V , then D ⊆ conv({0}∪�(D)) is also

equicontinuous on V . Lastly, let χ ∈ �(D) and 0 ≤ t1 < t2 ≤ c, there is z ∈D such that

∥
∥χ (t2) – χ (t1)

∥
∥ ≤ ∥

∥Cb(t2)z0 – Cb(t1)z0
∥
∥ +

∥
∥Cb(t2)F(z) – Cb(t1)F(z)

∥
∥

+
∥
∥Kb(t2)z1 – Kb(t1)z1

∥
∥

+
∥
∥�(g + Bxz)(t2) – �(g + Bxz)(t1)

∥
∥.

From Lemma 2.8, we may readily deduce that the first, second, and third teams at the RHS
of the above inequality tend to zero as t2 → t1.

Now, we verify that the last team at the RHS of the above inequality tends to 0 as t2 → t1.

I1 =
∫ t2

t1

(t2 – s)b–1Tb(t2 – s)
[
G(s) + Bxz

]
ds,
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I2 =
∫ t1

t1–ε

(t2 – s)b–1[Tb(t2 – s) – Tb(t1 – s)
][
G(s) + Bxz

]
ds,

I3 =
∫ t1

t1–ε

[
(t2 – s)b–1 – (t1 – s)b–1]Tb(t1 – s)

[
G(s) + Bxz

]
ds,

I4 =
∫ t1–ε

0
(t2 – s)b–1[Tb(t2 – s) – Tb(t1 – s)

][
G(s) + Bxz

]
ds,

I5 =
∫ t1–ε

0

[
(t2 – s)b–1 – (t1 – s)b–1]Tb(t1 – s)

[
G(s) + Bxz

]
ds,

we have

∥
∥�(g + Bxz)(t2) – �(g + Bxz)(t1)

∥
∥ ≤

5∑

n=1

‖In‖.

Using Lemma 2.8, one can check that ‖In‖ → 0, as t2 → t1, n = 1, 2, 3, 4, 5. Hence, �(D) is
equicontinuous on V .

Now, we need to verify �(D)(t) is relatively compact in Z for every t ∈ V . From the
compactness condition of F , we have

β
({

(�1zn)(t)
}∞

n=1

) ≤ β
({

Cb(t)
(
z0 – F(zn)

)
+ Kb(t)z1

}∞
n=1

)
= 0.

From Theorem 2.12, we have

β
({

xzn (s)
}∞

n=1

) ≤KW (s)
2P

�(2b)

∫ c

0
(c – s)2b–1j(s)β

(
D(s)

)
ds.

Further,

β
({

(�2zn)(t)
}∞

n=1

) ≤ 2P
�(2b)

(∫ c

0
(c – s)2b–1j(s) ds

)

β
(
D(t)

)

+
2PP1

�(2b)

(∫ c

0
(c – s)2b–1KW (s) ds

)

×
[

2P
�(2b)

(∫ c

0
(c – s)2b–1j(s) ds

)

β
(
D(t)

)
]

≤ 2PP5

�(2b)
β
(
D(t)

)
+

2PP1P4

�(2b)

(
2PP5

�(2b)

)

β
(
D(t)

)
,

β
(
�(D)(t)

) ≤ β
(
�1(D)(t)

)
+ β

(
�2(D)(t)

) ≤
(

1 +
2PP1P4

�(2b)

)
2PP5

�(2b)
β
(
D(t)

)
.

Then

β
(
�(D)(t)

) ≤ L̂β(D),

where L̂ denotes equation (3.1). Then, from Mönch’s condition, we have

β(D) ≤ β
(
conv

({0} ∪ �(D)
))

= β
(
�(D)

) ≤ L̂β(D).

⇒ β(D) = 0.
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Therefore, using Lemma 2.14, � has a fixed point z ∈ B� , since z is a mild solution of
system (1.1) satisfying z(c) + F(z) = y. �

4 Fractional integro-differential evolution system
The nonlocal controllability results for fractional integro-differential evolution system of
1 < r < 2 under the Banach contraction principle are presented and demonstrated in this
section. Consider that the fractional integro-differential evolution system of 1 < r < 2 has
the form

⎧
⎨

⎩

CDr
t z(t) = Az(t) + g(t, z(t),

∫ t
0 h(t, s, z(s)) ds) + Bx(t), t ∈ V ,

z(t) + F(z) = z0, z′(0) = z1 ∈ Z,
(4.1)

where g : V × Z × Z → Z and h : Q × Z → Z are continuous, where Q = {(t, s) : 0 ≤ s ≤
t ≤ c}.

Definition 4.1 ([46]) z ∈ C(V , Z) is said to be a mild solution of system (4.1) if z(0)+F(z) =
z0, z′(0) = z1 such that

z(t) = Cb(t)
(
z0 – F(z)

)
+ Kb(t)z1

+
∫ t

0
(t – s)b–1Tb(t – s)g

(

s, z(s),
∫ s

0
h
(
s, τ , z(τ )

)
dτ

)

ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds, t ∈ V . (4.2)

Before starting and examining the main results, we assume the following:
(H5) The function g : V × Z × Z → Z is continuous, and there exist constants Lg > 0,

Pg > 0 such that

∥
∥g(t, k1, w1) – g(t, k2, w2)

∥
∥ ≤ Lg

(‖k1 – k2‖ + ‖w1 – w2‖
)

for all t ∈ V ,

for any k1, k2, w1, w2 ∈ Z, and Pg = maxt∈V ‖g(t, 0, 0)‖.
(H6) The function h : Q× Z → Z is continuous, and there exist constants Lh > 0, Ph > 0

such that

∥
∥h(t, s, k1) – h(t, s, k2)

∥
∥ ≤ Lh

(‖k1 – k2‖
)

for any k1, k2, τ1, τ2 ∈ Z, and Ph = maxt∈V ‖h(t, 0, 0)‖.

Theorem 4.2 If (H1), (H3)–(H6) are satisfied, then we assume that the following inequal-
ity holds:

PLgc2b(1 + Lhc)
�(2b + 1)

[

1 +
PP1P2c2b

�(2b + 1)

]

< 1. (4.3)

Then system (4.1) is controllable V .
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Proof Using (H3)(i), for an arbitrary function z ∈ C , we define the control xz(t) by

xz(t) = W –1
[

y – F(z) – Cb(c)
(
z0 – F(z)

)
– Kb(c)z1

–
∫ c

0
(c – s)b–1Tb(c – s)g

(

s, z(s),
∫ s

0
h
(
s, τ , z(τ )

)
dτ

)

ds
]

(t), t ∈ V . (4.4)

Define that the operator � : C(V , Z) → C(V , Z) given by

(�z)(t) = Cb(t)
(
z0 – F(z)

)
+ Kb(t)z1

+
∫ t

0
(t – s)b–1Tb(t – s)g

(

s, z(s),
∫ s

0
h
(
s, τ , z(τ )

)
dτ

)

ds

+
∫ t

0
(t – s)b–1Tb(t – s)Bx(s) ds

has a fixed point z, which is a mild solution of system (4.1). Clearly, (�z)(c) = y – F(z); this
means that xz moves system (4.1) from z0 to y in finite time c. Therefore, we verify that
the operator � has a fixed point.

Using Lemma 2.8, (H3), (H5), (H6), and Hölder’s inequality, we have

∥
∥x(t)

∥
∥

= P2

[

‖y‖ +
∥
∥F(z)

∥
∥ +

∥
∥Cb(c)

(
z0 – F(z)

)∥
∥ +

∥
∥Kb(c)z1

∥
∥

+
∫ c

0
(c – s)b–1

∥
∥
∥
∥Tb(c – s)g

(

s, z(s),
∫ s

0
h
(
s, τ , z(τ )

)
dτ

)∥
∥
∥
∥ds

]

≤ P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖ + PP2c‖z1‖

+
PP2

�(2b)

∫ c

0
(c – s)2b–1[Lg

(‖z‖ + Lhc‖z‖ + Phc
)

+ Pg
]

ds

≤ P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖ + PP2c‖z1‖

+
PP2c2b

�(2b + 1)
[
Lg(� + Lhc� + Phc) + Pg

]
.

The operator � maps B� into B� . From the definition of the operator � and the assump-
tions, for z ∈ B� , we have

∥
∥(�z)(t)

∥
∥ ≤ ∥

∥Cb(t)
(
z0 – F(z)

)∥
∥ +

∥
∥Kb(t)z1

∥
∥

+
∫ t

0
(t – s)b–1

∥
∥
∥
∥Tb(t – s)g

(

s, z(s),
∫ s

0
h
(
s, τ , z(τ )

)
dτ

)∥
∥
∥
∥ds

+
∫ t

0
(t – s)b–1∥∥Tb(t – s)Bx(s)

∥
∥ds

≤ P
(‖z0‖ +

∥
∥F(z)

∥
∥
)

+ Pc‖z1‖
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+
P

�(2b)

∫ t

0
(t – s)2b–1[Lg

(‖z‖ + Lhc‖z‖ + Phc
)

+ Pg
]

ds

+
PP1

�(2b)

∫ t

0
(t – s)2b–1

[

P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖

+ PP2c‖z1‖ +
PP2c2b

�(2b + 1)
[
Lg(� + Lhc� + Phc) + Pg

]
]

ds

≤ P
(‖z0‖ +

∥
∥F(z)

∥
∥
)

+ Pc‖z1‖ +
Pc2b

�(2b + 1)
[
Lg(� + Lhc� + Phc) + Pg

]

+
PP1c2b

�(2b + 1)

[

P2‖y‖ + P2(1 + P)
∥
∥F(z)

∥
∥ + PP2‖z0‖

+ PP2c‖z1‖ +
PP2c2b

�(2b + 1)
[
Lg(� + Lhc� + Phc) + Pg

]
]

.

Therefore, by inequality (4.3) it follows that ‖�z‖ ≤ � and then �(B�) ⊆ B� . Now, for
every u, v ∈ B� , we have

∥
∥(�u)(t) – (�v)(t)

∥
∥

≤
∫ t

0
(t – s)b–1

∥
∥
∥
∥Tb(t – s)

[

g
(

s, u(s),
∫ s

0
h
(
s, τ , u(τ )

)
dτ

)

– g
(

s, v(s),
∫ s

0
h
(
s, τ , v(τ )

)
dτ

)]∥
∥
∥
∥ds +

∫ t

0
(t – s)b–1

∥
∥
∥
∥Tb(t – s)BW –1

×
[∫ c

0
(c – ι)b–1

∥
∥
∥
∥Tb(c – ι)

[

g
(

ι, u(ι),
∫ ι

0
h
(
ι, τ , u(τ )

)
dτ

)

– g
(

ι, v(ι),
∫ ι

0
h
(
ι, τ , v(τ )

)
dτ

)]

dι

]

(s)
∥
∥
∥
∥ds

≤ P
�(2b)

∫ t

0
(t – s)2b–1

∥
∥
∥
∥g

(

s, u(s),
∫ s

0
h
(
s, τ , u(τ )

)
dτ

)

– g
(

s, v(s),
∫ s

0
h
(
s, τ , v(τ )

)
dτ

)∥
∥
∥
∥ds +

PP1P2

�(2b)

∫ t

0
(t – s)2b–1

×
[

P
�(2b)

∫ c

0
(c – ι)2b–1

∥
∥
∥
∥g

(

ι, u(ι),
∫ ι

0
h
(
ι, τ , u(τ )

)
dτ

)

– g
(

ι, v(ι),
∫ ι

0
h
(
ι, τ , v(τ )

)
dτ

)∥
∥
∥
∥dι

]

(s) ds

≤ PLgc2b

�(2b + 1)
[‖u – v‖ + Lhc‖u – v‖] +

P2P1P2Lgt2bc2b

(�(2b + 1))2

[‖u – v‖ + Lhc‖u – v‖]

≤
[

PLgc2b

�(2b + 1)
+

P2P1P2Lgt2bc2b

(�(2b + 1))2

]

(1 + Lhc)‖u – v‖,

which implies by inequality (4.3) that ‖�u – �v‖ < ‖u – v‖. Then, we can conclude that �

is a contraction on B� . As a result, according to the Banach fixed point theorem, � has a
unique fixed point z in C(V , Z). Therefore, we can see that z(·) is a mild solution of system
(4.1), and the proof is complete. �
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5 Application
Let G ⊂ R

N be a bounded domain and U = Z = L2(G). Consider the following nonlocal
fractional integrodifferential evolution system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂r

∂tr z(t,η) = �z(t,η) + l0(η) sin z(t,η) + l1
∫ t

0 e–z(s,η) ds

+ Bx(t), t ∈ V = [0, 1],η ∈ G,

z(t,η) = 0, t ∈ [0, 1],η ∈ ∂G,

z(0,η) +
∫ c

0 j(s) In(1 + |z(s,η)| 1
2 ) ds = 0, z′(0,η) = z1(η),η ∈ G,

(5.1)

where ∂r

∂tr denotes Caputo fractional derivative of order 3
2 ≤ r < 2, j ∈ L1(V ,R+), l0 is con-

tinuous on G and l1 > 0.
Consider A to be the Laplace operator with Dirichlet boundary conditions given by A =

� and

D(A) =
{

g ∈ H1
0 (G), Ag ∈ L2(G)

}
.

Clearly, we have D(A) = H1
0 (G) ∩ H2(G). A produces C(t) for t ≥ 0 in the view of [62]. Let

�n = n2π2 and μn(η) =
√

(2/π ) sin(nπη) for any n ∈N.
Assume that {–�n,μn}∞n=1 is an eigensystem of the operator A, then 0 < �1 ≤ �2 ≤ · · · ,

�n → ∞ when n → ∞, and {μn}∞n=1 forms an orthonormal basis of Z. Further

Az = –
∞∑

n=1

�n(z,μn)μn, z ∈ D(A),

where (·, ·) denotes the inner product in Z. Accordingly, C(t) is defined by

C(t)z =
∞∑

n=1

cos(
√
�nt)(z,μn)μn, z ∈ Z,

which is connected with the sine family {S(t), t ≥ 0} in Z defined by

S(t)z =
∞∑

n=1

1√
�n

sin(
√
�nt)(z,μn)μn, z ∈ Z,

and ‖C(t)‖Lc(Z) ≤ 1 for any t ≥ 0.
Since r = 3

2 , we know that t = 3
4 , and then ‖Cc(t)‖Lc(Z) ≤ 1 for any t ≥ 0.

The control operator B : U → Z is defined by

Bx =
∞∑

n=1

a�n(x,μn)μn, a > 0.

In the above

x =

⎧
⎨

⎩

xn, n = 1, 2, . . . , N ,

0, n = N + 1, N + 2, . . . ,
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for N in N. Denote W : L2(V , U) → Z as follows:

Wx =
∫ s

0
(1 – s)– 1

4 T 3
4

(1 – s)Bx(s) ds.

Hence, |x| = (
∑∞

n=1(x,μn)2) 1
2 for x ∈ U , we have

|Bx| =

( ∞∑

n=1

a2
�

2
n(x,μn)2

) 1
2

≤ aN�N |x|,

which implies that there exists P1 > 0 such that

‖B‖Lc(U ,Z) ≤ P1.

Let x(s,η) = z(η) ∈ U and z denote zn if n = 1, 2, . . . , N or 0 if n = N + 1, . . . . Hence, we have

Wx =
∫ 1

0
(1 – s)– 1

4
3
4

∫ ∞

0
ξS 3

4
(ξ )S

(
(1 – s)

3
4 ξ

)
Bz dξ ds

= a
∫ 1

0
(1 – s)– 1

4
3
4

∫ ∞

0
ξS 3

4
(ξ )

N∑

n=1

√
�n sin

(√
�n(1 – s)

3
4 ξ

)
)(z,μn)μn dξ ds

= a
N∑

n=1

∫ ∞

0
S 3

4
(ξ )

(
1 – cos(

√
�nξ )

)
dξ (z,μn)μn

= a
∞∑

n=1

(
1 – E 3

2 ,1(–�n)
)
(z,μn)μn.

In [63, 64], assume that v = E 3
2 ,1(– 1

10 ), then for every n ∈N, we have –1 < E 3
2 ,1(–�n) ≤ v < 1,

which implies

0 < 1 – v ≤ 1 – E 3
2 ,1(–�n) < 2.

Then, we classify W is surjective since, for every z =
∑∞

n=1(z,μn)μn ∈ Z, we illustrate W –1 :
Z → L2(V , U)/ ker W by

(
W –1z

)
(t,η) =

1
a

∞∑

n=1

(z,μn〉μn

1 – E 3
2 ,1(–�n)

for z ∈ Z in such a way

∣
∣
(
W –1z

)
(t, ·)∣∣ ≤ 1

a(1 – v)
|z|.

We know that W –1z is independent of t ∈ V . Additionally, we obtain

∥
∥W –1∥∥

Lc(Z,L2(V ,U)/ Ker W ) ≤ 1
a(1 – v)

.

Therefore assumption (H3) satisfied.
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Determine

z(t)(η) = z(t,η), CD
3
2
t z(t)(η) =

∂
3
2

∂t 3
2

z(t,η),

g
(

t, z,
∫ t

0
h(t, s, z) ds

)

= l0(·) sin z(t, ·) +
∫ t

0
h(t, s, z) ds, h(t, s, z) = l1e–z(s,·),

and F denotes F(z)(η) =
∫ c

0 j(s) In(1 + |z(s,η)| 1
2 ) ds and F is compact and satisfies hypothesis

(H4).

⎧
⎨

⎩

CDr
t z(t) = Az(t) + g(t, z,

∫ t
0 h(t, s, z) ds) + Bx(t), t ∈ V = [0, c], r ∈ (1, 2),

z(t) + F(z) = z0, z′(0) = z1 ∈ Z.
(5.2)

Therefore, every requirement of Theorem 4.2 is satisfied. Hence, using Theorem 4.2, (5.1)
is nonlocal controllable on [0, c].

6 Conclusion
The nonlocal controllability results for the fractional differential system of 1 < r < 2 in a Ba-
nach space are discussed in this work. Fractional computations, the measure of noncom-
pactness, cosine families, Mainardi’s Wright-type function, and fixed point techniques are
all used to test the main conclusions of this article. We begin by applying the Mönch fixed
point theorem to analyze nonlocal controllability results of a mild solution for the frac-
tional differential system. In addition, the Banach fixed point theorem is used to develop
the controllability results for fractional integrodifferential evolution system with nonlocal
conditions. Finally, an application for developing the theory of the key results is offered.
We will develop approximate controllability results for Sobolev type fractional delay evo-
lution inclusions of order 1 < r < 2 in the future.
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