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Abstract
This research note’s objective is to elaborate on the study of the unsteady MHD
natural convective flow of the Jeffery fluid with the fractional derivative model. The
fluid flow phenomenon happens between two vertical parallel plates immersed in a
porous medium. The one plate is moving with the time-dependent velocity U0f (t),
while the other is fixed. The mathematical model is presented with the system of the
partial differential equation along with physical conditions. Appropriate
dimensionless variables are employed in the system of equations, and then this
dimensionless model is transformed into the Caputo fractional-order model and
solved analytically by the Laplace transform. The exact expressions for velocity and
temperature, which satisfy the imposed initial and boundary conditions, are obtained.
Memory effects in the fluid are observed which the classical model fails to elaborate.
Interesting results are revealed from the investigation of emerging parameters as
Grashof number, Prandtl number, relaxation time parameter, Jeffery fluid parameter,
Hartmann number, porosity, and fractional parameter. The results are elucidated with
the detailed discussion and the assistance of the graphs. For the sake of validation of
results, the corresponding solutions for viscous fluids are also obtained and compared
with the solutions already existing in the literature.

Keywords: Special functions; Jeffery fluid; Free convection; MHD; Laplace transform;
Porous medium; Caputo derivative

1 Introduction
The interest developing in the studies of non-Newtonian fluid in the last few years is owing
to its practical implementation in industry and technology. Some of the common exam-
ples of the non-Newtonian fluid are honey, polymer solution, gel, blood, macro-molecules
solutions, and many others. The nonlinear rheological properties of the non-Newtonian
fluid are one of the major aspects of its importance [1–3]. Many rheological problem ap-
plications are observed in the field of geophysics, bioscience, cosmetics, drying of paper,
food processing, chemical plastic production, petroleum industries, and many more. In
literature, many models have been suggested to explicate the rheological conduct of non-
Newtonian fluids [4, 5]. In the amidst, Jeffery fluid is noted as an important model of
non-Newtonian fluid because of its simplicity. The Jeffery fluid best explains the rheo-
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logical viscoelastic fluids because it utilizes the time derivative preferably to convected
derivative. The linear viscoelastic behavior of Jeffery fluid makes it more appealing in the
polymer industries. An important role of Jeffery fluid is observed in blood flow and fluid
mechanics due to its viscoelastic behavior. Newtonian fluid can be derived as a special
case of Jeffery fluid as it is a significant generalization of a Newtonian fluid. Several stud-
ies of the Jeffery fluid flow under different conditions have been carried out by many re-
searchers. Hussain et al. [6] explored the effects of thermal radiation on an MHD incom-
pressible Jeffery nano-fluid past a stretching sheet. Hayat et al. [7] employed the homo-
topy analysis method (HAM) on the time-dependent mixed convective flow of the Jeffery
fluid and reported thermal radiation effects on it. Idowu et al. [8] analyzed the unsteady
MHD oscillatory flow of the Jeffery fluid along with the chemical reaction and noted the
impacts of heat and mass transfer. Zin et al. [9] explored the thermal radiation impacts
on the free convective Jeffery fluid flow along with ramped wall temperature. The analy-
sis of magnetic dipole effects on the convective Jeffery fluid flow past a permeable plate
along suction and injection has been performed by Zeeshan et al. [10]. Some more sig-
nificant studies on the fluid phenomenon can be traced in [11–19] and the references
therein.

The study of noninteger-order derivatives and integrals is called fractional calculus,
which is a generalization of classical calculus. It is an important and fruitful tool which
proved its place by controlling and managing the many physical processes in the field of
science and engineering such as electromagnetism, nanotechnology, drilling of oil and
water, electrochemistry, and heat transfer processes. The property of fractional deriva-
tive to describe the memory effects and nonlocal distribution effects makes them helpful
in better understanding and description of the complex phenomena. One of the widely
used fractional derivatives is Caputo. Shahid [20] wrote a report on the transference of
heat and mass in an MHD flow past over an oscillating plate with the Caputo derivative.
The concept of Caputo derivative was implemented by Vieru et al. [21] to reveal the in-
teresting results of the natural convective flow of the generalized viscous fluid. Casson
fluid model study with the Caputo derivative was done by Khan et al. [22]. The exami-
nation of MHD impacts on the transfer of heat of an Oldroyd-B fluid via nonlocal ker-
nels was carried by Riaz [23]. They explored the semi-analytical solutions, and the re-
sults were demonstrated by graphs. Fourier transform was implemented to the proposed
study of slip effects on the oscillatory flows of a fractionalized Jeffery fluid in a perme-
able medium by Khan [24]. An investigation was carried out on the time-dependent free
convective flow of the Jeffery fluid past an upright plate via the Laplace integral trans-
form by [25]. The Laplace transform was employed to investigate the analytical solution
of the telegraph equation via fractional approach by [26]. Nazish et al. [27] performed
the analysis of natural convective fluid flow on the inclined magnetic field. They used the
fractional Caputo, Caputo–Fabrizio, and Atangana–Baleanu operators to highlight the in-
fluence of transference of heat and mass on fluid flow. Further studies regarding the ap-
plication of fractional derivatives can be found in the literature and references therein
[28–36].

The problem of three-dimensional MHD flow of the Jeffery fluid along Newtonian heat-
ing was illustrated by Shehzad et al. [37]. Zafar et al. [38] published an article on the anal-
ysis of composite fractional relaxation differential equation via a different fractional oper-
ator. The exact solution was attained in special functions form. A novel approach of frac-
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tional derivatives was employed to study the heat and mass movement of MHD Oldroyd-B
fluid along with ramped wall velocity and temperature by [39]. The MHD flow of the Jeffery
fluid in a channel was explored by Hayat et al. [40], and the series solutions were attained.
The study of impacts of MHD on Jeffery fluid via fractional derivative was carried out by
various researchers in [41–45].

Motivated by the above, the objective of this manuscript is to study the heat transfer
analysis of the MHD fractional Jeffery fluid in a channel with generalized boundary con-
ditions. The Laplace integral transform has been applied to obtain the exact solutions to
the problem. The solutions are presented in the series form. The note is comprised of
five sections. Section 2 presents the mathematical model and geometry of the problem.
The Caputo fractional differential equations and solution of temperature and velocity are
explored in Sect. 3. Limiting cases are discussed in Sect. 4. Graphical illustrations of the
influence of the pertinent parameters are presented along with interesting results elabo-
ration in Sect. 5. Closing remarks are stated in Sect. 6.

2 Problem description
The study of the incompressible, unsteady natural convective flow of MHD Jeffery fluid is
elaborated here. The Jeffery fluid is immersed in a porous medium between two vertical
plates at χ∗ = 0 and χ∗ = d. Initially, both plates and fluid are static with the ambient tem-
perature θ∞. As time increase, the acceleration of the plate at χ∗ = 0 starts with U0f (t∗),
keeping the other plate fixed. The plate temperature drops or rises to θd +(θw –θd)g(t∗), and
f (t∗) and g(t∗) are continuous functions that have zero value at t∗ = 0. A transverse mag-
netic force is applied perpendicular to the surface of the plate which acts perpendicular to
the fluid flow. Assuming that the velocity is the function of χ∗ and t∗ only, neglecting the
induced magnetic field, viscous dissipation, Joule heating effect, and using Boussinesq’s
approximation are shown in Fig. 1, the governing equations for the fluid flow are [46]

∂w(χ∗, t∗)
∂t∗ =

ν

1 + λ1

(
1 + λr

∂

∂t∗

)
∂2w(χ∗, t∗)

∂χ∗2

Figure 1 Model geometry with description
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–
(

νφ

k1
+

σB2
0

ρ

)
w

(
χ∗, t∗) + gβ(θ – θd), (1)

ρCp
∂θ (χ∗, t∗)

∂t∗ = k
∂2θ (χ∗, t∗)

∂χ∗2 , (2)

along the following initial and boundary conditions:

w
(
χ∗, 0

)
= 0,

∂w(χ∗, 0)
∂t∗ = 0, θ

(
χ∗, 0

)
= 0, (3)

w
(
0, t∗) = U0f

(
t∗), w

(
d, t∗) = 0, (4)

θ
(
0, t∗) = θd + g

(
t∗)(θw – θd)), θ

(
d, t∗) = θw. (5)

The dimensionless quantities relations are defined as follows:

w′ =
w
U0

, y′ =
y∗

d
, ψ ′ =

θ – θd

θW – θd
, t′ =

νt∗

d2 ,

Pr =
μcp

k
, K =

k1

φd2 , λ =
λrν

d2 , H2
a =

√
σ

μ
B0d, (6)

Gr =
gβν(θw – θd)

U3
0

.

The system of partial differential equations after implementing Eq. (6) into Eqs. (1)–(5) is

∂w(χ , t)
∂t

=
1

1 + λ1

(
1 + λ

∂

∂t

)
∂2w(χ , t)

∂χ2 –
(

1
K

+ H2
a

)
w(χ , t) + Grψ(χ , t), (7)

Pr
∂ψ(χ , t)

∂t
=

∂2ψ(χ , t)
∂χ2 . (8)

The associated initial and boundary conditions change into

w(χ , 0) = 0,
∂w(χ , 0)

∂t
= 0, ψ(χ , 0) = 0, (9)

w(0, t) = f (t), w(1, t) = 0, ψ(0, t) = g(t), ψ(1, t) = 1. (10)

3 Caputo fractional formulation and solutions
The noninteger-order Caputo fractional derivative operator called C derivative [47] is de-
fined as

CDη
t h(ς , t) =

1
�(1 – η)

∫ t

0
(t – ϑ)–ηh′(ς ,ϑ) dϑ , η ∈ (0, 1). (11)

By implementing the Laplace transform on the C derivative, we get

L
(CDη

t h(ς , t)
)

= sηL
(
h(ς , t)

)
– sη–1h(ς , 0). (12)

3.1 Exact solution of temperature
In this section, we find the exact solution of temperature by using the Laplace transfor-
mation.
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Theorem 1 Let L be the Laplace operator. Applying this operator on Eq. (8) along with
initial and boundary conditions (9) and (10), the exact solution of temperature is

ψ(χ , t) =
∫ t

0
g ′(t – τ )ψ1(χ , τ ) dτ + ψ2(χ , t),

where ψ1(χ , t) and ψ2(χ , t) are solution functions.

Proof By replacing the time derivative with C derivative operator into Eq. (8), and then
applying the Laplace transform, we get

∂2ψ̄(χ , q)
∂χ2 – Prqαψ̄(χ , q) = 0, (13)

where ψ̄(χ , q) satisfies the conditions

ψ̄(0, q) = G(q), ψ̄(1, q) =
1
q

. (14)

The above differential equation solution by using the corresponding boundary conditions
Eq. (14) is

ψ̄(χ , q) = qG(q)
(

sinh((1 – χ )
√

Prqα)
q sinh(

√
Prqα)

)
+

(
sinh(χ

√
Prqα)

q sinh(
√

Prqα)

)
, (15)

= gG(q)ψ1(χ , q) + ψ2(χ , q).

Now consider

ψ1(χ , q) =
e(1–χ )

√
Prqα – e–(1–χ )

√
Prqα

q(e
√

Prqα – e–
√

Prqα )

=
∞∑

k=0

(
e–(2k+χ )

√
Prqα

q
–

e–(2k+2–χ )
√

Prqα

q

)
. (16)

Employing the inverse Laplace transform gives the expression of ψ1(χ , t)

ψ1(χ , t) =
∞∑

k=0

( ∞∑
n=0

(–1)n(2k + χ )n(Pr)n/2

n!�(1 – nα
2 )

t
–nα

2

–
∞∑

n=0

(–1)n(2k + 2 – χ )n(Pr)n/2

n!�(1 – nα
2 )

t
–nα

2

)
. (17)

Consider now

ψ2(χ , q) =
eχ

√
Prqα – e–χ

√
Prqα

q(e
√

Prqα – e–
√

Prqα )

=
∞∑

k=0

(
e–(2k+1–χ )

√
Prqα

q
–

e–(2k+1+χ )
√

Prqα

q

)
, (18)
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and implementing the inverse Laplace transform on the above equation, we get

ψ2(χ , t) =
∞∑

k=0

( ∞∑
n=0

(–1)n(2k + 1 – ψ)n(Pr)n/2

n!�(1 – nα
2 )

t
–nα

2

–
∞∑

n=0

(–1)n(2k + 1 + ψ)n(Pr)n/2

n!�(1 – nα
2 )

t
–nα

2

)
. (19)

Employing the inverse Laplace transform on Eq. (15), we have

ψ(χ , t) =
∫ t

0
g ′(t – τ )ψ1(χ , τ ) dτ + ψ2(χ , t), (20)

where ψ1(χ , t) and ψ2(χ , t) are expressed in Eq. (17) and Eq. (19) respectively. �

3.2 Exact solution of velocity
In this section, we find the exact solution of velocity by using the Laplace transformation.

Theorem 2 Let L be the Laplace operator. Applying this operator on Eq. (7) along with
initial and boundary conditions (9) and (10), the exact solution of velocity is

w(χ , t) = I1(χ , t) + I2(χ , t) – I3(χ , t),

where I1(χ , t), I2(χ , t), and I3(χ , t) are solution functions.

Proof Replacing the time derivative with C derivative operator into Eq. (7) and applying
the Laplace transform, we get

(
1 + λqα

1 + λ1

)
∂2w̄(χ , q)

∂χ2 –
(

qα +
1
K

+ Ha
2
)

w̄(χ , q) = –Grψ̄(χ , q), (21)

∂2w̄(χ , q)
∂χ2 – �2w̄(χ , q) =

–Gr

�0
ψ̄(χ , q), (22)

where �0 = 1+λqα

1+λ1
, �1 = qα + 1

K + Ha
2, and �2 = �1

�0
.

The Laplace transformed boundary conditions are

w̄(0, q) = F(q), w̄(1, q) = 0. (23)

The solution of Eq. (22) by embedding Eq. (15) in it and then using Eq. (23) gives

w̄(χ , q) =
F(q)

sinh
√

�2
sinh

(
(1 – χ )

√
�2

)
(24)

+
Gr

q�0(Prqα – �2) sinh
√

�2

(
qG(q) sinh

(
(1 – χ )

√
�2

)
– sinh(χ

√
�2)

)

–
Gr

q�0(Prqα – �2) sinh
√

Prqα

× (
qG(q) sinh

(
(1 – χ )

√
Prqα

)
– sinh

(
χ

√
Prqα

))
.
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Let us consider

w̄(χ , q) = I1(χ , q) + I2(χ , q) – I3(χ , q), (25)

where

I1(χ , q) =
F(q)

sinh
√

�2
sinh

(
(1 – χ )

√
�2

)
, (26)

= F(q)
e(1–χ )

√
�2 – e–(1–χ )

√
�2

e
√

�2 – e–
√

�2
,

= F(q)
∞∑

k=0

(
e–(2k+χ )

√
�2 – e–(2k+1–χ )

√
�2

)
,

and further simplification of the above expression as

I1(χ , q) = F(q)
(
D(χ , q) – E(χ , q)

)
. (27)

The expression for D(χ , q)

D(χ , q) = e–(2k+χ )
√

�2 , (28)

=
∞∑

k=0

∞∑
n=0

(–�3)n

n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λpqαp,

where �3 = (2k + χ )
√

1 + λ1 and b = 1
k + H2

a .
The inverse Laplace transform of the above equation

D(χ , t) = e–(2k+χ )
√

�2 , (29)

=
∞∑

k=0

∞∑
n=0

(–�3)n

n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λp t–αp+1

�(–αp)
.

Let us consider now

E(χ , q) = e–(2k+χ )
√

�2 , (30)

=
∞∑

k=0

∞∑
n=0

(–�4)n

n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λpqαp,

where �4 = (2k + 1 – χ )
√

1 + λ1 and b = 1
k + H2

a .
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Employing the inverse Laplace transform on the above equation gives

E(χ , t) = e–(2k+χ )
√

�2 , (31)

=
∞∑

k=0

∞∑
n=0

(–�4)n

n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λp t–αp+1

�(–αp)
.

Keeping in mind Eq. (29) and Eq. (31) while taking the inverse Laplace transform of
Eq. (27), we get

I1(χ , t) = f (t) ∗ (
D(χ , t) – E(χ , t)

)
. (32)

Let us consider now

I2(χ , q) =
Gr

q�0(Prqα – �2) sinh
√

�2

(
qG(q) sinh

(
(1 – χ )

√
�2

)
– sinh(χ

√
�2)

)
, (33)

=
Gr(1 + λ1)

(Prqα(1 + λqα) – (qα + b)(1 + λ1))

×
(

qG(q) sinh((1 – χ )
√

�2) – sinh(χ
√

�2

q sinh
√

�2

)
.

For simplicity, we write the expression of I2(χ , q)

I2(χ , q) = Gr(1 + λ1)J(χ , q)
(
qG(q)G(χ , q) – H(χ , q)

)
, (34)

where

J(χ , q) =
1

Prqα(1 + λqα) – (qα + b)(1 + λ1)
, (35)

and its inverse Laplace transform

J(χ , t) = –
∞∑

k=0

∞∑
n=0

ak–n
0

ck+1
0

k!
n!(k – n)!

tα(n–2k)–1

�α(n – 2k)
, (36)

where a0 = Prλ, b0 = Pr + 1 + λ1, c0 = b(1 + λ1).

G(χ , q) =
sinh((1 – χ )

√
�2)

q sinh
√

�2
, (37)

and

H(χ , q) =
sinh(χ

√
�2)

q sinh
√

�2
. (38)
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The inverse Laplace transform on Eq. (37) and Eq. (38) is transformed into respectively

G(χ , t) =
∞∑

k=0

∞∑
n=0

((–�3)n – (–�5)n)
n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

(39)

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λp t–αp+1

�(–αp)
,

where �3 = (2k + χ )
√

1 + λ1 and �5 = (2k – 2 – χ )
√

1 + λ1 and

H(χ , t) =
∞∑

k=0

∞∑
n=0

((–�6)n – (–�4)n)
n!

∞∑
m=0

�( n
2 + 1)

m!�( n
2 – m + 1)

(
1
λ

) n
2 –m(

b –
1
λ

)m

(40)

×
∞∑

p=0

(–1)p �(m + p)
p!�m

λp t–αp+1

�(–αp)
,

where �6 = (2k + 1 + χ )
√

1 + λ1 and �4 = (2k + 1 – y)
√

1 + λ1.
The I2(χ , t) is expressed as

I2(χ , t) = Gr(1 + λ1)J(χ , t) ∗ (
g ′(t) ∗ G(χ , t) – H(χ , t)

)
, (41)

where we get the values of G(χ , t) and H(χ , t) from Eq. (39) and Eq. (40) respectively.

I3(χ , t) =
Gr

q�0(Prqα – �2) sinh
√

Prqα

× (
qG(q) sinh

(
(1 – χ )

√
Prqα

)
– sinh

(
χ

√
Prqα

))
, (42)

=
Gr(1 + λ1)

(Prqα(1 + λqα) – (qα + b)(1 + λ1))

×
(

qG(q) sinh((1 – χ )
√

Prqα) – sinh(χ
√

Prqα

q sinh
√

Prqα

)
.

For simplification,

I3(χ , q) = Gr(1 + λ1)J(χ , q)
(
qG(q)ψ1(χ , q) – ψ2(χ , q)

)
, (43)

and its inverse Laplace transform gives

I3(χ , t) = Gr(1 + λ1)J(χ , t) ∗ (
g ′(t) ∗ ψ1(χ , t) – ψ2(χ , t)

)
, (44)

where J(χ , t), ψ1(χ , t), ψ2(χ , t) are attained in Eqs. (36), (17), and (19) respectively.
By implementing the inverse Laplace transform on Eq. (25), bearing in mind the expres-

sion of I1(χ , t), I2(χ , t), I3(χ , t) from Eq. (32), Eq. (41), and Eq. (44) respectively, we will get
the velocity solution as

w(χ , t) = I1(χ , t) + I2(χ , t) – I3(χ , t). (45)
�
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4 Limiting cases
4.1 Solution of velocity when λ1 → 0
By taking λ1 → 0, the solution obtained for velocity profile in Eq. (24) changes into the
solution of second grade fluid

w̄(χ , q) =
F(q)

sinh
√

�2
sinh

(
(1 – χ )

√
�2

)
(46)

+
Gr

q�0(Prqα – �2) sinh
√

�2

(
qG(q) sinh

(
(1 – χ )

√
�2

)
– sinh(χ

√
�2)

)

–
Gr

q�0(Prqα – �2) sinh
√

Prqα

× (
qG(q) sinh

(
(1 – χ )

√
Prqα

)
– sinh

(
χ

√
Prqα

))
,

where �0 = 1 + λqα , �2 = �1
�0

. For α → 1, we will get the limiting result obtained by [46].

4.2 Solution of velocity when λ → 0, λ1 → 0
By choosing λ → 0, λ1 → 0, and 1

K = 0 (absence of porosity), the results obtained for ve-
locity reduce to viscous fluid

w̄(χ , q) =
F(q)

sinh
√

qα + H2
a

sinh
(

(1 – χ )
√

qα + H2
a

)
(47)

+
Gr

q(Prqα – (qα + H2
a )) sinh

√
qα + H2

a

×
(

qG(q) sinh
(

(1 – χ )
√

qα + H2
a

)
– sinh

(
χ

√
qα + H2

a

))

–
Gr

q(Prqα – (qα + H2
a)) sinh

√
Prqα

× (
qG(q) sinh

(
(1 – χ )

√
Prqα

)
– sinh

(
χ

√
Prqα

))
.

For α → 1, we will get the result for viscous fluid as obtained by [42] (Gm = 0). For exact
solutions of the limiting cases, we can follow the same steps as the ones used to find the
exact solutions of Jeffery fluid.

5 Graphical illustration and discussion
The study of transference of heat of time-dependent MHD natural convection flow of Jef-
fery fluid via Caputo fractional derivative operator is elaborated here. The solution for
temperature and velocity is explored with the Laplace transform. The obtained exact so-
lution satisfies all the imposed initial and generalized boundary conditions. The functions
f (t) and g(t) are assumed constant for the velocity and temperature field. To get a per-
ception of the physical significance of the associated parameters for the fluid flow, the
assistance of a graph is taken. The physical parameter impacts such as relaxation time λ,
Grashof number Gr , Prandtl number Pr , permeability parameter K , Jeffery fluid parame-
ter λ1, and α (memory parameter) on the temperature and velocity profile are illustrated
here.
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Figure 2 Temperature curves along α variation and Pr = 12, t = 1.5

Figure 3 Temperature curves along Pr variation and α = 0.5, t = 1.5

The fractional parameter α control on the temperature profile is presented in Fig. 2. As
α varies from small to large, we see the temperature become the increasing function of α.
As α increases, boundary layer thickness increase results in elevating the temperature. It
is easy to validate the result for α → 1, which are already present in the literature [46].

The Prandtl number controls the thickness of the thermal boundary layer. The increase
in Pr dominates the momentum diffusivity over the fluid flow, which causes the decline
in heat diffusion rate. So Pr elevates, reduces the thermal boundary layer thickness which
drops the temperature profile as sketched in Fig. 3.

The governing of time on the temperature profile is plotted in Fig. 4. It has come into
notice that the temperature elevates with the increase in time. The spatial variable increase
results in an expansion in the thermal boundary layer, and hence temperature escalates.
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Figure 4 Temperature curves along t variation and Pr = 12, α = 0.5

Figure 5 Velocity curves along α variation and Pr = 15, Gr = 15.5, K = 12.5, λ = 1.9, λ1 = 1.6, Ha = 0.8, t = 5

The governing of memory parameter α on the fluid flow is shown in Fig. 5. It is evident
that with the rise in α, fluid flow accelerates. The reason is α increases, boundary layer
thickness increases, resulting in acceleration of the velocity.

To elaborate on the impacts of the Prandtl number on the flow of the fluid, Fig. 6 is
sketched. Adding up in the value of Pr , the fluid becomes thicker, and the thickness of the
boundary layer is reduced. Consequently, this causes a slow down in the speed of fluid
flow.

In Fig. 7, the impact of Gr on the velocity field is depicted. We noticed the fluid accel-
erates with greater velocity with higher values of thermal Grashof number Gr . Since the
Grashof number is a ratio of buoyancy forces to viscous forces, it is evident that enhance-
ment in Gr results in the dominance of buoyancy forces rather than viscous forces, which
causes the natural convection and accelerates the velocity.



Asgir et al. Advances in Difference Equations        (2021) 2021:384 Page 13 of 18

Figure 6 Velocity curves along Pr variation and α = 0.5, Gr = 15.5, K = 12.5, λ = 1.9, λ1 = 1.6, Ha = 0.8, t = 5

Figure 7 Velocity curves along Gr variation and α = 0.5, Pr = 11.5, K = 3.5, λ = 0.4, λ1 = 1.6, Ha = 0.8, t = 5

By keeping the other parameters involved fixed and changing the value of the porosity
parameter on the velocity field, a plot is drawn in Fig. 8. It has come to our attention that
the fluid velocity drops down with the rise in the value of K . The resistive force due to the
porous medium is the major reason for the fall of the fluid velocity.

Figure 9 shows the influence of the Hartmann number on the velocity of the fluid. The
rise in Hartmann’s number depreciates the speed of the fluid flow. Physically, Lorentz’s
force (resistive force) opposes the fluid motion, which results in the slow down of fluid
flow.

The influence of relaxation time on the fluid velocity is sketched in Fig. 10. It is noticed
that increasing the relaxation time λ, the velocity curves decrease. The relaxation time
increase results in the expansion of the boundary layer, which causes the velocity to fall.
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Figure 8 Velocity curves along K variation and α = 0.5, Pr = 1.5, Gr = 5.5, Ha = 0.3, λ = 0.6, λ1 = 1.9, t = 5

Figure 9 Velocity curves along Ha variation and α = 0.5, Pr = 11.5, Gr = 8, K = 1.5, λ = 0.4, λ1 = 1.6, t = 5

To visualize the effects of Jeffery fluid parameter λ1 on the velocity profile, Fig. 11 is
plotted. We observed the enhancement in the momentum boundary layer thickness owing
to an increase in λ1 which increases fluid flow.

Figure 12 focuses on the impact of time on the Jeffery fluid flow. It has been observed
that an increase in time drops the velocity of the fluid. From the physical point of view, the
boundary layer thickness gets minimized over time.

6 Closing remarks
The study of MHD Jeffery fluid on two parallel vertical plates dipped in a permeable
medium is elaborated here via fractional Caputo approach. The exact expressions for tem-
perature and velocity are attained by the Laplace integral transform. The impacts of associ-
ated parameters for the fluid flows are discussed. The main observations are the following:
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Figure 10 Velocity curves along λ variation and α = 0.5, Pr = 11.5, Gr = 6.5K = 2, λ1 = 1.8, Ha = 0.6, t = 5

Figure 11 Velocity curves along λ1 variation and α = 0.5, Pr = 11.5, Gr = 4.5, K = 1.5, λ = 0.4, Ha = 0.6, t = 5

• The increase in the value of fractional parameter α shows an increase in the boundary
layer thickness, which increases velocity and temperature.

• The decay or slow down is observed in fluid velocity with the rise in Pr , λ, Ha, and K.
• It is noticed that the fluid velocity escalates with elevation in the values of Gr and λ1.
• Temperature profile declines due to the strong influence in the expansion in the values

of Pr and time.
• In a limiting case, when α → 1, the results recovered are of integer-order derivative

Jeffery fluid.
• For both λ → 0, λ1 → 0 and α → 1, the results obtained are for viscous fluid.
• These results can be evaluated with other fractional derivative approaches, and useful

comparison can be drawn between the various fractional approaches.
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Figure 12 Velocity curves along t variation and α = 0.5, Pr = 15, Gr = 15.5, K = 12.5, λ = 1.9, λ1 = 1.6, Ha = 0.8,
t = 5
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