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Abstract
Some fundamental conditions and hypotheses are established to ensure the
existence, uniqueness, and stability to a class of implicit boundary value problems
(BVPs) with Atangana–Baleanu–Caputo type derivative and integral. The required
results are established by utilizing the Banach contraction mapping principle and
fixed point theorem of Krasnoselskii. In addition, various types of stability results
including Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam–Rassias, and
generalized Hyers–Ulam–Rassias stability are formulated for the problem under
consideration. Pertinent examples are given to justify the results we obtain.
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1 Introduction
Our world is a combination of scientific phenomena. Mathematics is the mother of sup-
port to all sciences. Our many real life problems and many natural phenomena depend
on or are governed by mathematical laws. Certain real life problems can be modeled and
deeply studied by using calculus methods of integration and derivative. However, many
problems can be studied more accurately by using fractional calculus methods. That is
why fractional differential equations (FDEs) have become a major concern for many well-
renowned researchers and scientists. A fractional derivative of arbitrary order can be real
or even a complex number as well. The credit for the first thought about fractional deriva-
tive goes to L. Hopital and Leibnitz in 1695 [1]. After this initial step, the researchers in
this area kept on flourishing because of its numerous applications in physics, economics,
engineering, and biological sciences.

In the last few years, FDEs got more attention. Many researchers also examined the so-
lutions of fractional models for stability analysis [2]. Some researchers also worked on
COVID-19 model with the help of fractional calculus [3, 4]. On the other hand, fixed
point theory helps much in the development of the qualitative and computational con-
cepts of FDEs and their related dynamic equations [5–11]. But still no fixed definition
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of fractional operators has been defined. Researchers have worked on it rigorously and
given many definitions with singular or nonsingular kernels. A lot of work has been done
using Riemann–Liouville and Caputo fractional derivative and integration. After this Ca-
puto and Fabrizio worked together and gave a new definition named Caputo–Fabrizio
derivative. This derivative has a nonsingular kernel. After Caputo, Fabrizio, Atangana,
and Baleanu gave another definition known as AB derivative. The AB derivative involves
a nonlocal and nonsingular kernel [12]. The AB derivative, due to its Mittag-Leffler type
kernel, has produced more interesting results as compared to Caputo–Fabrizio derivative
whose exponential kernel can be splitter and hence affects the delay action. The new for-
mulation of Caputo derivative by Atangana and Baleanu is known as Atangana–Baleanu–
Caputo (ABC) and Riemann–Liouville (ABR) derivatives [13]. Recently a significant con-
tribution has been made by various authors and the field of FDEs (for details, see [11, 14–
17]).

Pantograph type FDEs play an important role in physics and applied mathematics. That’s
why these pantograph type delay FDEs have been deeply studied by many researchers.
Jarad and his coauthors studied FDEs with Atangana–Baleanu–Caputo (ABC) derivative
[18] as follows:

⎧
⎨

⎩

ABC
a Dα

t u(t) = g(t, u(t)), 0 < α ≤ 1, t ∈ [a, b],

u(a) = ua.
(1)

Abdo and his coauthors worked on the following nonlinear pantograph FDEs [13, 19]:

⎧
⎨

⎩

ABC
a Dα

t u(t) = g(t, u(t), u(γ t)), 0 < α ≤ 1, t ∈ [a, b],

u(a) = �m
k=1cku(tk), tk ∈ (a, b),

(2)

where 0 < α ≤ 1 is the order of derivative ABC
a Dα

t , g : [a, b] ×R×R−→R is a continuous
function, and γ ∈ (0, 1].

In the last few years the area devoted to investigating initial and BVPs under ABC-
fractional order derivative has been developed very well. Here, we remark that the area
devoted to studying biological models under the said derivative has been investigated very
well. Numerical interpretations for various kinds of FDEs under the aforesaid derivative
have been studied very well in the last few years [20]. Inspired by the research work as
mentioned above, we intend to work on a implicit BVP involving (ABC) derivative of the
form:

⎧
⎨

⎩

ABC
0 Dα

t u(t) = g(t, u(t),ABC
0 Dα

t u(t)), 1 < α ≤ 2, t ∈ J = [0, b],

u(0) = u0, u(b) = u1,
(3)

where ABC
0 Dα

t represents the ABC derivative of order 1 < α ≤ 2 and g : J ×R×R−→R
is a continuous function.

We compute results for implicit FDEs with boundary conditions. Most of our derivations
are made using theorems of significant importance such as Krasnoselskii, Arzelá–Ascoli
and Banach fixed point theorems. Also we derive various results for Ulam–Hyers type
stability analysis of our problem as the said stability has been investigated in the last few
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years very well in respect of FDEs. Also some researchers have investigated various results
of the concerned stability in nonlinear analysis (see [21–25]).

2 Fundamental results
Here, we recollect some basic definitions of fractional calculus which are needed through-
out this work. We derive our main results by using these fundamental results. Suppose that
X = C[J ,R] is a Banach space and the norm under consideration is ‖u‖ = maxt∈J |u(t)|.

Definition 1 ([26, 27] ABC fractional derivative) Let u ∈ H1(c, d), c < d, and α ∈ (0, 1).
The ABC fractional derivative for function u of order α is defined as

ABC
0 Dα

t u(t) =
M(α)
1 – α

∫ t

0
u′(ξ )Eα

(
–α(t – ξ )α

1 – α

)

dξ . (4)

We use this definition throughout the paper. Further, the mentioned operator in the
Riemann–Liouville sense is defined as

ABR
0 Dα

t u(t) =
M(α)
1 – α

d
dt

∫ t

0
u(ξ )Eα

(
–α(t – ξ )α

1 – α

)

dξ . (5)

In the above equations M(α) > 0 is a normalization function. Here, M(0) = M(1) = 1 and
Eα represents the well-known Mittag-Leffler function.

Definition 2 ([26, 27] AB fractional integral) Let u be a function, then the AB fractional
integral of order α ∈ (0, 1) is defined by

AB
0 Iα

t u(t) =
1 – α

M(α)
u(t) +

α

M(α)�(α)

∫ t

0
u(ξ )(t – ξ )α–1 dξ . (6)

Definition 3 ([28]) Let u be a function such that u(n) ∈ H1(c, d) and n < α ≤ n + 1, n =
0, 1, . . . . Then the ABC derivative satisfies the following formula:

ABC
0 Dα

t u(t) = ABC
0 Dβ

t u(n)(t),

where β = α – n.

Lemma 1 ([28]) For α ∈ (n, n + 1], n = 0, 1, 2, . . . , the following outcome holds for the FDEs:

AB
0 Iα

t
ABC
0 Dα

tu(t) = u(t) + c0 + c1t + c2t2 + · · · + cntn

for an arbitrary constant ci with i = 0, 1, 2, . . . , n.

Theorem 1 ([29, 30]) Let W be a nonempty, convex, and closed subset of X. Consider two
operators H, B such that

(1) H(w1) + B(w2) ∈W for all w1, w2 ∈W ,
(2) H is a contraction operator,
(3) B is continuous and compact,

then there exists at least one solution w ∈X, such that H(w) + B(w) = w.
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3 Mathematical analysis of model problem
The present section of our paper is reserved to examining the existence and uniqueness
for the solution of our implicit FDEs by Krasnoselskii’s fixed point theorem.

Lemma 2 Let � ∈X, then our problem can be formulated as

⎧
⎨

⎩

ABC
0 Dα

t u(t) = � (t), 1 < α ≤ 2, t ∈ J ,

u(0) = u0, u(b) = u1.
(7)

The solution of the above problem is given by

u(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
� (ξ ) dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
� (ξ )(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
� (ξ ) dξ +

α – 1
M(α – 1)�(α)

∫ t

0
� (ξ )(t – ξ )α–1 dξ .

Proof Consider ABC
0 Dα

t u(t) = � (t). Then, by applying the integral AB
0 Iα

t on both sides, we
get

u(t) = c0 + c1t +
2 – α

M(α – 1)

∫ t

0
� (ξ ) dξ +

α – 1
M(α – 1)�(α)

∫ t

0
� (ξ )(t – ξ )α–1 dξ . (8)

Now, using the boundary condition u(0) = u0, we get c0 = u0.
Now, for u(b) = u1, we get

c1 =
u1 – u0

b
–

2 – α

bM(α – 1)

∫ b

0
� (ξ ) dξ –

α – 1
bM(α – 1)�(α)

∫ b

0
� (ξ )(b – ξ )α–1 dξ .

Substituting the values of c0 and c1 in equation (8), we get

u(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
� (ξ ) dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
� (ξ )(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
� (ξ ) dξ +

α – 1
M(α – 1)�(α)

∫ t

0
� (ξ )(t – ξ )α–1 dξ . �

Corollary 1 In view of Lemma 2, our problem (3) is equivalent to the following integral
equation:

u(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ
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+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ .

For the proof of our main results, we employ the following hypotheses:
(A1) There exists a constant Lg > 0 such that, for any u, u, v, v ∈X, one has

∣
∣g(t, u, v) – g(t, u, v)

∣
∣ ≤Lg

(|u – u| + |v – v|).

(A2) There exist constants Ag, Bg, Cg > 0 such that

∣
∣g(t, u, v)

∣
∣ ≤ Ag + Bg|u| + Cg|v|.

Theorem 2 Under assumption (A1), BVP (3) has the unique solution if

4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1. (9)

Proof Let H : X→X be defined by

Hu(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ .

To examine the uniqueness of the solution of the problem, firstly we show that H is a
contraction operator. To this end, suppose u, u ∈X, then

‖Hu – Hu‖

= max
t∈J

∣
∣
∣
∣

t(2 – α)
bM(α – 1)

∫ b

0

[
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)]
dξ

+
t(α – 1)

bM(α – 1)�(α)

∫ b

0

[
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)]

× (b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ b

0

[
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)]
dξ

+
α – 1

M(α – 1)�(α)

∫ b

0

[
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)]

× (t – ξ )α–1 dξ

∣
∣
∣
∣

≤ max
t∈J

[ |t|(2 – α)
bM(α – 1)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

dξ
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+
|t|(α – 1)

bM(α – 1)�(α)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

× (b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

dξ

+
α – 1

M(α – 1)�(α)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

dξ

]

. (10)

Now, we have

∣
∣ABC
0 Dα

ξ u(t) – ABC
0 Dα

ξ u(t)
∣
∣

=
∣
∣g

(
t, u(t),ABC

0 Dα
ξ u(t)

)
– g

(
t, u(t),ABC

0 Dα
ξ u(t)

)∣
∣

≤Lg
(∣
∣u(t) – u(t)

∣
∣ +

∣
∣ABC
0 Dα

ξ u(t) –ABC
0 Dα

ξ u(t)
∣
∣
)
.

This implies

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(t)
∣
∣ ≤

( Lg

1 – Lg

)
∣
∣u(t) – u(t)

∣
∣. (11)

Using equation (11) in equation (10), we get

‖Hu – Hu‖ ≤ 4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
‖u – u‖.

In view of equation (9), our BVP (3) has the unique solution. Hence H is a contraction
operator. Hence H is defined under consideration of Krasnoselskii’s fixed point theorem
as follows:

Hu(t) = Fu(t) + Nu(t),

where

Fu(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(b – ξ )α–1 dξ ,

Nu(t) = +
2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ . �

Theorem 3 Under the contemplation of assumptions (A1) and (A2), our BVP has at least
one solution with the condition

2
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1. (12)
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Proof Let W = {u ∈X : ‖u‖ ≤ r} be a closed bounded set and u, u ∈W . Now

‖Fu – Fu‖ (13)

= max
t∈J

∣
∣Fu(t) – Fu(t)

∣
∣

= max
t∈J

|t(2 – α)|
bM(α – 1)

∫ b

0

∣
∣g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)∣
∣dξ

+ max
t∈J

|t|(α – 1)
bM(α – 1)�(α)

∫ b

0

∣
∣g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
– g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)∣
∣

× (b – ξ )α–1 dξ

≤ max
t∈J

|t|(2 – α)
bM(α – 1)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

dξ

+ max
t∈J

|t|(α – 1)
bM(α – 1)�(α)

∫ b

0
Lg

(∣
∣u(ξ ) – u(ξ )

∣
∣ +

∣
∣ABC
0 Dα

ξ u(ξ ) – ABC
0 Dα

ξ u(ξ )
∣
∣
)

× (b – ξ )α–1 dξ

≤ 2
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
‖u – u‖.

In view of inequality (12), F is a contraction mapping. The next step is to prove the conti-
nuity and compactness for N . We show that our operator N is bounded. To examine the
equicontinuity for the operator, one has

‖Nu‖ = max
t∈J

∣
∣Nu(t)

∣
∣

= max
t∈J

∣
∣
∣
∣

2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ

∣
∣
∣
∣

≤ 2 – α

M(α – 1)

∫ t

0

[
Ag + Bg

∣
∣u(ξ )

∣
∣ + Cg

∣
∣ABC
0 Dα

t
(
u(ξ )

)∣
∣
]

dξ

+
α – 1

M(α – 1)�(α)

∫ t

0

[
Ag + Bg

∣
∣u(ξ )

∣
∣ + Cg

∣
∣ABC
0 Dα

ξ

(
u(ξ )

)∣
∣
]
(t – ξ )α–1 dξ .

(14)

Now

∣
∣ABC
0 Dα

t
(
u(t)

)∣
∣ =

∣
∣g

(
t, u(t),ABC

0 Dα
t u(t)

)∣
∣

≤ Ag + Bg
∣
∣u(t)

∣
∣ + Cg

∣
∣ABC
0 Dα

t
(
u(t)

)∣
∣.

This implies

∣
∣ABC
0 Dα

t
(
u(t)

)∣
∣ ≤ Ag

1 – Cg
+

Bg

1 – Cg

∣
∣u(t)

∣
∣. (15)
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Using equation (15) in equation (14), we get

‖Nu‖ ≤ b�(α + 1) + bα

M(α – 1)�(α + 1)

[

Ag +
Ag.Cg

1 – Cg
+

(

Bg +
Bg

1 – Cg

)

M

]

.

Hence, N is bounded. Now to prove equicontinuity for N , let t1 < t2 ∈ J , then

∣
∣Nu(t2) – Nu(t1)

∣
∣

≤ 2 – α

M(α – 1)

[∫ t2

t1

∣
∣g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)∣
∣dξ

]

+
α – 1

M(α – 1)�(α)

∫ t1

0

[
(t1 – ξ )α–1 – (t2 – ξ )α–1]∣∣g

(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)∣
∣dξ

+
α – 1

M(α – 1)�(α)

∫ t2

t1

(t2 – ξ )α–1∣∣g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)∣
∣dξ

≤ 2 – α

M(α – 1)

∫ t2

t1

[
Ag + Bg

∣
∣u(ξ )

∣
∣ + Cg

∣
∣ABC
0 Dα

ξ u(ξ )
∣
∣
]

dξ

+
α – 1

M(α – 1)�(α)

∫ t1

0

[
(t1 – ξ )α–1 – (t2 – ξ )α–1]

× [
Ag + Bg

∣
∣u(ξ )

∣
∣ + Cg

∣
∣ABC
0 Dα

ξ u(ξ )
∣
∣
]

dξ

+
α – 1

M(α – 1)�(α)

∫ t2

t1

(t2 – ξ )α–1[Ag + Bg
∣
∣u(ξ )

∣
∣ + Cg

∣
∣ABC
0 Dα

ξ u(ξ )
∣
∣
]

dξ . (16)

Using relation (15) in (16), we get

∣
∣Nu(t2) – Nu(t1)

∣
∣

≤ (2 – α)(t2 – t1)
M(α – 1)

[

Ag +
Ag.Cg

1 – Cg
+

(

Bg +
Bg

1 – Cg

)

M

]

+
(α – 1)(tα1 – tα2 + 2(t1 – t2)α)

M(α – 1)�(α + 1)

[

Ag +
Ag.Cg

1 – Cg
+

(

Bg +
Bg

1 – Cg

)

M

]

.

This shows that ‖Nu(t2) – Nu(t1)‖ −→ 0 as t2 −→ t1.
Hence, by Arzelá–Ascoli theorem, N is completely continuous. With all the above, the

conditions of Krasnoselskii’s fixed point theorem are fulfilled, and thus the BVP has at
least one solution in W . �

4 Stability results
Stability analysis has an important impact on the theory of fractional differential equa-
tions. In fractional calculus different types of stabilities have been introduced. For our im-
plicit BVP, we use Hyers–Ulam stabilities. In particular, we work on Hyers–Ulam, general-
ized Hyers–Ulam, Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias stability
analysis. For further explanation of these definitions, one can refer to [31–34].

Definition 4 (Hyers–Ulam stable) The implicit BVP (3) is Hyers–Ulam stable if there
exists a real number Cg > 0 such that for ε > 0 and for any solution u ∈X of the inequality

∣
∣ABC
0 Dα

t u(t) – g
(
t, u(t),ABC

0 Dα
t u(t)

)∣
∣ ≤ ε, (17)
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there is the unique solution u
 ∈X for our problem (3) such that

∥
∥u – u


∥
∥ ≤ Cgε.

Definition 5 (Generalized Hyers–Ulam stable) Our BVP is generalized Hyers–Ulam sta-
ble if there exists ϕ ∈ C[0, 1], ϕ(0) = 0 such that, for any solution u ∈ X of inequality (17),
there is the unique solution u
 ∈X of problem (3) such that

∥
∥u – u


∥
∥ ≤ Cgϕ(ε).

Remark 1 A function u ∈ X is the solution of inequality (17) if there is a function � ∈
C[0, 1] that depends on u such that

(1) |�(t)| ≤ ε;
(2) ABC

0 Dα
t u(t) = g(t, u(t),ABC

0 Dα
t u(t)) + �(t).

Definition 6 (Hyers–Ulam–Rassias stable) Our BVP is Hyers–Ulam–Rassias stable with
respect to ψ ∈X if there exists a real number Cg > 0 such that, for ε > 0 and for any solution
u ∈X of the inequality

∣
∣ABC
0 Dα

t u(t) – g
(
t, u(t),ABC

0 Dα
t u(t)

)∣
∣ ≤ ψ(t)ε, (18)

there exists the unique solution u
 ∈X for our BVP (3) such that

∥
∥u – u


∥
∥ ≤ Cgψ(t)(ε).

Definition 7 (Generalized Hyers–Ulam–Rassias stable) Our BVP (3) is generalized
Hyers–Ulam–Rassias stable with respect to ψ ∈ C[0, 1], if there is Cg > 0 such that, for
any solution u ∈ X of inequality (18), there exists the unique solution u
 ∈ X of our BVP
such that

∥
∥u – u


∥
∥ ≤ Cgψ(t).

Remark 2 A function u ∈ X is the solution of our inequality (18) if there is a function
� ∈ C[0, 1] that depends on u such that

(1) |�(t)| ≤ ψ(t)ε
(2) ABC

0 Dα
t u(t) = g(t, u(t),ABC

0 Dα
t u(t)) + �(t).

Lemma 3 By using Remark 1, the function u ∈X corresponding to the given problem

⎧
⎨

⎩

ABC
0 Dα

ξ u(t) = g(t, u(t),ABC
0 Dα

ξ u(t)) + �(t), 1 < α ≤ 2, t ∈ J ,

u(0) = u0, u(b) = u1.
(19)

satisfies the inequality

∣
∣u(t) – Hu(t)

∣
∣ ≤ Cgαε, ∀t ∈ J . (20)
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Now, one has

Hu(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ ,

and we have

Cg,α =
4(b�(α + 1) + bα)
M(α – 1)�(α + 1)

.

Proof In view of Lemma 2 and equation (19), we get

u(t) = c0 + c1t +
2 – α

M(α – 1)

∫ t

0

(
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
+ �(t)

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0

(
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
+ �(t)

)
(t – ξ )α–1 dξ ,

(21)

u(t) =
tu1 + u0(b – t)

b
–

t(2 – α)
bM(α – 1)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

–
t(α – 1)

bM(α – 1)�(α)

∫ b

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
dξ

+
α – 1

M(α – 1)�(α)

∫ t

0
g
(
ξ , u(ξ ),ABC

0 Dα
ξ u(ξ )

)
(t – ξ )α–1 dξ

–
t(2 – α)

bM(α – 1)

∫ b

0
�(ξ ) dξ –

t(α – 1)
bM(α – 1)�(α)

∫ b

0
�(ξ )(b – ξ )α–1 dξ

+
2 – α

M(α – 1)

∫ t

0
�(ξ ) dξ +

α – 1
M(α – 1)�(α)

∫ t

0
�(ξ )(t – ξ )α–1 dξ .

Now from the above equation we conclude our result as follows:

∣
∣u(t) – Hu(t)

∣
∣ ≤ Cg,αε. �

Theorem 4 In view of assumption (A1) and Lemma 3, the solution of our boundary value
problem is Hyers–Ulam stable and generalized Hyers–Ulam stable if 4ggCg,α < 1.

Proof If u
(t) is the unique solution and u(t) is any solution of our modeled problem, then
we have

∣
∣u(t) – u
(t)

∣
∣ =

∣
∣u(t) – Hu
(t)

∣
∣
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=
∣
∣u(t) – Hu(t) + Hu(t) – Hu
(t)

∣
∣

≤ ∣
∣u(t) – Hu(t)

∣
∣ +

∣
∣Hu(t) – Hu
(t)

∣
∣

≤ Cg,αε +
∣
∣Hu(t) – Hu(t)

∣
∣

≤ Cg,αε + 4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
∥
∥u – u


∥
∥

≤ Cg,αε + 4ggCg,α
∥
∥u – u


∥
∥,

where

gg =
(

Lg +
L2

g

1 – Lg

)

.

From above we have

∥
∥u – u


∥
∥ ≤ Cg,αε

1 – 4ggCg,α
.

Let

Eg =
Cg,α

1 – 4ggCg,α
∥
∥u – u


∥
∥ ≤ Egε.

Thus our solution is Hyers–Ulam stable. And if ψ(ε) = ε, thus our problem is also gener-
alized Hyers–Ulam stable. �

Lemma 4 In view of Remark 2, the BVP mentioned in Lemma 3 satisfies the inequality

∣
∣u(t) – H

(
t, u(t),ABC

0 Dα
t u(t)

)∣
∣ ≤ Cg,αε�(t) ∀t ∈ [0, b].

Proof We prove this inequality in view of Remark 2, calculations are the same as in
Lemma 3. �

Theorem 5 In view of Lemma 4 and under consideration of assumption A1, the solution of
our problem is Hyers–Ulam–Rassias stable and generalized Hyers–Ulam–Rassias stable
if 4ggCg,α < 1.

Proof

∣
∣u(t) – u
(t)

∣
∣ =

∣
∣u(t) – Hu
(t)

∣
∣

=
∣
∣u(t) – Hu(t) + Hu(t) – Hu
(t)

∣
∣

≤ ∣
∣u(t) – Hu(t)

∣
∣ +

∣
∣Hu(t) – Hu
(t)

∣
∣

≤ Cg,αεψ(t) +
∣
∣Hu(t) – Hu
(t)

∣
∣

≤ Cg,αεψ(t) + 4ggCg,α
∥
∥u – u


∥
∥. (22)
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After simplification, from (22), one has

∥
∥u – u


∥
∥ ≤ Cg,α

1 – 4ggCg,α
εψ(t).

Thus our problem is generalized Hyers–Ulam–Rassias stable. �

5 Illustrative examples
In this section, we verify our boundary value problem with different examples.

Example 1 Considered the following BVP:

⎧
⎨

⎩

ABC
0 D

3
2
t u(t) = t ln t

20 + u(t)e– sin t

90 +
ABC
0 Dα

t u( t
3 )

90e–t–cos t , t ∈ [0, 1],

u(0) = 0, u(1) = 0.
(23)

Here, b = 1 and α = 3
2

g(t, u, v) =
t ln t
20

+
u(t)e– sin t

90
+

ABC
0 Dα

t u( t
3 )

90e–t–cos t .

Let u, u, v, v ∈X

∣
∣g(t, u, v) – g(t, u, v)

∣
∣

=
∣
∣
∣
∣

[
t ln t
20

+
u(t)e– sin t

90
+

ABC
0 D

3
2
t u( t

3 )
90e–t–cos t

]

–
[

t ln t
20

+
u(t)e– sin t

90
+

ABC
0 D

3
2
t u( t

3 )
90e–t–cos t

]∣
∣
∣
∣

≤ 1
90

|u – u| +
1

90
|v – v|.

Now, using assumption (A2), we obtain

∣
∣g(t, u, v)

∣
∣ =

∣
∣
∣
∣
t ln t
20

+
u(t)e– sin t

90
+

ABC
0 D

3
2
t u( t

3 )
90e–t–cos t

∣
∣
∣
∣

≤ 1
20

+
1

90
|u| +

1
90

|v|.

Thus, we have Lg = 1
90 , α = 3

2 , Ag = 1
20 , Bg = 1

90 , and Cg = 1
90

4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
= 0.008440 < 1.

Thus all the conditions for Theorem 2 are satisfied. Hence, in view of equation (9), our
BVP has the unique solution. Also

2
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
= 0.0168959 < 1.

The condition for Theorem 3 is also satisfied. Moreover, we also have Cg,α �= 1. Hence the
solution is both Hyers–Ulam and generalized Hyers–Ulam stable. In a similar way, one
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can easily verify the conditions of Hyers–Ulam–Rassias and generalized Hyers–Ulam–
Rassias stability.

Example 2 Consider the following nonhomogeneous BVP:

⎧
⎪⎨

⎪⎩

ABC
0 D

4
3
t u(t) = t2+eln t+t

25 + esin t cos tu(t)
60 + et2–cos2 tABC

0 D
4
3

t u(t)
60 , t ∈ [0, 1],

u(0) = e2π , u(1) = sin u( 2π
3 ).

(24)

Here, b = 1 and α = 4
3

g(t, u, v) =
t2 + eln t+t

25
+

esin t cos tu(t)
60

+
et2–cos2 tABC

0 D
4
3
t u(t)

60
.

Let u, u, v, v ∈X

=
∣
∣g(t, u, v) – g(t, u, v)

∣
∣

=
∣
∣
∣
∣

[
t2 + eln t+t

25
+

esin t cos tu(t)
60

+
et2–cos2ABC

0 D
4
3
t u(t)

60

]

–
[

t2 + eln t+t

25
+

esin t cos tu(t)
60

+
et2–cos2 tABC

0 D
4
3
t u(t)

60

]∣
∣
∣
∣

≤ 1
60

|u – u| +
1

60
|v – v|.

Now, one has

∣
∣g(t, u, v)

∣
∣ =

∣
∣
∣
∣
t2 + eln t+t

25
+

esin t cos tu(t)
60

+
et2–cos2 tABC

0 D
4
3
t u(t)

60

∣
∣
∣
∣.

≤ 1
25

+
1

60
|u| +

1
60

|v|.

We have

Lg =
1

60
, α =

4
3

, Ag =
1

25
, Bg =

1
60

and Cg =
1

60
.

Thus

4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1.

Therefore, all the conditions for Theorem 2 are satisfied. Hence, in view of equation (9),
the given problem has the unique solution. Also

2
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1.

The condition for Theorem 3 is also satisfied. Moreover, we also have Cg,α �= 1. Hence the
solution is both Hyers–Ulam and generalized Hyers–Ulam stable. In a similar way one can
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easily verify the conditions of Hyers–Ulam–Rassias and generalized Hyers–Ulam–Rassias
stability.

Example 3 Here we take another BVP as follows:

⎧
⎪⎨

⎪⎩

ABC
0 D

3
2
t u(t) = sin(t)

t+50 + e–tu(t)
100 + e–t2ABC

0 D
3
2

t u(t)
100 , t ∈ [0, 1],

u(0) = 1, u(1) = 2.
(25)

One has b = 1 and α = 3
2

g(t, u, v) =
sin(t)
t + 50

+
e–tu(t)

100
+

e–t2ABC
0 D

3
2
t u(t)

100
.

Let u, u, v, v ∈X, one has

∣
∣g(t, u, v) – g(t, u, v)

∣
∣ ≤ 1

100
|u – u| +

1
100

|v – v|.

Now

∣
∣g(t, u, v)

∣
∣ =

∣
∣
∣
∣

sin(t)
t + 50

+
e–tu(t)

100
+

e–t2ABC
0 D

3
2
t u(t)

100

∣
∣
∣
∣

≤ 1
50

+
1

100
|u| +

1
100

|v|.

We have

Lg =
1

100
, α =

3
2

, Ag =
1

50
, Bg =

1
100

and Cg =
1

100
.

Therefore, we have

4
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1.

Hence all the conditions of Theorem 2 are satisfied. Further, the condition for uniqueness
is also satisfied. Also

2
(

Lg +
L2

g

1 – Lg

)
b�(α + 1) + bα

M(α – 1)�(α + 1)
< 1.

Also the conditions of Theorem 3 are satisfied. Hence, we also have Cg,α �= 1. Thus the
solution is both Hyers–Ulam and generalized Hyers–Ulam stable. In a similar way one
can easily verify the conditions of Hyers–Ulam–Rassias and generalized Hyers–Ulam–
Rassias stability.

6 Conclusion
We have effectively achieved several necessary conditions describing the stability and ex-
istence hypotheses for a class of BVP including (ABC) fractional derivative and integra-
tion. Under the consideration of fixed point theorems like Banach and Krasnoselskii, the
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necessary outcomes have been set up. Moreover, by an appropriate use of concepts from
nonlinear analysis, some sufficient outcomes for various types of Hyers–Ulam stability
have been developed. By giving appropriate examples, all the theoretical results have been
testified. In future such type of analysis can be established for more general type BVPs in-
volving the aforementioned derivative. The manuscripts [35–39] are useful for any further
investigations.
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