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Abstract
In this paper, we present a numerical technique for solving fractional optimal control
problems with a fractional derivative called Caputo–Katugampola derivative. This
derivative is a generalization of the Caputo fractional derivative. The proposed
technique is based on a spectral method using shifted Chebyshev polynomials of the
first kind. The Clenshaw and Curtis scheme for the numerical integration and the
Rayleigh–Ritz method are used to estimate the state and control variables. Moreover,
the error bound of the fractional derivative operator approximation of
Caputo–Katugampola is derived. Illustrative examples are provided to show the
validity and applicability of the presented technique.
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1 Introduction
In recent years, many engineering and science problems have arisen in fractional differ-
ential equations (FDEs). Torvik and Bagley [6] utilized a fractional derivative to depict
the behavior of viscoelastic materials. The fractional logistic model with feedback control
has been suggested and analyzed in [17]. Characterization and synthesis of the frequency-
band complex noninteger differentiator are studied in [26]. A rational approximation tech-
nique is used to approximate the fractional order optimal control problems (FOCPs) in
[37].

The main idea of FDEs is the order of the derivative is replaced with a noninteger order.
Various definitions of a fractional derivative have been presented in the literature such
as Riemann–Liouville, Caputo (see [22, 23, 25, 27, 29]). Recently, several definitions of
fractional operators and generalized fractional derivatives have been presented [5, 30, 40].
Katugampola proposed a generalization of the Caputo fractional derivative (see [1, 19,
20]). Furthermore, Abdeljawad et al. evolved them in various research papers [1, 18].

Optimal control problems (OCPs) appear widely in various applications such as
aerospace, atmospheric reentry, quantum systems, and space shuttle. Bonnard et al. in
[9] used the smooth continuation method in optimal control and performed the analy-
sis of a dissipative two-level quantum system. In [16], the homotopy method combined
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with the shooting method is used to solve an optimal control problem of the atmospheric
reentry of a space shuttle [36].

Nowadays, numerous researchers have widespread OCPs to the fractional case where
the dynamic of systems involves a fractional derivative term. Fractional optimal control
problems (FOCPs) have been widely investigated in the literature. Agrawal [2] provided
a general formulation for a class of FOCPs, and this formulation is similar to the classical
OCPs. In [24], the authors used a modified hat function to solve a class of FOCPs. FOCPs
with free terminal time are considered in [28]. In [39], time-fractional optimal control
problems with Caputo–Fabrizio fractional derivative are presented. In all these papers,
FOCPs have been defined with respect to different definitions of fractional derivatives
such as Riemann–Liouville and Caputo. However, FOCPs with Caputo–Katugampola
derivative have not been investigated yet, and to the best of our knowledge, it is the first
time that FOCPs with Caputo–Katugampola derivative are studied in the literature. The
Caputo–Katugampola derivative is highly influenced by the value of α and another pa-
rameter ρ which is beneficial in graphical simulations associated with real data, see [14].
The motivation of this paper is to investigate the nature of a class of FOCPs with vari-
ous fractional-order values and an additional parameter ρ . Therefore, in this paper, we
deal with the numerical solutions of FOCPs with Caputo–Katugampola derivative, and
we derive an estimation of the Caputo–Katugampola definition in terms of Chebyshev
polynomials.

In order to find the numerical solutions of FOCPs, the spectral method which tries to
approximate the unknown functions by means of orthogonal polynomials, namely Cheby-
shev polynomials, is used ([8, 21]). Furthermore, the Clenshaw and Curtis technique (see
[12, 35]) has been utilized to discretize the objective function, and the optimality condi-
tions have been obtained by the Rayleigh–Ritz method.

The main aim of this paper is to study the numerical solution for the FOCP in the fol-
lowing form:

minimize J (x, u, tf ) =
∫ tf

a
G

(
t, x(t), u(t)

)
dt, (1)

subject to

Q1ẋ(t) + Q2
CDα,ρ

a+ x(t) = ψ
(
t, x(t)

)
+ χ

(
t, x(t)

)
u(t), (2)

x(a) = xa, x(tf ) = xf , (3)

where CDα,ρ
a+ is the Caputo–Katugampola derivative operator,Q1,Q2 �= 0, tf , xa, xf are fixed

real numbers and χ (t, x(t)) �= 0, ∀t ∈ [a, tf ].
The rest of the paper is given as follows: In Sect. 2, the properties of shifted Chebyshev

polynomials of the first kind and various definitions of the fractional derivatives and inte-
grals are given. In Sect. 3, the Caputo–Katugampola derivative is approximated in terms of
Chebyshev polynomials, and the error bound of the Caputo–Katugampola derivative op-
erator is derived. The structure of the proposed numerical scheme is provided in Sect. 4.
Section 5 deals with applying the presented scheme to some FOCPs to show its validity
and applicability. The conclusions are stated in Sect. 6.
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2 Basic notations and preliminaries
This section provides some definitions of fractional derivatives and integrals that have
been presented in the literature and some properties of the Chebyshev polynomials of the
first kind.

2.1 Fractional derivatives and integrals
In the following, we recall some definitions regarding fractional integrals and derivatives.

Definition 2.1 ([25, 27, 32]) The Riemann–Liouville fractional integral of order α > 0 is
given by

0Iαy(t) =
1

�(α)

∫ t

0
(t – s)α–1y(s) ds, t > 0,

where �(·) is the gamma function defined by

�(z) :=
∫ ∞

0
e–uuz–1 du, Re{z} > 0.

The Riemann–Liouville fractional derivative of order α > 0 is defined by

0Dαy(t) =
(

d
dt

)n

0In–αy(t), n = [α] + 1.

Definition 2.2 ([13]) The Caputo fractional of order α > 0 has the following form:

0Dαy(t) = 0In–αy(n)(t), n = [α] + 1.

Definition 2.3 (see [4, 7, 18, 19]) Suppose that y is an integrable function on [a, b], where
0 < a < b < ∞. For 0 < α < 1 and ρ > 0, the Caputo–Katugampola fractional derivative of
order α is defined by

CDα,ρ
a+ y(t) =

ρα

�(1 – α)
t1–ρ d

dt

∫ t

a

sρ–1

(tρ – sρ)α
[
y(s) – y(a)

]
ds. (4)

Also, we give the following theorem that gives an equivalent form of Caputo–Katugam-
pola fractional derivatives in Definition 2.3, when y ∈ C1[a, b].

Theorem 1 ([4]) Assume that y ∈ C1[a, b], then

CDα,ρ
a+ y(t) =

ρα

�(1 – α)

∫ t

a

y′(s)
(tρ – sρ)α

ds. (5)

Remark 2.1 In case ρ = 1, the Caputo–Katugampola fractional derivative is reduced to
the classical Caputo fractional derivative, and for ρ → 0+, we get the Caputo–Hadamard
fractional derivative [15, 18].

Definition 2.4 ([19, 31]) The Caputo–Katugampola fractional integral is defined by

0Iα,ρy(t) =
1

�(α)

∫ t

0

(
tρ – sρ

ρ

)α–1

y(s)
ds

s1–ρ
.
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Definition 2.5 ([3, 29]) Let α ∈ R
+, I = [a, b], y be an integrable function on I , ψ ∈ Cn(I)

be increasing, and ψ ′(x) �= 0 for all x ∈ I . The ψ-Riemann–Liouville fractional integral and
fractional derivative are defined by

Iα,ψ
a+ y(t) :=

1
�(α)

∫ t

a
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1y(s) ds

and

Dα,ψ
a+ y(t) :=

(
1

ψ ′(t)
d

dx

)n

In–α,ψ
a+ y(t),

where n = [α] + 1.

2.2 Shifted Chebyshev polynomials of the first kind
The Chebyshev polynomials of the first kind with degree n, n ≥ 0, are defined as follows:

Tn(x) = cos(n arccos x), x ∈ [–1, 1].

These polynomials satisfy the following recurrence relation:

Tn+1(x) = 2xTn(x) – Tn–1(x),

with starting values T0(x) = 1 and T1(x) = x. The explicit analytic form of Tn(x) is given by

Tn(x) =
	n/2
∑
i=0

(–1)i2n–2i–1 n(n – i – 1)!
(i)!(n – 2i)!

xn–2i, (6)

where 	n/2
 denotes the greatest integer less than or equal to n/2. It is known that the
Chebyshev polynomials of the first kind satisfy the following orthogonality relations:

∫ 1

–1

Ti(x)Tj(x)√
1 – x2

dx =

⎧⎪⎪⎨
⎪⎪⎩

π for i = j = 0;
π
2 for i = j �= 0;

0 for i �= j.

(7)

Some of useful properties of Chebyshev polynomials [33] are the following:

∣∣Tn(x)
∣∣ ≤ 1,

∣∣T ′
n(x)

∣∣ ≤ n2.

The shifted Chebyshev polynomials of the first kind T∗
n (t) are defined on [0, τ ] as follows:

T∗
n (t) = Tn

(
2t
τ

– 1
)

.

Again, it is known that the explicit analytic form of the shifted Chebyshev polynomials of
the first kind is given by

T∗
n (t) = n

n∑
k=0

(–1)n–k 22k(n + k – 1)!
(2k)!(n – k)!τ k tk , n = 1, 2, . . . , (8)



Sweilam et al. Advances in Difference Equations        (2021) 2021:425 Page 5 of 16

and T∗
n (t) are orthogonal polynomials on the interval [0, τ ] with respect to the weight

function 1√
τ t–t2 , that is,

∫ τ

0

T∗
j (t)T∗

k (t)√
τ t – t2

dt =

⎧⎪⎪⎨
⎪⎪⎩

π for j = k = 0;
π
2 for j = k �= 0;

0 for j �= k.

(9)

3 Numerical approximations
A function f ∈ L2([0, τ ]) can be expanded in terms of shifted Chebyshev polynomials as
follows:

f (t) =
∞∑

m=0

amT∗
m(t) with am =

2
πcm

∫ τ

0

f (t)T∗
m(t)√

τ t – t2
dt, (10)

with c0 = 2 and ci = 1 for all i ≥ 1.
Let f ∈ C[0, τ ] and N be a positive integer. Denote

fN (t) =
N∑

n=0

′′ãnT∗
n (t), with ãn =

2
N

N∑
r=0

′′f (tr)T∗
n (tr), (11)

where fN (t) is the Chebyshev–Gauss–Lobatto (CGL) interpolation of f (t) on [0, τ ] and
the CGL points ([11, 34])

tr =
τ

2
–

τ

2
cos

(
πr
N

)
, r = 0, 1, . . . ,N .

It is important to mention that the double-primed summation means halving the first and
the last terms.

To compute an approximate solution for a definite integral of a continuous function
g : [–1, 1] → R over the interval [–1, 1], we use the Clenshaw and Curtis formula (see
[12, 35])

∫ 1

–1
g(t) dt �

N∑
j=0

ωjg(tj), (12)

where ωj, j = 0, 1, . . . ,N , are weights and tj, j = 0, 1, . . . ,N , are the roots of (1 – t2) dTN (t)
dt .

For N even, the weights are:

ω0 = ωN =
1

N 2 – 1
,

ωs = ωN–s =
4
N

N
2∑

j=0

′′ 1
4 – j2 cos

(
2π js
N

)
, s = 1, . . . ,

N
2

,

while the weights for N odd are determined by

ω0 = ωN =
1
N 2 ,
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ωs = ωN–s =
4
N

N–1
2∑

j=0

′′ 1
4 – j2 cos

(
2π js
N

)
, s = 1, . . . ,

N – 1
2

.

Next, we study the convergence of the proposed technique.

Theorem 2 The series in Eq. (10) converges to the exact solution.

Proof Consider the exact and the truncated series such that M≥N are given as follows:

f (t) =
∞∑
i=0

aiT∗
i (t), fM(t) �

M∑
i=0

aiT∗
i (t), fN (t) �

N∑
i=0

aiT∗
i (t). (13)

Then we have

〈
f (t), fM(t)

〉
w(t) =

〈
f (t),

M∑
i=0

aiT∗
i (t)

〉

w(t)

=
M∑
i=0

āi
〈
f (t), T∗

i (t)
〉
w(t) =

M∑
i=0

āiai =
M∑
i=0

|ai|2.

In what follows, we show that fM(t) is a Cauchy sequence in L2
w[0, 1] and consequently it

converges. From Eq. (13), we have

∥∥fM(t) – fN (t)
∥∥2

w(t) =
M∑

i=N+1

|ai|2.

Using Bessel’s inequality,
∑M

i=N+1 |ai|2 → 0 as M,N → ∞, therefore fM is a Cauchy, and
by the completeness of L2

w, fM converges to ϑ(t) ∈ L2
w. Now, we prove that f (t) = ϑ(t),

〈
f (t) – ϑ(t), T∗

k (t)
〉
w(t) =

〈
f (t), T∗

k (t)
〉
w(t) –

〈
ϑ(t), T∗

k (t)
〉
w(t)

= ak –
〈

lim
M→∞

fM(t), T∗
k (t)

〉
w(t)

= ak – lim
M→∞

〈
fM(t), T∗

k (t)
〉
w(t) = ak – ak = 0. �

3.1 Approximation of the Caputo–Katugampola fractional derivative
In what follows, we give some fundamental results for the fractional derivative CDα,ρ

0+ f (t).
First, we present a lemma which helps us in the proofs that follow.

Lemma 3.1 If f , f (1), . . . , f (ν) ∈ AC[0, 1] and |f (ν+1)(t)| ≤ Wν < ∞, ∀t ∈ [0, 1], for some ν ≥ 0,
then for each m ≥ ν + 1,

|am| ≤ Wν

2νm(m – 1) · · · (m – ν)
. (14)
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Proof Using the substitution x = 1
2 (1 + cos θ ), we have

am =
2

πcm

∫ 1

0

f (x)T∗
m(x)√

x – x2
dx

=
2

πcm

∫ π

0
f
(

1 + cos θ

2

)
Tm(cos θ ) dθ

=
2

πcm

∫ π

0
f
(

1 + cos θ

2

)
cos(mθ ) dθ .

Integrating by parts,

am =
1

mπcm

∫ π

0
f ′

(
1 + cos θ

2

)
sin θ sin(mθ ) dθ

=
1

mπcm

∫ π

0
f ′

(
1 + cos θ

2

)(
cos((m – 1)θ )

2
–

cos((m + 1)θ )
2

)
dθ .

(15)

For ν = 0,

|am| ≤ 1
mπcm

∫ π

0

∣∣∣∣f ′
(

1 + cos θ

2

)∣∣∣∣
∣∣∣∣cos((m – 1)θ )

2
–

cos((m + 1)θ )
2

∣∣∣∣dθ

≤ 1
m

W0.

Moreover, integration by parts for (15) brings higher derivatives of f and shows more
cosine terms. It is noticeable that there is a factor m in the denominator of (15). The second
integration by parts gives factors m – 1 and m + 1, the third provides factors m – 2, m,
and m + 2, and so on. For simplicity, we replace all various denominators with m – 1 at
the second differentiation, m – 2 at the third differentiation, and so on until m – ν at the
(ν + 1)st differentiation, hence we fulfilled the desired result. �

Now, we give an estimation of CDα,ρ
0+ fN (t) in terms of Chebyshev polynomials.

Theorem 3 The Caputo–Katugampola fractional derivatives of the function fN (t) defined
in Eq. (11) can be obtained as follows:

CDα,ρ
0+ fN (t) =

N∑
n=1

′nãn

n∑
k=1

(–1)n–k22k(n + k – 1)!
(2k)!(n – k)!τ k

ρα�( k
ρ

+ 1)

�( k
ρ

+ 1 – α)
tk–αρ , (16)

where the primed summation means that the last term is halved.

Proof Let us assume that y(t) = tn in (5) and take θ = sρ
tρ , then we get

CDα,ρ
0+ tn =

nρα–1

�(1 – α)
tn–αρ

∫ 1

0

θ
n–ρ
ρ

(1 – θ )α
dθ

=
nρα–1

�(1 – α)
tn–αρ

∫ 1

0
θ

n
ρ –1(1 – θ )(1–α)–1 dθ

=
nρα–1

�(1 – α)
tn–αρB

(
1 – α,

n
ρ

)
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=
nρα–1

�(1 – α)
tn–αρ

�(1 – α)�( n
ρ

)
�( n

ρ
+ 1 – α)

=
nρα–1�( n

ρ
)

�( n
ρ

+ 1 – α)
tn–αρ ,

where B(·, ·) is the beta function. Then, from Eq. (8) and Eq. (11), we have

CDα,ρ
0+ fN (t) =

N∑
n=1

′nãn

n∑
k=1

(–1)n–k22k(n + k – 1)!
(2k)!(n – k)!τ k

ρα�( k
ρ

+ 1)

�( k
ρ

+ 1 – α)
tk–αρ . �

In the following theorem, based on the proof of Theorem 2.1 [38], we show an estimation
of the error bound of the fractional derivative operator of Caputo–Katugampola.

Theorem 4 Suppose that f satisfies conditions of Lemma 3.1, ν > 2. Then, for N ≥ ν + 1,

∣∣CDα,ρ
0+ f (t) – CDα,ρ

0+ fN (t)
∣∣

≤ Wν(N + 1)�( 1
ρ

+ 1)ραt1–αρ

�( 1
ρ

+ 1 – α)2ν–2N (ν – 2)(N – 2)(N – 3) · · · (N – ν + 1)
.

(17)

Proof From the Caputo–Katugampola derivative definition given in (5), we obtain

∣∣CDα,ρ
0+ f (t) – CDα,ρ

0+ fN (t)
∣∣ =

∣∣∣∣ ρα

�(1 – α)

∫ t

0

(
f ′(s) – f ′

N (s)
)(

tρ – sρ
)–α ds

∣∣∣∣ (18)

and

∣∣f ′(s) – f ′
N (s)

∣∣ =

∣∣∣∣∣
∞∑
j=1

ajT∗′
j (s) –

N–1∑
j=1

ãjT∗′
j (s) –

1
2

ãN T∗′
N (s)

∣∣∣∣∣

≤
N–1∑
j=1

|aj – ãj|
∣∣T∗′

j (s)
∣∣ +

∣∣∣∣aN –
ãN
2

∣∣∣∣
∣∣T∗′

N (s)
∣∣

+
∞∑

j=N+1

|aj|
∣∣T∗′

j (s)
∣∣.

Then

∣∣f ′(s) – f ′
N (s)

∣∣ ≤ 2
N–1∑
j=1

|aj – ãj|j2 + 2
∣∣∣∣aN –

ãN
2

∣∣∣∣N 2 + 2
∞∑

j=N+1

|aj|j2, (19)

since |T∗′
j (s)| ≤ 2j2 for all j = 0, 1, . . . . The relation between ãj and aj given in [10, 12]

ãn = an +
∞∑
j=1

(an+2jN + a–n+2jN )
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yields the following inequality [38]:

N–1∑
j=1

|aj – ãj| +
∣∣∣∣aN –

ãN
2

∣∣∣∣ ≤
∞∑

j=N+1

|aj|.

Therefore,

N–1∑
j=1

|aj – ãj|j2 +
∣∣∣∣aN –

ãN
2

∣∣∣∣N 2 ≤
N–1∑
j=1

|aj – ãj|N 2 +
∣∣∣∣aN –

ãN
2

∣∣∣∣N 2

≤N 2
∞∑

j=N+1

|aj| ≤
∞∑

j=N+1

|aj|j2.

Thus, from (18) and (19),

∣∣CDα,ρ
0+ f (t) – CDα,ρ

0+ fN (t)
∣∣ ≤ 4ρα

�(1 – α)

∞∑
j=N+1

|aj|j2
∫ t

0

(
tρ – sρ

)–α ds

≤
∞∑

j=N+1

Wν j2�( 1
ρ

+ 1)ραt1–αρ

�( 1
ρ

+ 1 – α)2ν–2j(j – 1) · · · (j – ν)

≤
∞∑

j=N+1

Wν(N + 1)�( 1
ρ

+ 1)ραt1–αρ

�( 1
ρ

+ 1 – α)2ν–2N (j – 2) · · · (j – ν)

=
Wν(N + 1)�( 1

ρ
+ 1)ραt1–αρ

�( 1
ρ

+ 1 – α)2ν–2N (ν – 2)(N – 2)(N – 3) · · · (N – ν + 1)
.

The proof is complete. �

Remark 3.1 The error bound in Theorem 4 converges to zero as N → ∞ for all t > 0

4 The structure of the numerical scheme
In what follows, we list the main steps to find the solution of Eqs. (1)–(3). It is important
to mention that this technique is generally known as a “direct method”. The basic steps are
given as follows:

Step 1: Use Eq. (2) to write Eq. (1) without the control function u.
Step 2: Approximate both the unknown function x and its Caputo–Katugampola frac-

tional derivative by using Eq. (11) and Eq. (16).
Step 3: In order to use the integration on the interval [–1, 1], we take the transformation

t = a + tf –a
2 (η + 1).

Step 4: Approximate the integral whose limits are –1 to 1 by using the Clenshaw and
Curtis formula given by Eq. (12).

Step 5: Determine the critical points of Eq. (1) using the Rayleigh–Ritz approach as fol-
lows:

∂J
∂x(ti)

= 0, i = 1, 2, . . . ,N – 1,

which yields a system of nonlinear algebraic equations.
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Step 6: Use Newton’s iterative method to solve the nonlinear system and get the values
x(ti), i = 1, 2, . . . ,N – 1.

Step 7: Compute the solutions x of the FOPC by

x(t) =
2
N

N∑
n=0

′′
N∑
r=0

′′x(tr)T∗
n (tr)T∗

n (t),

where x(t0) and x(tN ) are calculated from the boundary conditions. Moreover,
we use Eq. (2) to find the control function u.

5 Numerical results
In this section, we apply the proposed numerical approach in Sect. 4 to illustrative exam-
ples.

5.1 Example 1
Consider a FOCP as follows:

minJ (x, u) =
∫ 1

0

(
tu(t) – (αρ + 2)x(t)

)2 dt,

ẋ(t) + CDα,ρ
0+ x(t) = u(t) +

2ρα�(α + 2
ρ

+ 1)
�(αρ + 3)�( 2

ρ
+ 1)

t2,

x(0) = 0, x(1) =
2

�(αρ + 3)
.

The exact solution is provided by

(
x(t), u(t)

)
=

(
2tαρ+2

�(αρ + 3)
,

2tαρ+1

�(αρ + 2)

)
.

Table 1 shows the maximum absolute errors for the proposed technique and other pub-
lished results in the literature at ρ = 1 and α = 0.5 with different values of N . It is obvious
that the accuracy of the proposed technique is better than that of other methods. In ad-
dition, Tables 2, 3, and 4 show the maximum absolute errors Ex and Eu of the state and
control with various choices of α, ρ , and N , respectively. Moreover, the approximate value
of the objective function J is given. Figures 1 and 2 elucidate the approximate of the state
and control at N = 3, with different values of ρ , α = 0.5 and α = 0.9, respectively. Figure 3
shows the exact and the approximate solutions of x(t) and u(t) using ρ = 1.5 and α = 0.5.
Finally, in Table 5, we compute Ex and Eu at α = 1 and ρ = 1 with various choices of N .
It is clear that the numerical results agree with the analytical solutions and the proposed
technique gives accurate numerical results.

Table 1 Maximum absolute errors of x(t) at various values ofN

N Sweilam et al. [34] Bhrawy et al. [8] Our results

3 3.4641e–3 2.08361e–3 2.01689e–3
5 2.6415e–4 1.71841e–4 1.58312e–4
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Table 2 The maximum absolute errors Ex and Eu atN = 3 and various values of α , ρ for x(t) and u(t),
respectively

Example 1 ρ Ex Eu J
α = 0.5 0.2 1.1055e–3 2.6344e–2 4.6858e–6

0.5 1.9918e–3 4.4570e–2 1.7460e–5
0.8 2.1700e–3 4.6071e–2 2.3426e–5
1 2.0169e–3 4.1521e–2 2.1739e–5
1.2 1.7212e–3 3.4446e–2 1.6844e–5
1.5 1.1225e–3 2.1604e–2 7.6890e–6

α = 0.9 0.2 1.9345e–3 4.1959e–2 1.6842e–5
0.5 2.4209e–3 4.8170e–2 3.5887e–5
0.8 1.4101e–3 2.6196e–2 1.6130e–5
1 4.9785e–4 8.8228e–3 2.3605e–6
1.2 8.1160e–4 1.0918e–2 1.9380e–6
1.5 2.6130e–3 4.4556e–2 3.9022e–5

Table 3 The maximum absolute errors Ex and Eu atN = 5 and various values of α , ρ for x(t) and u(t),
respectively

Example 1 ρ Ex Eu J
α = 0.5 0.2 1.3154e–4 9.1543e–3 3.6957e–8

0.5 2.0416e–4 1.3077e–2 9.6857e–8
0.8 1.9006e–4 1.1307e–2 8.9359e–8
1 1.5831e–4 8.9932e–3 6.3605e–8
1.2 1.2060e–4 6.5490e–3 3.7228e–8
1.5 6.5823e–5 3.3397e–3 1.0760e–8

α = 0.9 0.2 2.1582e–4 1.2958e–2 9.2709e–8
0.5 2.0571e–4 1.0850e–2 1.0133e–7
0.8 8.7454e–5 4.1592e–3 2.1681e–8
1 2.4125e–5 1.0802e–3 1.8261e–9
1.2 6.6853e–5 1.1549e–3 8.3696e–10
1.5 1.0467e–4 2.8705e–3 7.8248e–9

Table 4 The maximum absolute errors Ex and Eu atN = 7 and various values of α , ρ for x(t) and u(t),
respectively

Example 1 ρ Ex Eu J
α = 0.5 0.2 1.3164e–5 4.5200e–3 1.3367e–9

0.5 1.8844e–5 5.8255e–3 2.8468e–9
0.8 1.6082e–5 4.5318e–3 2.1206e–9
1 1.2589e–5 3.3533e–3 1.3028e–9
1.2 8.9696e–6 2.2683e–3 6.5501e–10
1.5 4.3692e–6 1.0322e–3 1.4883e–10

α = 0.9 0.2 1.7852e–5 5.9378e–3 2.7782e–9
0.5 1.4755e–5 4.1134e–3 2.0502e–9
0.8 5.2965e–6 1.2964e–3 2.9148e–10
1 1.2791e–6 2.9425e–4 1.8509e–11
1.2 1.3873e–5 2.7262e–4 6.4287e–12
1.5 1.4947e–5 4.8645e–4 5.0808e–11

Table 5 The values of Ex and Eu for x(t) and u(t), respectively, at distinct choices ofN

N Ex Eu J
2 3.6195e–2 5.4472e–1 8.4688e–3
3 5.5511e–17 2.2204e–16 9.5086e–69
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Figure 1 The approximate state x(t) (left) and the approximate control u(t) (right) at various values of ρ and
α = 0.5,N = 3

Figure 2 The approximate state x(t) (left) and the approximate control u(t) (right) at various values of ρ and
α = 0.9,N = 3

Figure 3 Exact and numerical solutions of x(t) and u(t) at ρ = 1.5, α = 0.5, andN = 5
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5.2 Example 2
We consider an FOCP in the form

minJ (x, u) =
∫ 1

0

(
u(t) – x(t)

)2 dt,

ẋ(t) + CDα,ρ
0+ x(t) = u(t) – x(t) +

6tαρ+2

�(αρ + 3)
+

6ρα�(α + 3
ρ

+ 1)
�(αρ + 4)�( 3

ρ
+ 1)

t3,

x(0) = 0, x(1) =
6

�(αρ + 4)
.

The exact solution is provided by

(
x(t), u(t)

)
=

(
6tαρ+3

�(αρ + 4)
,

6tαρ+3

�(αρ + 4)

)
.

In Tables 6, 7, and 8, we obtain the computational results of Ex, Eu, and J with different
values of ρ , α when the value of N increases. The approximate state and control with
various choices of ρ and α are displayed in Figs. 4 and 5. Furthermore, Fig. 6 displays
the approximate solutions of x(t) and u(t) with their exact solutions. It is evident from

Table 6 The maximum absolute errors Ex and Eu atN = 3 and various values of α , ρ for x(t) and u(t),
respectively

Example 2 ρ Ex Eu J
α = 0.5 0.2 1.0231e–3 1.9131e–2 4.0523e–5

0.5 2.4753e–3 4.4331e–2 2.0670e–4
0.8 3.8530e–3 6.4411e–2 4.1156e–4
1 4.6373e–3 7.4699e–2 5.3097e–4
1.2 5.2771e–3 8.2464e–2 6.2030e–4
1.5 5.9209e–3 8.9499e–2 6.8711e–4

α = 0.9 0.2 2.3858e–3 3.8860e–2 1.5799e–4
0.5 5.5632e–3 8.1363e–2 6.7525e–4
0.8 7.7283e–3 1.0371e–1 1.0608e–3
1 8.5173e–3 1.0894e–1 1.1381e–3
1.2 5.4391e–3 1.6713e–1 3.2128e–3
1.5 6.0557e–3 1.6509e–1 2.8066e–3

Table 7 The maximum absolute errors Ex and Eu atN = 5 and various values of α , ρ for x(t) and u(t),
respectively

Example 2 ρ Ex Eu J
α = 0.5 0.2 1.6865e–5 1.1069e–3 5.8648e–8

0.5 2.7834e–5 1.8933e–3 1.6285e–7
0.8 3.0404e–5 1.9449e–3 1.6076e–7
1 2.9145e–5 1.7279e–3 1.2039e–7
1.2 2.5093e–5 1.3995e–3 7.4509e–8
1.5 1.5777e–5 8.2731e–4 2.3702e–8

α = 0.9 0.2 3.2317e–5 1.9834e–3 1.6158e–7
0.5 4.5113e–5 2.2291e–3 1.9362e–7
0.8 2.7368e–5 1.1331e–3 4.6760e–8
1 9.3964e–6 3.5368e–4 4.3214e–9
1.2 5.2136e–6 3.1529e–4 4.6852e–9
1.5 1.4204e–5 9.2895e–4 3.5294e–8
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Table 8 The maximum absolute errors Ex and Eu atN = 7 and various values of α , ρ for x(t) and u(t),
respectively

Example 2 ρ Ex Eu J
α = 0.5 0.2 1.6127e–6 2.1652e–4 1.2871e–9

0.5 2.3090e–6 3.2683e–4 2.7911e–9
0.8 1.9487e–6 2.9596e–4 2.1390e–9
1 1.4956e–6 2.4174e–4 1.3476e–9
1.2 1.0266e–6 1.8003e–4 6.9875e–10
1.5 4.6305e–7 9.3728e–5 1.6861e–10

α = 0.9 0.2 1.3134e–6 3.6940e–4 3.0913e–9
0.5 1.2270e–6 3.3083e–4 2.3244e–9
0.8 6.0882e–7 1.3317e–4 3.4361e–10
1 2.0735e–7 3.5322e–5 2.2453e–11
1.2 2.2995e–7 2.4759e–5 1.6117e–11
1.5 4.5864e–7 5.5041e–5 6.7793e–11

Figure 4 The approximate state x(t) (left) and the approximate control u(t) (right) at various values of ρ and
α = 0.5,N = 5

Figure 5 The approximate state x(t) (left) and the approximate control u(t) (right) at various values of ρ and
α = 0.9,N = 5
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Figure 6 Exact and numerical solutions of x(t) and u(t) at ρ = 1.5, α = 0.5, andN = 5

the results of Examples 5.1 and 5.2 that the approximate solutions converge to the exact
solutions by increasing the value of N .

6 Conclusions
In this work, the numerical solutions of FOCPs involving the Caputo–Katugampola
derivative have been presented. The numerical scheme used in this paper is called a direct
method, and it is based on expanding the unknown function in terms of shifted Chebyshev
polynomials of the first kind and using the Clenshaw and Curtis formula to approximate
the integration. Then, we have deduced an estimation of the error bound of a fractional
derivative operator of Caputo–Katugampola. Finally, some numerical examples are sup-
plied to show the capability and accuracy of the proposed scheme.
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