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Abstract
The motivation of this research is to introduce some new fractional operators called
“the improved fractional (IF) operators”. The originality of these fractional operators
comes from the fact that they repeat the method on general forms of conformable
integration and differentiation rather than on the traditional ones. Hence the
convolution kernels correlating with the IF operators are served in conformable
abstract forms. This extends the scientific application scope of their fractional
calculus. Also, some results are acquired to guarantee that the IF operators have
advantages analogous to the familiar fractional integral and differential operators. To
unveil the inverse and composition properties of the IF operators, certain function
spaces with their characterizations are presented and analyzed. Moreover, it is
remarkable that the IF operators generalize some fractional and conformable
operators proposed in abundant preceding works. As scientific applications, the
resistor–capacitor electrical circuits are analyzed under some IF operators. In the case
of constant and periodic sources, this results in novel voltage forms. In addition, the
overall influence of the IF operators on voltage behavior is graphically simulated for
certain selected fractional and conformable parameter values. From the standpoint of
computation, the usage of new IF operators is not limited to electrical circuits; they
could also be useful in solving scientific or engineering problems.
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1 Introduction
The traditional notions of derivatives and integrals are extended from integer orders to
positive real or complex orders in fractional calculus [2, 4, 5, 29, 48, 53]. Recently, abun-
dant mathematicians and physicists employed fractional calculus to model intricate media
and multiscale aspects in naturalistic phenomena [3, 6–9, 16, 35, 43, 52, 54]. Therefore
fractional differential paradigms are extensively proposed to treat multiple problems in
different fields, from control theory to electrical circuits [10, 20, 41, 46], from economics
to activity of stock markets [50, 51], from fluid mechanics to behavior of viscoelastic ma-
terials [37, 42], from signal processing to stochastic processes [11, 32, 38, 40], and others.
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For compatibility with many scientific problems, there an assortment of fractional oper-
ator concepts is proposed. The most spreading concepts are the Riemann–Liouville and
Caputo operators [2, 44]. The Riemann–Liouville operator is defined via the Volterra in-
tegral, so that it has an integrative nature along with a convolution kernel given as a power
function. This shows why it is chosen to treat many applied troubles [14, 21, 49, 52]. How-
ever, the literature did not stop at the power kernel. There are nonpower kernels, such
as the exponential kernel [13] and log-normal kernel [36], which are quite decent in var-
ious approaches. Accordingly, the construction of new fractional operators is still open.
Indeed, we can change the convolution kernels by more suitable forms to meet different
questions.

The Riemann–Liouville operator and its variations are obviously integrative, giving
them nonlocal properties. From a natural standpoint, if the action of delay is insignifi-
cant, then the nonlocality becomes a source of discomfort. So modeling such intricate
phenomena needs local differential operators, which are more exact than the traditional
Newton–Leibniz differential operator. In 2014, a local conformable derivative (LCD) and
its associated integral was suggested by Khalil et al. [34]. From that moment, the LCD
caught the attention of many authors, because it is local and elegantly covers all properties
of the Newton–Leibniz derivative. Consequently, the LCD has been frequently employed
to treat different development of wave equations in wide practical scopes; for instance,
see [15, 17, 22–24, 28, 45, 47]. In the Riemann–Liouville and Caputo settings, Jarad et al.
[34]also created a new set of fractional operators. They developed these fractional oper-
ators using Khalil’s iterative methodology on the LCD and its conformable integral. Also,
the fractional operators of Jarad and his coauthors were utilized to attain exact formulas
for the voltage in some electrical circuits with fractional parameters [39, 46].

Presently, it turns out that the LCD generalizes the traditional Newton–Leibniz deriva-
tive on a nonzero domain, but it has no correlation at zero. So, it is subjected to some
criticism [1, 26]. This blemish in the LCD was evaded by a new local generalized con-
formable derivative (LGCD), proposed by Zhao and Luo [55]. Therefore the locality and
inclusiveness advantages of the LGCD give it the entitlement to occupy the place of the
LCD [26, 56]. Moreover, the LGCD provides a new application environment to gain some
general results for many physical evolution models [25, 27, 55, 56].

The contribution of the present study is introducing novel sorts of fractional operators
called the IF operators. The definitions of these operators are in the Riemann–Liouville
and Caputo settings, but they are structured via general kinds of conformable integra-
tion and differentiation instead of the traditional ones. By a repetition procedure on the
LGCD and its conformable integration we end with explicit definitions of the IF operators.
From a convolution point of view, the kernels associated with these fractional operators
are given as conformable abstract forms. This expands their scientific application area
compared to the familiar fractional operators. Also, we show that the new IF operators
have advantages analogous to those of popular fractional integral and differential opera-
tors. To clarify the relations between the IF integrals and derivatives, we introduce certain
spaces and give the expansions of the IF derivatives on these spaces. An important feature
of the IF operators is that they rely on double parameters so that, in modeling by these
fractional operators, one of them is responsible for the memory trace and the other for
the speed up or slow down of the variation rate. For particular values of these parameters,
the IF operators reduce to many fractional and conformable operators proposed in numer-
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ous past researches. As workable applications, the resistor–capacitor electrical circuits are
discussed in the framework of some IF operators. These applications produce new formu-
las of the voltage in the cases of constant and periodic sources. Moreover, some graphical
simulations are provided to elucidate the overall effect of the IF operators on the voltage
behavior. Here we only apply the IF operators to analyze some simple electrical circuits
to demonstrate their effectiveness and their role in inducing noticeable changes in the be-
havior of physical phenomena. To the authors’ knowledge, the applications of the new IF
operators do not end with the electrical circuits, and they may have valuable applications
in many practical fields.

This paper is organized as follows: Sect. 2 involves the definitions and main advantages
of the novel IF operators. In Sect. 3, we introduce some specific function spaces to show
the relations between the IF derivatives and integrals. Moreover, these spaces are analyzed
by expanding their elements and calculating their IF derivatives. In Sect. 4, we give the
definitions of the new Caputo IF derivatives and their properties. In Sect. 5, we apply
some of the IF operators to resolve the resistor–capacitor electrical circuits with fractional
parameters. In addition, the total impact of the IF operators on the voltage behavior is
simulated graphically for some particular values of the fractional and conformable orders.
Section 6 provides a conclusion.

2 The improved fractional operators
In this part, we introduce new fractional operators and show their advantages. We can
name these operators as:

• The left improved fractional integral (LIFI).
• The right improved fractional integral (RIFI).
• The left improved fractional derivative (LIFD).
• The right improved fractional derivative (RIFD).
Also, we show that the LIFI, RIFI, LIFD, and RIFD are inclusive and cover many frac-

tional and conformable operators proposed in multiple past works. Moreover, we provide
some advantages of the LIFI, RIFI, LIFD, and RIFD, which may be employed when apply-
ing them.

2.1 Recognizing the LIFI, RIFI, LIFD, and RIFD
Zhao et al. [55, 56] introduced the concepts of the local generalized conformable derivative
and integral (LGCD and LGCI) via the so called “conformable functions”. In this portion,
we start our contribution by extending their concepts to the new left and right LGCDs and
LGCIs. Consequently, by iterating the left and right LGCIs m times (m ∈N) and replacing
the number m by an arbitrary complex number, we end with the precise definitions of the
LIFI, RIFI, LIFD, and RIFD.

Definition 1 ([55, 56]) Let T = R+ × (0, 1]. We denote by � the set of all continuous
functions from T into R such that for all ω ∈ �:

(1) ω(ϑ , 1) = 1 for all ϑ ∈R+,
(2) ω(ϑ ,ρ) �= 0 for all (ϑ ,ρ) ∈ T ,
(3) ω(·,ρ1) �= ω(·,ρ2) for all ρ1,ρ2 ∈ (0, 1] such that ρ1 �= ρ2.

Also, we define �̄ as the union � ∪ {ω(ϑ ,ρ) = 1} and call any function ω ∈ �̄ a binary
conformable function.
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The precise definitions of the left and right LGCDs are stated as follows.

Definition 2 Let ω ∈ �̄, and let ξ : [μ,∞) →R be a function with μ ≥ 0. The left LGCD
of ξ of order ρ ∈ (0, 1] starting from μ is defined as

Dρ
μ,ω

(
ξ (ϑ)

)
= lim

p→0

ξ (ϑ + pω(ϑ – μ,ρ)) – ξ (ϑ)
p

. (1)

The right LGCD of ξ of order ρ ∈ (0, 1] terminating at ν is defined as

Dρ
ω,ν

(
ξ (ϑ)

)
= lim

p→0

ξ (ϑ + pω(ν – ϑ ,ρ)) – ξ (ϑ)
p

. (2)

Moreover, if ξ is differentiable, then

Dρ
μ,ω

(
ξ (ϑ)

)
= ω(ϑ – μ,ρ)

dξ

dϑ
and Dρ

ω,ν
(
ξ (ϑ)

)
= ω(ν – ϑ ,ρ)

dξ

dϑ
. (3)

The appropriate integrals can be set up as the next forms.

Definition 3 Let ω ∈ �̄, and let ξ : [μ,∞) → R be a function with μ ≥ 0. The left LGCI
of ξ of order ρ ∈ (0, 1] starting from μ is defined as

Iρ
μ,ω

(
ξ (ϑ)

)
=

∫ ϑ

μ

ξ (τ )
ω(τ – μ,ρ)

dτ , (4)

and the right LGCI of ξ of order ρ ∈ (0, 1] terminating at ν is defined as

Iρ
ω,ν

(
ξ (ϑ)

)
=

∫ ν

ϑ

ξ (τ )
ω(ν – τ ,ρ)

dτ . (5)

The following lemma provides the some inverse attributes of the left and right LGCDs
and LGCIs.

Lemma 1 Suppose ξ : [μ,∞) →R is continuous and ρ ∈ (0, 1]. Then
(i) Dρ

μ,ω(Iρ
μ,ω(ξ (ϑ))) = ξ (ϑ),

(ii) Iρ
ω,ν(Dρ

ω,ν(ξ (ϑ))) = ξ (ϑ).

The proof of Lemma 1 can be straightaway gained from Eqs. (3), (4), and (5).
For the higher-order left and right LGCDs, we give the following:

Definition 4 Let ρ ∈ (m, m + 1], m ∈N, and ω ∈ �̄, and let ξ be an m-differentiable func-
tion from [μ,∞) into R. The left LGCD of order ρ starting from μ ≥ 0 is defined as

Dρ
μ,ω

(
ξ (ϑ)

)
= Dρ–m

μ,ω
(
ξ (m)(ϑ)

)
= lim

p→0

ξ (m)(ϑ + pω(ϑ – μ,ρ – m)) – ξ (m)(ϑ)
p

. (6)

The right LGCD of ξ of order ρ terminating at ν is defined as

Dρ
ω,ν

(
ξ (ϑ)

)
= Dρ–m

ω,ν
(
ξ (m)(ϑ)

)
= lim

p→0

ξ (m)(ϑ + pω(ν – ϑ ,ρ – m)) – ξ (m)(ϑ)
p

, (7)

provided that the limits in (6) and (7) exist.
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By iterating the left LGCI (4) m times we end with the following result:

Im,ρ
μ,ω

(
ξ (ϑ)

)
=

∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

dτ2

ω(τ2 – μ,ρ)
· · ·

∫ τm–1

μ

ξ (τm) dτm

ω(τm – μ,ρ)

=
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ , (8)

where 	(m) is the gamma function, and

h(ϑ , τ ,ρ) =
∫ ϑ

τ

du
ω(u,ρ)

. (9)

On replacing the natural number m by a complex number, we define the LIFI and RIFI
as follows.

Definition 5 Let σ ∈C with Re(σ ) > 0. The LIFI is defined as

I
σ ,ρ
μ,ω

(
ξ (ϑ)

)
=

1
	(σ )

∫ ϑ

μ

hσ–1(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ , (10)

and the RIFI is defined as

I
σ ,ρ
ω,ν

(
ξ (ϑ)

)
=

1
	(σ )

∫ ν

ϑ

hσ–1(ν – ϑ ,ν – τ ,ρ)
ξ (τ )

ω(ν – τ ,ρ)
dτ . (11)

Remark 1 If (Zξ )(ϑ) = ξ (μ + ν – ϑ), then I
σ ,ρ
μ,ω((Zξ )(ϑ)) = I

σ ,ρ
ω,ν (ξ (ϑ)). Indeed,

I
σ ,ρ
μ,ω

(
(Zξ )(ϑ)

)
=

1
	(σ )

∫ μ+ν–ϑ

μ

hσ–1(ν – ϑ , τ – μ,ρ)
ξ (μ + ν – τ )
ω(τ – μ,ρ)

dτ

=
1

	(σ )

∫ ν

ϑ

hσ–1(ν – ϑ ,ν – τ ,ρ)
ξ (τ )

ω(ν – τ ,ρ)
dτ

= I
σ ,ρ
ω,ν

(
ξ (ϑ)

)
. (12)

Remark 2 The LIFI and RIFI include some fractional integral operators defined in many
previous works. The following items illustrate this fact.

(1) If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , τ ,ρ) = ϑρ–τρ

ρ
and, respectively, the LIFI and RIFI in (10)

and (11) coincide with the left and right fractional integrals defined by Jarad et al.
[31].

(2) If ω(ϑ ,ρ) = ϑ1–ρ , μ = ν = 0, then the LIFI and RIFI in (10) and (11) coincide with the
generalized fractional left and right integrals defined by Katugampola in [33],
respectively.

(3) If ω(ϑ ,ρ) = ϑ1–ρ , ρ = 1, μ = ν = 0, then h(ϑ , τ ,ρ) = ϑ – τ , and, respectively, the LIFI
and RIFI in (10) and (11) coincide with the fractional left and right integrals of
Riemann-Liouville defined in [2, 44].

(4) If ω(ϑ ,ρ) = ϑ1–ρ , μ = 0, ρ → 0, then h(ϑ , τ ,ρ) → ln(ϑ) – ln(τ ), and the LIFI and
RIFI in (10) and (11) coincide with the fractional left and right integrals of
Hadamard [36], respectively.
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Now we can present the definitions of the LIFD and RIFD.

Definition 6 Let σ ∈ C with Re(σ ) > 0. In the Riemann–Liouville setting the LIFD of
order σ is defined by

D
σ ,ρ
μ,ω

(
ξ (ϑ)

)
= Dm,ρ

μ,ω
(
I

m–σ ,ρ
μ,ω

(
ξ (ϑ)

))

=
1

	(m – σ )
Dm,ρ

μ,ω

(∫ ϑ

μ

hm–σ–1(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ

)
, (13)

and the RIFD of order σ is defined by

D
σ ,ρ
ω,ν

(
ξ (ϑ)

)
= (–1)mDm,ρ

ω,ν
(
I

m–σ ,ρ
ω,ν

(
ξ (ϑ)

))

=
(–1)m

	(m – σ )
Dm,ρ

ω,ν

(∫ ν

ϑ

hm–σ–1(ν – ϑ ,ν – τ ,ρ)
ξ (τ )

ω(ν – τ ,ρ)
dτ

)
, (14)

where

m =
[
Re(σ )

]
+ 1, Dm,ρ

μ,ω = Dρ
μ,ωDρ

μ,ω · · ·Dρ
μ,ω︸ ︷︷ ︸

m times

, Dm,ρ
ω,ν = Dρ

ω,νDρ
ω,ν · · ·Dρ

ω,ν︸ ︷︷ ︸
m times

, (15)

and Dρ
μ,ω and Dρ

ω,ν are the left and right LGCDs defined in (1) and (2), respectively.

Remark 3 The LIFD and RIFD cover some fractional differential operators proposed in
diverse past works. The following cases explain this fact.

(1) If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , τ ,ρ) = ϑρ–τρ

ρ
, Dρ

μ,ω(ξ (ϑ)) = (ϑ – μ)1–ρ dξ

dϑ
, and

Dρ
ω,ν(ξ (ϑ)) = (ν – ϑ)1–ρ dξ

dϑ
. Hence the LIFD and RIFD in (13)–(15) match with the

left and right fractional derivatives defined by Jarad et al. [31], respectively.
(2) If ω(ϑ ,ρ) = ϑ1–ρ and μ = ν = 0, theb the LIFD and RIFD in (13)–(15) match with the

generalized fractional left and right derivatives defined by Katugampola [33],
respectively.

(3) If ω(ϑ ,ρ) = ϑ1–ρ , ρ = 1, and μ = ν = 0, then h(ϑ , τ ,ρ) = ϑ – τ and
Dρ

μ,ω(ξ (ϑ)) = Dρ
ω,ν(ξ (ϑ)) = dξ

dϑ
. Hence, respectively, the LIFD and RIFD in (13)–(15)

match with the fractional left and right derivatives of Riemann–Liouville defined in
[2, 44].

(4) If ω(ϑ ,ρ) = ϑ1–ρ , μ = 0, and ρ → 0, then h(ϑ , τ ,ρ) → ln(ϑ) – ln(τ ),
Dρ

μ,ω(ξ (ϑ)) → ϑ
dξ

dϑ
, Dρ

ω,ν(ξ (ϑ)) → –ϑ
dξ

dϑ
. Hence, respectively, the LIFD and RIFD in

(13)–(15) match with the fractional left and right derivatives of Hadamard [36].

2.2 Some advantages of the LIFI, RIFI, LIFD, and RIFD
We provide some results to guarantee that the LIFI, RIFI, LIFD, and RIFD have advantages
analogous to those of the familiar fractional integral and differential operators.

Lemma 2 Let Re(σ1) > 0 and Re(σ2) > 0. Then:
(i) I

σ1,ρ
μ,ω (Iσ2,ρ

μ,ω (ξ (ϑ))) = I
σ1+σ2,ρ
μ,ω (ξ (ϑ)),

(ii) I
σ1,ρ
ω,ν (Iσ2,ρ

ω,ν (ξ (ϑ))) = I
σ1+σ2,ρ
ω,ν (ξ (ϑ)).
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Proof By using Eq. (10) and changing the order of integration we have

I
σ1,ρ
μ,ω (Iσ2,ρ

μ,ω
(
ξ (ϑ)

)
=

1
	(σ1)	(σ2)

∫ ϑ

μ

∫ τ1

μ

hσ1–1(ϑ – μ, τ1 – μ,ρ)hσ2–1(τ1 – μ, τ2 – μ,ρ)

× ξ (τ2) dτ2

ω(τ2 – μ,ρ)
dτ1

ω(τ1 – μ,ρ)

=
1

	(σ1)	(σ2)

∫ ϑ

μ

∫ ϑ

τ2

hσ1–1(ϑ – μ, τ1 – μ,ρ)hσ2–1(τ1 – μ, τ2 – μ,ρ)

× dτ1

ω(τ1 – μ,ρ)
ξ (τ2) dτ2

ω(τ2 – μ,ρ)

=
1

	(σ1)	(σ2)

(∫ 1

0
(1 – �)σ1–1�σ2–1 d�

)

×
∫ ϑ

μ

hσ1+σ2–1(ϑ – μ, τ2 – μ,ρ)
ξ (τ2) dτ2

ω(τ2 – μ,ρ)

=
1

	(σ1 + σ2)

∫ ϑ

μ

hσ1+σ2–1(ϑ – μ, τ2 – μ,ρ)
ξ (τ2) dτ2

ω(τ2 – μ,ρ)

= I
σ1+σ2,ρ
μ,ω

(
ξ (ϑ)

)
. (16)

Here we have employed the variable transformation � = h(τ1–μ,τ2–μ,ρ)
h(ϑ–μ,τ2–μ,ρ) , the definition of

the renowned beta function B(σ1,σ2) =
∫ 1

0 (1 – �)σ1–1�σ2–1 d�, and the identity B(σ1,σ2) =
	(σ1)	(σ2)
	(σ1+σ2) . This proves (i), and (ii) can be proved similarly. �

Remark 4 If If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , τ ,ρ) = ϑρ–τρ

ρ
, and Lemma 2 reduces to the result

obtained by Jarad et al. [31, Theorem 2.1].

Lemma 3 Let σ , δ ∈C with Re(σ ) > 0 and Re(δ) > 0. Then:
(i) I

σ ,ρ
μ,ω(hδ–1(ϑ – μ, 0,ρ)) = 	(δ)

	(σ+δ) hσ+δ–1(ϑ – μ, 0,ρ),
(ii) I

σ ,ρ
ω,ν (hδ–1(ν – ϑ , 0,ρ)) = 	(δ)

	(σ+δ) hσ+δ–1(ν – ϑ , 0,ρ),
where h is given in Eq. (9).

Proof According to Definition 5, we have

I
σ ,ρ
μ,ω

(
hδ–1(ϑ – μ, 0,ρ)

)
=

1
	(σ )

∫ ϑ

μ

hσ–1(ϑ – μ, τ – μ,ρ)
hδ–1(τ – μ, 0,ρ)

ω(τ – μ,ρ)
dτ . (17)

Applying the variable transformation � = h(τ–μ,0,ρ)
h(ϑ–μ,0,ρ) , we get

I
σ ,ρ
μ,ω

(
hδ–1(ϑ – μ, 0,ρ)

)
=

1
	(σ )

∫ 1

0

[
h(ϑ – μ, 0,ρ) – �h(ϑ – μ, 0,ρ)

]σ–1

× �δ–1hδ(ϑ – μ, 0,ρ) d�

=
hσ+δ–1(ϑ – μ, 0,ρ)

	(σ )

∫ 1

0
(1 – �)σ1–1�σ2–1 d�

=
	(δ)

	(δ + σ )
hσ+δ–1(ϑ – μ, 0,ρ). (18)

Hence (i) is proved, and (ii) can be proved in a similar way. �
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Remark 5 If If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , 0,ρ) = ϑρ

ρ
, and Lemma 3 covers the result obtained

by Jarad et al. [31, Lemma 2.2].

Lemma 4 If Re(δ – σ ) > 0 for δ,σ ∈C, then:
(i) D

σ ,ρ
μ,ω(hδ–1(ϑ – μ, 0,ρ)) = 	(δ)

	(δ–σ ) hδ–σ–1(ϑ – μ, 0,ρ),
(ii) D

σ ,ρ
ω,ν (hδ–1(ν – ϑ , 0,ρ)) = 	(δ)

	(δ–σ ) hδ–σ–1(ν – ϑ , 0,ρ),
where h is given in Eq. (9).

Proof According to Definition 6 and Lemma 3, we have

D
σ ,ρ
μ,ω

(
hδ–1(ϑ – μ, 0,ρ)

)
= Dm,ρ

μ,ω
(
I

m–σ ,ρ
μ,ω

(
hδ–1(ϑ – μ, 0,ρ)

))

=
	(δ)

	(δ – σ + m)
Dm,ρ

μ,ω
(
hδ–σ+m–1(ϑ – μ, 0,ρ)

)

=
	(δ)

	(δ – σ )
hδ–σ–1(ϑ – μ, 0,ρ). (19)

Hence (i) is proved, and (ii) can be proved in a similar way. �

Remark 6 If If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , 0,ρ) = ϑρ

ρ
, and Lemma 4 reduces to the result

proved by Jarad et al. [31, Lemma 2.3].

The following lemma assists in computing the generalized conformable derivatives of
the LIFI and RIFI.

Lemma 5 Let σ ∈C and m ∈N with Re(σ ) > m. Then:
(i) Dm,ρ

μ,ω (Iσ ,ρ
μ,ω(ξ (ϑ))) = I

σ–m,ρ
μ,ω (ξ (ϑ)),

(ii) Dm,ρ
ω,ν (Iσ ,ρ

ω,ν (ξ (ϑ))) = I
σ–m,ρ
ω,ν (ξ (ϑ)).

Proof We have

Dm,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))
= Dm,ρ

μ,ω

[
1

	(σ )

∫ ϑ

μ

hσ–1(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ

]

= Dm–1,ρ
μ,ω

[
1

	(σ – 1)

∫ ϑ

μ

hσ–2(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ

]

= Dm–2,ρ
μ,ω

[
1

	(σ – 2)

∫ ϑ

μ

hσ–3(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ

]

...

=
1

	(σ – m)

∫ ϑ

μ

hσ–m–1(ϑ – μ, τ – μ,ρ)
ξ (τ )

ω(τ – μ,ρ)
dτ

= I
σ–m,ρ
μ,ω

(
ξ (ϑ)

)
. (20)

�

Now we can show the inverse advantages for different orders of the LIFD, RIFD, LIFI
and RIFI. The inverse advantages with the same order need some specific function spaces,
which will be discussed in the following section.



Hyder and Barakat Advances in Difference Equations        (2021) 2021:389 Page 9 of 24

Theorem 1 For Re(σ1) < Re(σ2), we have:
(i) D

σ1,ρ
μ,ω (Iσ2,ρ

μ,ω (ξ (ϑ))) = I
σ2–σ1,ρ
μ,ω (ξ (ϑ)),

(ii) D
σ1,ρ
ω,ν (Iσ2,ρ

ω,ν (ξ (ϑ))) = I
σ2–σ1,ρ
ω,ν (ξ (ϑ)).

Proof From Lemmas 2 and 5 we have

D
σ1,ρ
μ,ω

(
I
σ2,ρ
μ,ω

(
ξ (ϑ)

))
= Dm,ρ

μ,ω
(
I

m–σ1,ρ
μ,ω

(
I
σ2,ρ
μ,ω

(
ξ (ϑ)

)))

= Dm,ρ
μ,ω

(
I
σ2–σ1+m,ρ
μ,ω

(
ξ (ϑ)

))

= I
σ2–σ1,ρ
μ,ω

(
ξ (ϑ)

)
. (21)

So (i) is proved, and (ii) can be proved similarly. �

Theorem 2 For Re(σ1) > 0 and Re(σ1) < 0, we have:
(i) I

σ1,ρ
μ,ω (Dσ2,ρ

μ,ω (ξ (ϑ))) = I
σ1–σ2,ρ
μ,ω (ξ (ϑ)),

(ii) I
σ1,ρ
ω,ν (Dσ2,ρ

ω,ν (ξ (ϑ))) = I
σ1–σ2,ρ
ω,ν (ξ (ϑ)).

Proof According to Lemmas 2 and 5, we have

I
σ1,ρ
μ,ω

(
D

σ2,ρ
μ,ω

(
ξ (ϑ)

))
= I

σ1,ρ
μ,ω

(
Dm,ρ

μ,ω
(
I

m–σ2,ρ
μ,ω

(
ξ (ϑ)

)))

= I
σ1,ρ
μ,ω

(
I

–σ2,ρ
μ,ω

(
ξ (ϑ)

))

= I
σ1–σ2,ρ
μ,ω

(
ξ (ϑ)

)
. (22)

This proves (i), and the proof of (ii) can be done in a similar way. �

3 The improved fractional derivatives on the spaces Wm,ρ
μ,ω and Wm,ρ

ω,ν

We introduce certain spaces to clarify the relations between the IF integrals and deriva-
tives. We analyze these spaces analyzed by expanding their elements and computing their
IF derivatives. The obtained results of this section are needed in the next section for defin-
ing and discussing the IF derivatives in the Caputo sense.

Definition 7 Let ρ ∈ (0, 1] and ω ∈ �̄. We define

Iρ
μ,ω

(
[μ,ν]

)
=

{
ξ : [μ,ν] →R : ξ (ϑ) = Iρ

μ,ω
(
f (ϑ)

)
+ ξ (μ), f ∈ Nρ(μ)

}
(23)

and

Iρ
ω,ν

(
[μ,ν]

)
=

{
ξ : [μ,ν] →R : ξ (ϑ) = Iρ

ω,ν
(
f (ϑ)

)
+ ξ (ν), f ∈ Nρ(ν)

}
, (24)

where

Nρ(μ) =
{

f : [μ,ν] →R : Iρ
μ,ω

(
f (ϑ)

)
exists ∀ϑ ∈ [μ,ν]

}
, (25)

Nρ(ν) =
{

f : [μ,ν] → R : Iρ
ω,ν

(
f (ϑ)

)
exists ∀ϑ ∈ [μ,ν]

}
, (26)

and Iρ
μ,ω and Iρ

ω,ν are the left and right LGCIs defined in Eqs. (4) and (5), respectively.
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Definition 8 For m ∈N, we define the spaces

W m,ρ
μ,ω

(
[μ,ν]

)
=

{
ξ : [μ,ν] →R : Dm–1,ρ

μ,ω (ξ ) ∈ Iρ
μ,ω

(
[μ,ν]

)}
(27)

and

W m,ρ
ω,ν

(
[μ,ν]

)
=

{
ξ : [μ,ν] →R : Dm–1,ρ

μ,ω (ξ ) ∈ Iρ
ω,ν

(
[μ,ν]

)}
, (28)

where Iρ
μ,ω([μ,ν]) and Iρ

ω,ν([μ,ν]) are the spaces given in Definition 7.

3.1 The LIFD and RIFD for functions in Wm,ρ
μ,ω and Wm,ρ

ω,ν

The following lemmas give the characterizations for the spaces W m,ρ
μ,ω ([μ,ν]) and

W m,ρ
ω,ν ([μ,ν]).

Lemma 6 Let ρ > 0. A function ξ ∈ W m,ρ
μ,ω ([μ,ν]) if and only if ξ has the formal represen-

tation

ξ (ϑ) =
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
f (τ )

ω(τ – μ,ρ)
dτ

+
m–1∑

k=1

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ), (29)

where f (ϑ) = Dm,ρ
μ,ω (ξ (ϑ)).

Proof Let ξ ∈ W m,ρ
μ,ω ([μ,ν]). Then Dm–1,ρ

μ,ω (ξ ) ∈ Iρ
μ,ω([μ,ν]), and hence

Dm–1,ρ
μ,ω

(
ξ (ϑ)

)
= Iρ

μ,ω
(
f (ϑ)

)
+ Dm–1,ρ

μ,ω
(
ξ (μ)

)
for some f ∈ Nρ(μ). (30)

According to Definitions 2 and 3, we get

d
dϑ

(
Dm–2,ρ

μ,ω
(
ξ (ϑ)

))
=

1
ω(ϑ – μ,ρ)

∫ ϑ

μ

f (τ ) dτ

ω(τ – μ,ρ)
+

Dm–1,ρ
μ,ω (ξ (μ))

ω(ϑ – μ,ρ)
. (31)

Integrating from μ to ϑ gives

Dm–2,ρ
μ,ω

(
ξ (ϑ)

)
=

∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

f (τ2) dτ2

ω(τ2 – μ,ρ)

+ Dm–1,ρ
μ,ω

(
ξ (μ)

)∫ ϑ

μ

dτ

ω(τ – μ,ρ)
+ Dm–2,ρ

μ,ω
(
ξ (μ)

)
. (32)

Again, by Definitions 2 and 3, integrating from μ to ϑ , we get

Dm–3,ρ
μ,ω

(
ξ (ϑ)

)
=

∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

dτ2

ω(τ2 – μ,ρ)

∫ τ2

μ

f (τ3) dτ3

ω(τ3 – μ,ρ)

+ Dm–1,ρ
μ,ω

(
ξ (μ)

)∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

dτ2

ω(τ2 – μ,ρ)

+ Dm–2,ρ
μ,ω

(
ξ (μ)

)∫ ϑ

μ

dτ

ω(τ – μ,ρ)
+ Dm–3,ρ

μ,ω
(
ξ (μ)

)
. (33)
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Repeating this procedure m – 3 times, we have

ξ (ϑ) =
∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

dτ2

ω(τ2 – μ,ρ)
· · ·

∫ τm–1

μ

f (τm) dτm

ω(τm – μ,ρ)

+ Dm–1,ρ
μ,ω

(
ξ (μ)

)∫ ϑ

μ

dτ1

ω(τ1 – μ,ρ)

∫ τ1

μ

dτ2

ω(τ2 – μ,ρ)
· · ·

∫ τm–2

μ

dτm–1

ω(τm–1 – μ,ρ)

...

+ D1,ρ
μ,ω

(
ξ (μ)

)∫ ϑ

μ

dτ

ω(τ – μ,ρ)
+ ξ (μ). (34)

Therefore by relation (8) we have

ξ (ϑ) =
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
f (τ )

ω(τ – μ,ρ)
dτ

+
m–1∑

k=1

Dk,ρ
μ,ω(ξ (μ))
	(k)

∫ ϑ

μ

hk–1(ϑ – μ, τ – μ,ρ)
ω(τ – μ,ρ)

dτ + ξ (μ), (35)

or

ξ (ϑ) =
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
f (τ )

ω(τ – μ,ρ)
dτ

+
m–1∑

k=1

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ). (36)

Obviously, the identity f (ϑ) = Dm,ρ
μ,ω (ξ (ϑ)) can be obtained by taking the operator Dm,ρ

μ,ω to
the both sides of Eq. (36).

Conversely, if a function ξ : [μ,ν] →R has the formal representation (29), then we easily
conclude that Dm–1,ρ

μ,ω (ξ ) ∈ Iρ
μ,ω([μ,ν]) and ξ ∈ W m,ρ

μ,ω ([μ,ν]). �

Lemma 7 A function ξ ∈ W m,ρ
ω,ν ([μ,ν]) if and only if ξ has the formal representation

ξ (ϑ) =
1

	(m)

∫ ν

ϑ

hm–1(ν – ϑ ,ν – τ ,ρ)
f (τ )

ω(ν – τ ,ρ)
dτ

+
m–1∑

k=1

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ν – ϑ , 0,ρ), (37)

where f (ϑ) = Dm,ρ
ω,ν (ξ (ϑ)).

Proof The proof can be driven similarly to the proof of Lemma 6. �

The following theorem gives the possibility of computing the LIFD and RIFD for func-
tions in W m,ρ

μ,ω and W m,ρ
ω,ν .

Theorem 3 Let σ ∈ C with Re(σ ) > 0, and let m = [Re(σ )] + 1. Then:
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(i) If ξ ∈ W m,ρ
μ,ω ([μ,ν]), then the LIFD of ξ of order σ exists and can be written in the form

D
σ ,ρ
μ,ω

(
ξ (ϑ)

)
=

1
	(m – σ )

∫ ϑ

μ

hm–σ–1(ϑ – μ, τ – μ,ρ)
Dm,ρ

μ,ω (ξ (τ ))
ω(τ – μ,ρ)

dτ

+
m–1∑

k=0

Dm,ρ
μ,ω (ξ (μ))

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ), (38)

(ii) If ξ ∈ W m,ρ
ω,ν ([μ,ν]), then the RIFD of ξ of order σ exists and can be written in the form

D
σ ,ρ
ω,ν

(
ξ (ϑ)

)
=

(–1)m

	(m – σ )

∫ ν

ϑ

hm–σ–1(ν – ϑ ,ν – τ ,ρ)
Dm,ρ

ω,ν (ξ (τ ))
ω(ν – τ ,ρ)

dτ

+
m–1∑

k=0

(–1)kDm,ρ
ω,ν (ξ (μ))

	(k – σ + 1)
hk–σ (ν – ϑ , 0,ρ). (39)

Proof We prove (i); (ii) can be proved similarly.
Let ξ ∈ W m,ρ

μ,ω ([μ,ν]). Then, by Lemma 6, ξ has the form

ξ (ϑ) =
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
Dk,ρ

μ,ω(ξ (τ ))
ω(τ – μ,ρ)

dτ

+
m–1∑

k=1

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ). (40)

By Definition 6 and Lemma 4 we have

D
σ ,ρ
ω,ν

(
ξ (ϑ)

)
=

1
	(m)	(m – σ )

× Dσ ,ρ
ω,ν

(∫ ϑ

μ

∫ τ1

μ

hm–σ–1(ϑ – μ, τ1 – μ,ρ)hm–1(τ1 – μ, τ2 – μ,ρ)

× (
Dk,ρ

μ,ω
(
ξ (τ2)

)) dτ2

ω(τ2 – μ,ρ)
dτ1

ω(τ1 – μ,ρ)

)

+
m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ). (41)

The variable transformation � = h(τ1–μ,τ2–μ,ρ)
h(ϑ–μ,τ2–μ,ρ) yields

D
σ ,ρ
ω,ν

(
ξ (ϑ)

)
=

1
	(2m – σ )

Dm,ρ
ω,ν

(∫ ϑ

μ

h2m–σ–1(ϑ – μ, τ – μ,ρ)
Dk,ρ

μ,ω(ξ (τ2))
ω(τ–μ,ρ)

dτ

)

+
m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ). (42)

Finally, applying the operator Dm,ρ
ω,ν to the integral in the right side of Eq. (42) we acquire

formula (38). �
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3.2 The inverse advantages on Wm,ρ
μ,ω and Wm,ρ

ω,ν

Here we give some inverse advantages with the same order for the fractional LIFD, RIFD,
LIFI, and RIFI. This will be done for functions in W m,ρ

μ,ω and W m,ρ
ω,ν .

Theorem 4 Let Re(σ ) > 0, ξ ∈ W m,ρ
μ,ω , and ζ ∈ W m,ρ

ω,ν . Then:
(i) D

σ ,ρ
μ,ω(Iσ ,ρ

μ,ω(ξ (ϑ))) = ξ (ϑ),
(ii) D

σ ,ρ
ω,ν (Iσ ,ρ

ω,ν (ζ (ϑ))) = ζ (ϑ).

Proof According to Definitions 5–6, the change of integration order, the transformation
� = h(τ1–μ,τ2–μ,ρ)

h(ϑ–μ,τ2–μ,ρ) , and formula (8), we have

D
σ ,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))

=
1

	(σ )	(m – σ )
Dm,ρ

μ,ω

[∫ ϑ

μ

∫ τ1

μ

hm–σ (ϑ – μ, τ1 – μ,ρ)hσ–1(ϑ – μ, τ1 – μ,ρ)

× ξ (τ2) dτ2

ω(τ2 – μ,ρ)
dτ1

ω(τ1 – μ,ρ)

]

=
1

	(σ )	(m – σ )
Dm,ρ

μ,ω

[∫ ϑ

μ

∫ ϑ

τ2

hm–σ (ϑ – μ, τ1 – μ,ρ)hσ–1(ϑ – μ, τ1 – μ,ρ)

× dτ1

ω(τ1 – μ,ρ)
ξ (τ2) dτ2

ω(τ2 – μ,ρ)

]

=
1

	(σ )	(m – σ )

(∫ 1

0
(1 – �)m–σ–1�σ–1 d�

)
Dm,ρ

μ,ω

[∫ ϑ

μ

hm–1(ϑ – μ, τ1,ρ)

× ξ (τ ) dτ

ω(τ – μ,ρ)

]

=
1

	(σ )
Dm,ρ

μ,ω

[∫ ϑ

μ

hm–1(ϑ – μ, τ1,ρ)
ξ (τ ) dτ

ω(τ – μ,ρ)

]

= Dm,ρ
μ,ω

[
Im,ρ
μ,ω

(
ξ (ϑ)

)]

= ξ (ϑ). (43)

This proves (i), and (ii) can be proved analogously. �

Theorem 5 Let Re(σ ) > 0, m = –[– Re(σ )], ξ , ζ ∈ N(μ), I
σ ,ρ
μ,ω(ξ (ϑ)) ∈ W m,ρ

μ,ω , and
I
σ ,ρ
ω,ν (ζ (ϑ)) ∈ W m,ρ

μ,ω . Then

I
σ ,ρ
μ,ω

(
D

σ ,ρ
μ,ω

(
ξ (ϑ)

))
= ξ (ϑ) –

m∑

k=1

D
σ–k,ρ
μ,ω (ξ (μ))

	(σ – k + 1)
hσ–k(ϑ – μ, 0,ρ), (44)

and

I
σ ,ρ
ω,ν

(
D

σ ,ρ
ω,ν

(
ξ (ϑ)

))
= ξ (ϑ) –

m∑

k=1

(–1)σ–k
D

σ–k,ρ
ω,ν (ξ (ν))

	(σ – k + 1)
hσ–k(ν – ϑ , 0,ρ). (45)
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Proof Let us prove formula (44). The proof of formula (45) can be obtained similarly. We
have

I
σ ,ρ
μ,ω

(
D

σ ,ρ
μ,ω

(
ξ (ϑ)

))
=

1
	(σ )

∫ ϑ

μ

hσ–1(ϑ – μ, τ – μ,ρ)(Dm,ρ
μ,ω

(
I

m–σ ,ρ
μ,ω

(
ξ (τ )

)) dτ

ω(τ – μ,ρ)

=
D1,ρ

μ,ω

	(σ + 1)

∫ ϑ

μ

hσ (ϑ – μ, τ – μ,ρ)(Dm,ρ
μ,ω

(
I

m–σ ,ρ
μ,ω

(
ξ (τ )

)) dτ

ω(τ – μ,ρ)

= D1,ρ
μ,ω

[
1

	(σ – m + 1)

∫ ϑ

μ

hσ–n(ϑ – μ, τ – μ,ρ)
(
I

m–σ ,ρ
μ,ω

(
ξ (τ )

))

–
m∑

k=1

Dm–k,ρ
μ,ω (Im–σ ,ρ

μ,ω (ξ (μ)))
	(σ – k + 2)

hσ–k+1(ϑ – μ, 0,ρ)

]

= D1,ρ
μ,ω

[

I
σ–m+1,ρ
μ,ω

(
I

m–σ ,ρ
μ,ω

(
ξ (ϑ)

))
–

m∑

k=1

Dm–k,ρ
μ,ω (Im–σ ,ρ

μ,ω (ξ (μ)))
	(σ – k + 2)

× hσ–k+1(ϑ – μ, 0,ρ)

]

= D1,ρ
μ,ω

[

I1,ρ
μ,ω

(
ξ (ϑ)

)
–

m∑

k=1

Dm–k,ρ
μ,ω (Im–σ ,ρ

μ,ω (ξ (μ)))
	(σ – k + 2)

hσ–k+1(ϑ – μ, 0,ρ)

]

= ξ (ϑ) –
m∑

k=1

D
σ–k,ρ
μ,ω (ξ (μ))

	(σ – k + 1)
hσ–k(ϑ – μ, 0,ρ). (46)

Here we have employed the integration by parts m times and Lemma 2. �

4 Improved fractional derivatives in the Caputo sense
Here we define the improved fractional derivatives in the Caputo sense. These types of
derivatives are new and generalize many derivatives proposed in the literature. Moreover,
we discuss the advantages of these derivatives via the results obtained in Sect. 3.

Definition 9 Let ρ > 0, Re(σ ) ≥ 0, and m = [Re(σ )] + 1. If ξ ∈ W m,ρ
μ,ω ([μ,ν]) and ζ ∈

W m,ρ
ω,ν ([μ,ν]), then we define the Caputo LIFD and RIFD, respectively, as

C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

)
= D

σ ,ρ
μ,ω

(

ξ (ϑ) –
m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ)

)

(47)

and

C
D

σ ,ρ
ω,ν

(
ζ (ϑ)

)
= D

σ ,ρ
ω,ν

(

ζ (ϑ) –
m–1∑

k=0

(–1)kDk,ρ
ω,ν(ζ (ν))
k!

hk(ν – ϑ , 0,ρ)

)

. (48)

The following theorem gives alternative definitions of the Caputo LIFD and RIFD via
the LIFI and RIFI.
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Theorem 6 Let ρ > 0, Re(σ ) ≥ 0, and m = [Re(σ )] + 1. If ξ ∈ W m,ρ
μ,ω ([μ,ν]) and ζ ∈

W m,ρ
ω,ν ([μ,ν]), then the Caputo LIFD and RIFD can be redefined, respectively, as

C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

)
=

1
	(m – σ )

∫ ϑ

μ

hm–σ–1(ϑ – μ, τ – μ,ρ)
Dm,ρ

μ,ω (ξ (τ )) dτ

ω(τ – μ,ρ)

= I
m–σ ,ρ
μ,ω

(
Dm,ρ

μ,ω
(
ξ (ϑ)

))
, (49)

and

C
D

σ ,ρ
ω,ν

(
ζ (ϑ)

)
=

(–1)m

	(m – σ )

∫ ν

ϑ

hm–σ–1(ν – ϑ ,ν – τ ,ρ)
Dm,ρ

ω,ν (ξ (τ )) dτ

ω(ν – τ ,ρ)

= I
m–σ ,ρ
ω,ν

(
(–1)mDm,ρ

ω,ν
(
ξ (ϑ)

))
. (50)

Proof By (47), Lemma 4, and Theorem 3 we have

C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

)
= D

σ ,ρ
μ,ω

(
ξ (ϑ)

)
–

m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

k!
	(k + 1)

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ)

= D
σ ,ρ
μ,ω

(
ξ (ϑ)

)
–

m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ)

=
1

	(m – σ )

∫ ϑ

μ

hm–σ–1(ϑ – μ, τ – μ,ρ)
Dm,ρ

μ,ω (ξ (τ )) dτ

ω(τ – μ,ρ)

= I
m–σ ,ρ
μ,ω

(
Dm,ρ

μ,ω
(
ξ (ϑ)

))
. (51)

Formula (49) can be analogously proved by employing (48), Lemma 4, and Theorem 3. �

Remark 7 The Caputo LIFD and RIFD generalize some fractional differential operators
proposed in the literature. The following cases show this fact.

(1) If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , 0,ρ) = ϑρ

ρ
, Dρ

μ,ω(ξ (ϑ)) = (ϑ – μ)1–ρ dξ

dϑ
, and

Dρ
ω,ν(ξ (ϑ)) = (ν – ϑ)1–ρ dξ

dϑ
. Hence, the Caputo LIFD and RIFD in (47) and (48)

coincide with the left and right Caputo fractional derivatives defined by Jarad et al.
[31], respectively.

(2) If ω(ϑ ,ρ) = ϑ1–ρ and μ = ν = 0, then the Caputo LIFD and RIFD in (47) and (48)
coincide with the left and right Caputo modifications of fractional derivatives
defined by Jarad et al. [30].

(3) If ω(ϑ ,ρ) = ϑ1–ρ , ρ = 1, and μ = ν = 0, then h(ϑ , 0,ρ) = ϑ , and
Dρ

μ,ω(ξ (ϑ)) = Dρ
ω,ν(ξ (ϑ)) = dξ

dϑ
. Hence, respectively, the Caputo LIFD and RIFD in

(47) and (48) coincide with the left and right Caputo fractional derivatives defined in
[2, 44].

(4) If ω(ϑ ,ρ) = ϑ1–ρ , μ = ν = 0, and ρ → 0, then h(ϑ , 0,ρ) → ln(ϑ), Dρ
μ,ω(ξ (ϑ)) → ϑ

dξ

dϑ
,

and Dρ
ω,ν(ξ (ϑ)) → –ϑ

dξ

dϑ
. Hence, respectively, the Caputo LIFD and RIFD in (47)

and (48) coincide with the fractional left and right derivatives of Caputo–Hadamard
defined in [12].

The following two lemmas are beneficial tools for showing the inverse and composition
advantages of the Caputo LIFD and RIFD.
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Lemma 8 Let 0 < Re(σ ) /∈ N, m = [Re(σ )] + 1, and ξ ∈ C[μ,ν]. Then I
σ–k,ρ
μ,ω (ξ (μ)) = 0 and

I
σ–k,ρ
ω,ν (ξ (ν)) = 0 for k ∈ {0, 1, . . . , m – 1}.

Proof Using Definition 5, we have

∣∣Iσ–k,ρ
μ,ω

(
ξ (ϑ)

)∣∣ ≤ ‖ξ‖C

|	(σ – k)|(Re(σ ) – k)
hRe(σ )–k(ϑ – μ, 0,ρ). (52)

Replacing ϑ by μ gives Iσ–k,ρ
μ,ω (ξ (μ)) = 0. The second equality can be shown similarly. �

Lemma 9 Let Re(σ ) ≥ 0, m = [Re(σ )] + 1, and Dm,ρ
μ,ω , Dm,ρ

ω,ν ∈ C[μ,ν]. Then C
D

σ ,ρ
μ,ω(ξ (μ)) = 0

and C
D

σ ,ρ
ω,ν (ξ (ν)) = 0.

Proof From Theorem 6 we get

∣∣C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

)∣∣ ≤ ‖Dm,ρ
μ,ω‖C

|	(m – σ )|(m – Re(σ ))
hm–Re(σ )(ϑ – μ, 0,ρ) (53)

and

∣
∣C
D

σ ,ρ
ω,ν

(
ξ (ϑ)

)∣∣ ≤ ‖Dm,ρ
ω,ν ‖C

|	(m – σ )|(m – Re(σ ))
hm–Re(σ )(ν – ϑ , 0,ρ). (54)

Hence the results can be acquired by replacing ϑ by μ and ν , respectively. �

Now we give the inverse advantages of the Caputo LIFD and RIFD.

Theorem 7 Suppose Re(σ ) > 0, m = [Re(σ )] + 1, and ξ ∈ C[μ,ν].
(i) If Re(σ ) /∈N or σ ∈N, then

C
D

σ ,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))
= ξ (ϑ) and C

D
σ ,ρ
ω,ν

(
I
σ ,ρ
ω,ν

(
ξ (ϑ)

))
= ξ (ϑ). (55)

(ii) If Re(σ ) ∈N, then

C
D

σ ,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))
= ξ (ϑ) –

I
σ+1–m,ρ
μ,ω (ξ (μ))
	(m – σ )

hm–σ (ϑ – μ, 0,ρ), (56)

and

C
D

σ ,ρ
ω,ν

(
I
σ ,ρ
ω,ν

(
ξ (ϑ)

))
= ξ (ϑ) –

I
σ+1–m,ρ
ω,ν (ξ (ν))
	(m – σ )

hm–σ (ν – ϑ , 0,ρ). (57)

Proof According to Definition 9, Lemmas 4–5, and Theorem 4, we have

C
D

σ ,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))
= D

σ ,ρ
μ,ω

(
I
σ ,ρ
μ,ω

(
ξ (ϑ)

))
–

m–1∑

k=0

Dk,ρ
μ,ω(Iσ ,ρ

μ,ω(ξ (μ)))
	(k – σ + 1)

hk–σ (ϑ – μ, 0,ρ)

= ξ (ϑ) –
m–1∑

k=0

I
σ ,ρ
μ,ω(ξ (μ))

	(k – σ + 1)
hk–σ (ϑ – μ, 0,ρ). (58)

Now the proof can be completed as follows.
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(i) Let Re(σ ) /∈N. Then by Lemma 8 we have I
σ ,ρ
μ,ω(ξ (μ)) = 0 for k ∈ {0, 1, . . . , m – 1}.

Hence, the first equality in (55) is proved. The second equality can be proved by the
same procedure. The case of σ ∈N is trivial, because we return to the integer-order
case.

(ii) Let Re(σ ) ∈N, then it is easy to repeat the steps of Lemma 8 and conclude that
I
σ ,ρ
μ,ω(ξ (μ)) = 0 for k ∈ {0, 1, . . . , m – 1}. Thus (56) is proved, and (57) can be proved

similarly. �

Theorem 8 Suppose Re(σ ) > 0, m = [Re(σ )] + 1, ξ ∈ W m,ρ
μ,ω , and ζ ∈ W m,ρ

ω,ν . Then

I
σ ,ρ
μ,ω

(C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

))
= ξ (ϑ) –

m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ) (59)

and

I
σ ,ρ
ω,μ

(C
D

σ ,ρ
ω,ν

(
ζ (ϑ)

))
= ζ (ϑ) –

m–1∑

k=0

(–1)kDk,ρ
ω,ν(ζ (ν))
k!

hk(ν – ϑ , 0,ρ). (60)

Proof We prove formula (59), and formula (60) can be proved likewise. According to The-
orem 6 and Lemma 2, we have

I
σ ,ρ
μ,ω

(C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

))
= I

σ ,ρ
μ,ω

(
I

m–σ ,ρ
μ,ω

(
Dm,ρ

μ,ω
(
ξ (ϑ)

)))
= I

m,ρ
μ,ω

(
Dm,ρ

μ,ω
(
ξ (ϑ)

))

=
1

	(m)

∫ ϑ

μ

hm–1(ϑ – μ, τ – μ,ρ)
Dm,ρ

μ,ω (ξ (τ ))
ω(τ – μ,ρ)

dτ

=
1

	(m + 1)
D1,ρ

μ,ω

[∫ ϑ

μ

hm(ϑ – μ, τ – μ,ρ)
Dm,ρ

μ,ω (ξ (τ ))
ω(τ – μ,ρ)

dτ

]
. (61)

Using the integration by parts m times yields

I
σ ,ρ
μ,ω

(C
D

σ ,ρ
μ,ω

(
ξ (ϑ)

))
= D1,ρ

μ,ω

[

I1,ρ
μ,ω

(
ξ (ϑ)

)
–

m∑

i=1

Dm–i,ρ
μ,ω (ξ (μ))

	(m – i + 2)
hm–i+1(ϑ – μ, 0,ρ)

]

= ξ (ϑ) –
m∑

i=1

Dm–i,ρ
μ,ω (ξ (μ))

	(m – i + 1)
hm–i(ϑ – μ, 0,ρ)

= ξ (ϑ) –
m–1∑

k=0

Dk,ρ
μ,ω(ξ (μ))

k!
hk(ϑ – μ, 0,ρ). (62)

This proves formula (59). �

The following theorem gives the composite of two Caputo LIFDs and RIFDs.

Theorem 9 Let ξ ∈ W m1+m2
μ,ω ([μ,ν]), ζ ∈ W m1+m2

ω,ν ([μ,ν]), Re(σ1) ≥ 0, Re(σ2) ≥ 0, Re(σ1) ∈
(m1 – 1, m1], and Re(σ2) ∈ (m2 – 1, m2]. Then:

(i) C
D

σ1,ρ
μ,ω (C

D
σ2,ρ
μ,ω (ξ (ϑ))) = C

D
σ1+σ2,ρ
μ,ω (ξ (ϑ)),

(ii) C
D

σ1,ρ
ω,ν (C

D
σ2,ρ
ω,ν (ζ (ϑ))) = C

D
σ1+σ2,ρ
ω,ν (ζ (ϑ)).
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Proof Using Theorem 6, Lemma 5, and Lemma 2, we have

C
D

σ1,ρ
μ,ω

(C
D

σ2,ρ
μ,ω

(
ξ (ϑ)

))
= C

D
σ1,ρ
μ,ω

(
I

m2–σ2,ρ
μ,ω

(
Dm2,ρ

μ,ω
(
ξ (ϑ)

)))

= I
m1–σ1,ρ
μ,ω

(
Dm1,ρ

μ,ω
(
I

m2–σ2,ρ
μ,ω

(
Dm2,ρ

μ,ω
(
ξ (ϑ)

))))

= I
m2–(σ1+σ2),ρ
μ,ω

(
Dm2,ρ

μ,ω
(
ξ (ϑ)

))

= C
D

σ1+σ2,ρ
μ,ω

(
ξ (ϑ)

)
. (63)

This proves (i), and (ii) can be proved likewise. �

5 Applications to electrical circuits of fractional orders
In this part, we provide some application examples to justify the importance and merit
of the novel IF operators. In particular, we discuss the resistor–capacitor (RC) electrical
circuits in the framework of the Caputo LIFD and the LIFI. New analytical solutions that
describe the voltage are gained in the cases of constant and periodic sources. Also, some
2D numerical simulations are displayed to illustrate the impact of the Caputo LIFD and
the LIFI. Finally, we can see that the obtained results include some previously acquired
results as particular cases.

Example 1 (The fractional RC electrical circuit with constant source) Consider a frac-
tional RC electrical circuit described by

⎧
⎨

⎩

C
D

σ ,ρ
0,ω (V(ϑ)) + �σ ,ρV(ϑ) = �σ ,ρ , ϑ ∈ (0,∞),

V(0) = V0,
(64)

where σ ,ρ ∈ (0, 1], C
D

σ ,ρ
μ,ω is the Caputo LIFD, V is the voltage, V0 is the initial voltage,

�σ ,ρ = 1/(RC)σρ , �σ ,ρ = E0/(RC)σρ , E0 is a constant source, and Rσρ and Cσρ are nonlocal
parameters, the resistance and capacitance, respectively. The reason for using the nonlocal
parameters Rσρ and Cσρ instead of the traditional parameters is retaining the fractional
dimensionality of the equation.

Applying the LIFI operator to (64) and using Theorem 8 and Lemma 3, we have

V(ϑ) = V0 +
�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ) – �σ ,ρI

σ ,ρ
0,ω

(
V(ϑ)

)
. (65)

Hence

Vm+1(ϑ) = V0 +
�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ) – �σ ,ρI

σ ,ρ
0,ω

(
Vm(ϑ)

)
, m = 0, 1, 2, . . . . (66)

For m = 0, we have

V1(ϑ) = V0 +
�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ) – �σ ,ρI

σ ,ρ
0,ω

(
V0(ϑ)

)
. (67)

According to Lemma 3, we get

V1(ϑ) = V0

(
1 –

�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ)

)
+

�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ). (68)
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For m = 2, we have

V2(ϑ) = V0 +
�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ) – �σ ,ρI

σ ,ρ
0,ω

(
V1(ϑ)

)
. (69)

Inserting Eq. (68) into (69) and using Lemma 3 yield

V1(ϑ) = V0

(
1 –

�σ ,ρ

	(σ + 1)
hσ (ϑ , 0,ρ) +

�2
σ ,ρ

	(2σ + 1)
h2σ (ϑ , 0,ρ)

)

+ �σ ,ρhσ (ϑ , 0,ρ)
(

1
	(σ + 1)

+
�σ ,ρ

	(2σ + 1)
hσ (ϑ , 0,ρ)

)
. (70)

Repeating the same steps m – 2 times, we get

Vm(ϑ) = V0Eσ ,1
(
–�σ ,ρhσ (ϑ , 0,ρ)

)

+ �σ ,ρhσ (ϑ , 0,ρ)
n∑

k=0

(–1)k�k
σ ,ρ

(k + 1)σ	(kσ + σ )
hkσ (ϑ , 0,ρ). (71)

So, as m → ∞, we have the solution of (64) of the form

V(ϑ) = V0Eσ ,1
(
–�σ ,ρhσ (ϑ , 0,ρ)

)

+ �σ ,ρhσ (ϑ , 0,ρ)
∞∑

k=0

(–1)k�k
σ ,ρ

(k + 1)σ	(kσ + σ )
hkσ (ϑ , 0,ρ), (72)

where Eσ ,ρ is the biparameterized Mittag-Leffler function. The Appendix provides the
definition and some required properties of the function Eσ ,ρ .

Now, for R = 1 Ohm, C = 20 Farad, E0 = 10 Watts, and ω(ϑ ,ρ) = e(1–ρ)ϑ , the behavior
of the voltage V(ϑ) in (72) is exhibited in Fig. 1 for various values of the orders σ and ρ .
Also, Fig. 1 shows the gross effect of the Caputo LIFDC

D
σ ,ρ
0,ω on the voltage behavior of the

fractional RC electrical circuit (64), whereas the fractional order σ describes irrevocable
dispersion effects like internal or ohmic friction, and the conformable order ρ is respon-
sible for speeding up or slowing down the decrease in voltage.

Figure 1 The behavior of the voltageV(ϑ ) in Eq. (72) for some picked values of σ and ρ
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Figure 2 Simulation of the voltageV(ϑ ) in Eq. (76) for some picked values of σ and ρ

Example 2 (The fractional RC electrical circuit with periodic source) Consider the frac-
tional RC electrical circuit given by

⎧
⎨

⎩

C
D

σ ,ρ
0,ω (V(ϑ)) + �σ ,ρV(ϑ) = �σ ,ρ sin(εϑ), ϑ ∈ (0,∞),

V(0) = V0,
(73)

where �σ ,ρ and �σ ,ρ are those defined in Example 1, and ε ∈ R.
Taking the Laplace transform of Eq. (73), we get

Dσ ,ρ
(
ρσ hσ (� , 0,ρ)V(� ) – ρ

σ– 1
ρ hσ– 1

ρ (ϑ , 0,ρ)V(0)
)

= �σ ,ρ
ε

� 2 + ε2 – �σ ,ρV(� ), (74)

where Dσ ,ρ = ρσ 	(σρ)
	(ρ) . Simplifying Eq. (74) and using the initial data give

V(� ) = V0
ρ

σ– 1
ρ hσ– 1

ρ (ϑ , 0,ρ)
ρσ hσ (ϑ , 0,ρ) + �σ ,ρ

Dσ ,ρ

+
ε�σ ,ρ

Dσ ,ρ(� 2 + ε2)(ρσ hσ (ϑ , 0,ρ) + �σ ,ρ
Dσ ,ρ

)
. (75)

Hence by taking the inverse Laplace transform we have

V(ϑ) = V0ϑ
1
ρ –1Eσ , 1

ρ

(
–

�σ ,ρ

Dσ ,ρ
ρσ hσ (ϑ , 0,ρ)

)

+
�σ ,ρ

Dσ ,ρ

∫ ϑ

0
ρσ–1hσ–1(τ , 0,ρ)Eσ ,σ

(
–

�σ ,ρ

Dσ ,ρ
ρσ hσ (τ , 0,ρ)

)
sin

(
ε(ϑ – τ )

)
dτ . (76)

For R = 1 Ohm, C = 20 Farad, E0 = 10 Watts, ε = 1, and ω(ϑ ,ρ) = 1
2 (1 + ϑρ(1–ρ)), the

behavior of the voltage V(ϑ) in (76) is shown in Fig. 2 for various values of the orders σ

and ρ . Further, Fig. 1 clarifies the overall effect of the Caputo LIFD C
D

σ ,ρ
0,ω on the voltage

behavior of the fractional RC electrical circuit (73), whereas the fractional order σ has the
same significance as in Example 1, and the conformable order ρ is responsible for speeding
up or slowing down the voltage cycle.

Remark 8 If ω(ϑ ,ρ) = ϑ1–ρ , then h(ϑ , 0,ρ) = ϑρ

ρ
, and the resulted solutions (72) and (76)

recover the solutions obtained by the fractional conformable derivative in [18]. Moreover,
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the solutions obtained by the conformable and Caputo derivatives can be recovered if
σ = 1 and ρ = 1, respectively.

6 Conclusion
We introduced a new family of fractional operators, called the IF operators. To define these
fractional operators, we used a repeating procedure on general types of conformable in-
tegration and differentiation. The convolution kernels of the IF operators were given in
conformable abstract forms. This broadens their scientific application scope compared
to the traditional fractional operators. We have proved that the IF operators have fea-
tures analogous to those of familiar fractional operators. Moreover, we suggested some
specified function spaces to unveil the inverse and composition relations between the IF
operators. Moreover, we noted that the fractional IF operators rely on two parameters so
that, in modeling by these fractional operators, one of them is responsible for the mem-
ory trace, and the other for the speed up or slow down of the variation rate. Also, when
these parameters approach specific values, the IF operators coincide with many fractional
and conformable operators proposed earlier in the literature. As applications, we analyzed
the resistor–capacitor electrical circuits in the framework of some IF operators. Hence
new explicit formulas of the voltage were obtained in the cases of constant and periodic
sources. Further, we displayed some graphical simulations to expound the overall effect
of the IF operators on the voltage behavior. On the other hand, as we can see in Remarks
2–8, our results extend and improve some results due to Jarad et al. [30, 31]. Therefore
we conclude that the fractional left and right Caputo fractional derivatives, as well as the
fractional left and right Caputo–Hadamard fractional derivatives, are particular cases of
the Caputo LIFD and RIFD. Finally, To the author’s awareness, the applications of the new
IF operators do not limit to the electrical circuits, and they may have valuable applications
in many scientific scopes.

Appendix
Let σ ,ρ ∈ C, where Re(σ ), Re(ρ) > 0. The biparameterized Mittag-Leffler function is de-
fined as [19]

Eσ ,ρ(w) =
∞∑

k=0

wk

	(kσ + ρ)
. (77)

If Re(σ ) > 0 and Re(ρ) > 0, then the Laplace transform of ϑσ–1Eσ ,ρ(ϑσ ) is given as

L
(
ϑσ–1Eσ ,ρ

(
ϑσ

))
(� ) =

�σ–ρ

�σ – 1
, Re(� ) > 1. (78)

For p ∈N and m ∈R, the pth derivative of the function Eσ ,ρ(mϑσ ) is given as

E(p)
σ ,ρ

(
mϑσ

)
=

∞∑

k=0

	(k + p + 1)
	(k + 1)

mkϑkσ

	(kσ + pσ + ρ)
. (79)
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Also, for Re(σ ) > 0, ρ ∈R, and Re(� ) > |m| 1
σ , the Laplace transform of ϑpσ+ρ–1E(p)

σ ,ρ(mϑσ )
is given by

L
(
ϑpσ+ρ–1E(p)

σ ,ρ
(
mϑσ

))
=

	(p + 1)�σ–ρ

(�σ – m)p+1 . (80)
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20. Gulgowski, J., Stefański, T.P., Trofimowicz, D.: On applications of elements modelled by fractional derivatives in circuit
theory. Energies 13, 5768 (2020)

21. Habenom, H., Oli, A., Suthar, D.L.: (p,q)-Extended Struve function: fractional integrations and application to fractional
kinetic equations. J. Math. 2021, 5536817 (2021)

22. Hammouch, Z., Mekkaoui, T., Agarwal, P.: Optical solitons for the Calogero–Bogoyavlenskii–Schiff equation in (2 + 1)
dimensions with time-fractional conformable derivative. Eur. Phys. J. Plus 133, 248 (2018)

23. Hyder, A.: White noise theory and general improved Kudryashov method for stochastic nonlinear evolution
equations with conformable derivatives. Adv. Differ. Equ. 2020, 236 (2020)

24. Hyder, A.: The influence of the differential conformable operators through modern exact solutions of the double
Schrödinger–Boussinesq system. Phys. Scr. 96, 115211 (2021)

25. Hyder, A., Soliman, A.H.: Exact solutions of space-time local fractal nonlinear evolution equations: a generalized
conformable derivative approach. Results Phys. 17, 103135 (2020)

26. Hyder, A., Soliman, A.H.: A new generalized θ -conformable calculus and its applications in mathematical physics.
Phys. Scr. 96, 015208 (2021)

27. Hyder, A., Soliman, A.H.: An extended Kudryashov technique for solving stochastic nonlinear models with
generalized conformable derivatives. Commun. Nonlinear Sci. Numer. Simul. 97, 105730 (2021)

28. Hyder, A., Soliman, A.H.: Analytical manner for abundant stochastic wave solutions of extended KdV equation with
conformable differential operators. Math. Methods Appl. Sci., 1–13 (2021). https://doi.org/10.1002/mma.7317

29. Jain, S., Agarwal, R.P., Agarwal, P., Singh, P.: Certain unified integrals involving a multivariate Mittag-Leffler function.
Axioms 10, 81 (2021)

30. Jarad, F., Abdeljawad, T., Baleanu, D.: On the generalized fractional derivatives and their Caputo modification.
J. Nonlinear Sci. Appl. 10, 2607–2619 (2017)
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