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Abstract
In this paper, we prove two results concerning the existence of S-asymptotically
ω-periodic solutions for non-instantaneous impulsive semilinear differential
inclusions of order 1 < α < 2 and generated by sectorial operators. In the first result,
we apply a fixed point theorem for contraction multivalued functions. In the second
result, we use a compactness criterion in the space of bounded piecewise continuous
functions defined on the unbounded interval J = [0,∞). We adopt the fractional
derivative in the sense of the Caputo derivative. We provide three examples
illustrating how the results can be applied.
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1 Introduction
Fractional calculus has become a well-established branch of mathematical analysis. It has
many applications in engineering and science. Much work has appeared studying vari-
ous models involving fractional differential boundary value problems and providing so-
lutions to those models using analytical methods or numerical methods. We highlight
some recent work involving fractional differential equations. Agarwal et al. [1] investi-
gated existence and uniqueness results on time scales for fractional nonlocal thermistor
problems in the conformable sense. Sunarto et al. [2] developed a numerical method us-
ing a quarter-sweep and PAOR to solve a one-dimensional time-fractional mathemati-
cal physics model. Rezapour et al. [3] showed the existence and uniqueness of solutions
for a general multi-term fractional BVP involving the generalized ψ-RL operators. Then
they suggested two numerical algorithms, namely, the Dafterdar-Gejji and Jafari method
(DGJIM) and the Adomian decomposition method (ADM) in which a series of approxi-
mate solutions converge to the exact ones. Agarwal et al. [4] discussed the existence and
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uniqueness of solutions for a nonlocal problem with integral transmitting condition for
mixed parabolic-hyperbolic type equations with Caputo fractional derivative. Agarwal et
al. [5] provided a detailed description of impulsive fractional differential equations using
Lyapunov functions and overviewed results for the stability in Caputo’s sense. Khan et al.
[6] focused on the existence and uniqueness of solutions and Hyers–Ulam stability for
ABC-fractional DEs with p-Laplacian operator. Khan et al. [7] studied the stability and
numerical simulation of a fractional order plant-nectar-pollinator model. Khan et al. [8]
proved the existence and Hyers–Ulam stability of solutions to a class of hybrid fractional
differential equations with p-Laplacian operator.

The problem of existence of non-constant periodic solutions for fractional order models
has became one of the most interesting topics to conduct research on. This is particularly
due to the differences between systems of integers order and systems of fractional orders in
terms of the existence of non-constant periodic solutions. In much work, such as [9–14],
the authors have shown that non-constant periodic solutions of fractional order systems
do not exist contrary to the case where the order of the system is an integer. Therefore,
the concept of an asymptotically periodic solution for fractional differential equations or
inclusions is introduced and discussed in much work. For example, in [12, 15–17], the
authors considered semilinear differential equations of order α ∈ (0, 1) generated by a C0-
semigroup, while the papers [18–20] addressed semilinear differential equations of order
α ∈ (0, 1) generated by sectorial operators. Moreover, the asymptotically periodic solu-
tions for delayed fractional differential equations with almost sectorial operator of order
α ∈ (0, 1) are examined in [21]. Rogovchenko et al. [22] studied the asymptotic properties
of solutions for a certain classes of second order nonlinear differential equations. Very re-
cently, Wang et al. [23] discussed the asymptotic behavior of solutions to time-fractional
neutral functional differential equations of order α ∈ (0, 1).

For more information regarding this subject, we refer the reader to [24, 25].
It is worth noting that the problems discussed in all cited work above do not contain

impulse effects, whether it is instantaneous or non-instantaneous, and the nonlinear term
is a single-valued function.

Let α ∈ (1, 2), E be a Banach space, m be a natural number, ω > 0, J = [0,∞),

0 = s0 < θ1 ≤ s1 < θ2 < · · · < θm ≤ sm = ω < θm+1 = ω + θ1 ≤ sm+1 = ω + s1 < · · · ,

with limi→∞ θi = ∞, sm+i = si + ω, and θm+i = θi + ω; i ∈N = {1, 2, 3, . . .} and A : D(A) ⊆ E →
E be a sectorial operator of type {M,ϕ,α,μ}, where M > 0, ϕ ∈ (0, π

2 ) and μ ∈R. Moreover,
let F : J × E → 2E – {φ}, be a multivalued function, gi : [θi, si] × E −→ E; i ∈ N, x0 ∈ D(A)
and x1 ∈ E.

Motivated by the above cited work, we prove two results concerning the existence of
S-asymptotically ω-periodic mild solutions to the following non-instantaneous impulsive
semilinear differential inclusion:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα
si ,θ x(θ ) ∈ Ax(θ ) + F(θ , x(θ )), a.e. θ ∈ (si, θi+1], i ∈N∪ {0},

x(θ+
i ) = gi(θi, x(θ–

i )), i ∈N,

x(θ ) = gi(θ , x(θ–
i )), θ ∈ (θisi], i ∈N,

x(0) = x0, x′(0) = x1,

(1)
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where cDα
si ,θ x(θ ) is the Caputo derivative of the function x at the point θ and with lower

limit at si [26]. In the first result, we apply a fixed point theorem for contraction multival-
ued functions, and, in the second result, we use a compactness criterion in the space of
bounded piecewise continuous functions defined on the unbounded interval J = [0,∞).
Our work generalizes much recent work such as [18–20] to the case where there are im-
pulse effects, and the right-hand side is a multivalued function.

To the best of our knowledge, there is no work on S-asymptotic ω-periodic behavior
of solutions to fractional non-instantaneous impulsive differential inclusions with order
α ∈ (1, 2) and generated by sectorial operators, and this fact is the main goal in the present
paper.

To clarify the advantage of this study, we mention that two methods have been provided
to demonstrate the existence of S-asymptotic ω-periodic solutions for semilinear frac-
tional differential inclusions in the presence of non-instantaneous impulse effects, and in
which the nonlinear part is a multivalued function, and the linear part is a sectorial oper-
ator. Moreover, the technique presented in this paper can be used to generalize the work
in [12, 15–21, 23–25] to the case where the linear part is a sectorial operator, the nonlin-
ear part is a multivalued function, and there is impulse effects. In addition, Problem (1)
can be investigated on time scales using the arguments in [1], and using the arguments
in [3, 6, 8], one can examine the asymptotic periodic solutions for Problem (1) when the
Caputo derivative is replaced by the ψ-Caputo derivative, ψ-RL derivative, Atangana–
Baleanu derivative or p-Laplacian operator. Also, the technique used in this paper can be
applied to study the asymptotic periodic solutions for many fractional differential equa-
tions or inclusions generated by sectorial operators or almost sectorial operators.

For more information related to fractional differential equations and inclusions with
non-instantaneous impulse effects, we refer the reader to [27–31]. See [32–35] for more
information about semilinear differential equations and inclusions with sectorial opera-
tors.

It is worth noting that Refs. [36–44] contain very important and interesting topics in
mathematics as well as their applications such as differential equations, fractional calculus
and ABC-fuzzy-Volterra integro-differential equation.

The paper is organized as follows. Section 2 includes definitions and basic informa-
tion that we need to prove our results. In Sect. 3, we provide two existence results of S-
asymptotic ω-periodic solutions for Problem (1). In Sect. 4, we give three examples to
illustrate our theoretical results.

2 Preliminaries and notations
Let J0 = [0, t1] and Ji = (θi, θi+1], i ∈N. It is known that the vector spaces

PC(J , E) :=
{

x : J → E, x is bounded, x|Ji ∈ C(Ji, E)
}

and

SAPωPC(J , E) :=
{

x : J → E, x is bounded, x|Ji ∈ C(Ji, E), lim
θ→∞

∥
∥x(θ + ω) – x(θ )

∥
∥ = 0

}

are Banach spaces endowed with the norm

‖x‖ := max
θ∈J

∥
∥x(θ )

∥
∥.
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Definition 1 ([45]) Let M > 0, ϕ ∈ (0, π
2 ), and μ ∈ R. A closed linear operator A : D(A) ⊆

E → E with dense domain is called sectorial of type {M,ϕ,α,μ} if:
(i) δα /∈ Sϕ + μ ⇒ ‖R(δα , A)‖ exists, where R(δα , A) is the α-resolvent operator of A

defined by

R
(
δα , A

)
:=

(
δαI – A

)–1

and

Sϕ + μ =
{
μ + δα : δ ∈C,

∣
∣Arg

(
–δα

)∣
∣ < ϕ

}
.

(ii)

∥
∥R

(
δα , A

)∥
∥ ≤ M

|δα – μ| , δα /∈ Sϕ + μ.

Remark 1 ([45], Remark 2.1) If A is a sectorial operator of type {M,ϕ,α,μ}, then it is the
infinitesimal generator of a α-resolvent family of operators {Tα(θ ) : θ ≥ 0} in E defined by

Tα(θ ) =
1

2π i

∫

γ

eδθ R
(
δα , A

)
dδ, (2)

where γ is a suitable path and δα /∈ Sϕ + μ for δ ∈ γ .

Definition 2 ([45], Definition 3.1) Let A be a sectorial operator of type {M,ϕ,α,μ} and
f ∈ L1([0, b], E). A continuous function u : [0, b] → E is called a mild solution to the Cauchy
problem:

⎧
⎨

⎩

cDα
0,θ x(θ ) = Ax(θ ) + f (θ ), θ ∈ [0, b],

x(0) = x0, x′(0) = x,

if

x(θ ) = Sα(θ )x0 + Kα(θ )x1 +
∫ θ

0
Tα(θ – τ )f (θ ) dτ , θ ∈ [0, b],

where

Sα(θ ) =
1

2π i

∫

γ

eδθ δα–1R
(
δα , A

)
dδ,

Kα(θ ) =
1

2π i

∫

γ

eδθ δα–2R
(
δα , A

)
dδ,

and Tα(θ ) is given by (2).

The following lemma provides estimates on ‖Sα(θ )‖, ‖Kα(θ )‖ and ‖Tα(θ )‖.
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Lemma 1 ([45], Theorems 3.3, 3.4) Let A be a sectorial operator of type {M,ϕ,α,μ}. Sup-
pose μ < 0. Then L = L(M,ϕ,α) > 0 such that

∥
∥Sα(θ )

∥
∥ ≤ L

1 + |μ|θα
,

∥
∥Kα(θ )

∥
∥ ≤ L(θ + 1)

1 + |μ|θα
, and

∥
∥Tα(θ )

∥
∥ ≤ Lθα–1

1 + |μ|θα
, ∀θ > 0.

(3)

Remark 2 ([19], Remark 3) In view of (6), we get:
(i)

∥
∥Sα(θ )

∥
∥ ≤ L, ∀θ > 0. (4)

(ii)

∥
∥Kα(θ )

∥
∥ ≤ L +

Lθ

1 + |μ|θα

≤
⎧
⎨

⎩

L + Lθ , if 0 < θ < 1,

L + L
|μ|θα–1 , if θ ≥ 1

≤ L
(

1 + max

{

1,
1

|μ|
})

, ∀θ > 0. (5)

(iii) As in (ii), we derive

∥
∥Tα(θ )

∥
∥ ≤ Lθα–1

1 + |μ|θα

≤ L max

{

1,
1

|μ|
}

, ∀θ > 0. (6)

Based on Definition 2, we can give the definition of an S-asymptotically ω-periodic mild
solution for Problem (1).

Definition 3 A function x ∈ SAPωPC(J , E) is called an S-asymptotically ω-periodic mild
solution for Problem (1) if it has the form

x(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )f (τ ) dτ

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [si, θi+1], i ∈N,

where f (τ ) ∈ F(τ , x(τ )), a.e. for τ > 0.

3 Existence of S-asymptotically ω-periodic mild solutions for Problem (1)
In order to give the first result, we need the following lemma which is due to [46].
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Lemma 2 Let (X, d) be a metric space and G be a contraction multivalued function from
X to the family of non-empty closed subsets of X. Then G has a fixed point.

For notations about multivalued functions we refer the reader to [47].

Theorem 1 Suppose the following assumptions are satisfied.
(HA) A : D(A) → E is a sectorial operator of type {M,ϕ,α,μ}, where M > 0, ϕ ∈ (0, π

2 ),
and μ ∈R.

(HF) F : J × E → Pck(E) is a multivalued function such that
(i) For any z ∈ E, the multivalued function θ → F(·, z) is strongly measurable.

(ii) For any x ∈ PC(J , E), the set

S1
F(·,x(·)) :=

{
ψ : J → E,ψ is locally integrable and ψ(τ ) ∈ F

(
τ , x(τ )

)
,

a.e. τ ∈ J
}

is not empty.
(iii) There is a continuous function L1 : J → (0,∞) such that

h
(
F(θ , z1), F(θ , z2)

)‖ ≤ L1(θ )‖z1 – z2‖, ∀θ ∈ J , z1, z2 ∈ E, (7)

where h is the Hausdorff distance.
(iv) There is a continuous function L2 : J → (0,∞) such that

h
(
F(θ + ω, z), F(θ , z)

)‖ ≤ L2(θ )‖1 + x‖, ∀θ ∈ J , z ∈ E. (8)

(v) The function σ (τ ) := ‖F(τ , 0)‖ = supz∈F(τ ,0) ‖z‖ is continuous, bounded on J
and satisfies the relation

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
σ (τ ) dτ = 0. (9)

(Hgi) For any i ∈N, gi : [θi, si] × E −→ E such that, for any x ∈ E, the function θ → gi(θ , x)
is differentiable at si and

(i)

lim
θ→∞
i→∞

∥
∥gi+m(θ + ω, z) – gi(θ , z)

∥
∥ = 0, ∀z ∈ E. (10)

(ii) There is N > 0 such that for any i ∈N

∥
∥gi(θ , z1) – gi(θ , z2)

∥
∥ ≤ N‖z1 – z2‖, ∀θ ∈ J ,∀z1, z2 ∈ E. (11)

(iii) There is N > 0 such that for any i ∈N

∥
∥g ′

i(si, z1) – g ′
i(si, z2)

∥
∥ ≤N ‖z1 – z2‖, ∀z1, z2 ∈ E. (12)
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(iv) There is κ1 > 0 such that

sup
i∈N

sup
θ∈J

∥
∥gi(θ , z)

∥
∥ ≤ κ1

(‖z‖ + 1
)
, ∀z ∈ E. (13)

(v) There is κ2 > 0 with

sup
i∈N

∥
∥g ′

i(si, z)
∥
∥ ≤ κ2

(‖z‖ + 1
)
, ∀z ∈ E. (14)

Then Problem (1) has an S-asymptotically ω-periodic mild solution provided that the
following conditions are verified:

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ = 0, (15)

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L2(τ ) dτ = 0, (16)

and

L
(

2ξ + N· +
(

1 + max

{

1,
1

|μ|
})

N
)

< 1, (17)

where ξ = supθ∈J
∫ θ

0
(θ–τ )α–1

1+|μ|(θ–τ )α L1(τ ) dτ .

Proof Due to (HF)(ii), one can define a multivalued function � on SAPωPC(J , E) in the
following manner: an element y ∈ �(x) if and only if

y(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )f (τ ) dτ

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [si, θi+1], i ∈N,

(18)

where f ∈ S1
F(·,x(·)).

Obviously, y ∈ PC(Ji, E). We clarify that, if x ∈ SAPωPC(J , E), then �(x) is a closed subset
of SAPωPC(J , E). We do this in the following steps.

Step 1. We demonstrate that, if y ∈ �(x), we have

lim
θ→∞

∥
∥y(θ + ω) – y(θ )

∥
∥ = 0. (19)

Since x ∈ SAPωPC(J , E),

lim
θ→∞

∥
∥x(θ + ω) – x(θ )

∥
∥ = 0. (20)

Now, we consider two cases.
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(i) If θ ∈ (θi, si] for some i ∈ N, then θ +ω ∈ [θi +ω, si +ω, ] = [θi+m, si+m], and hence, using
(21) and (18), it yields

∥
∥gi+m

(
θ + ω, x

(
θ–

i+m
))

– gi
(
θ , x

(
θ–

i
))∥

∥

≤ ∥
∥gi+m

(
θ + ω, x

(
θ–

i+m
))

– gi+m
(
θ , x

(
θ–

i+m
))∥

∥

+
∥
∥gi+m

(
θ , x

(
θ–

i+m
))

– gi
(
θ , x

(
θ–

i
))∥

∥

≤ ∥
∥gi+m

(
θ + ω, x

(
θ–

i+m
))

– gi+m
(
θ , x

(
θ–

i+m
))∥

∥

+ N
∥
∥x

(
θ–

i+m
)

– x
(
θ–

i
)∥
∥. (21)

(ii) If θ ∈ [si, θi+1] for some i ∈ N, then θ + ω ∈ [si + ω, θi+1 + ω] = [si+m, θi+m+1]. Using (4)
and arguing as in (21), it follows that

∥
∥Sα

(
θ + ω – (si + ω)

)
gi+m

(
si + ω, x

(
θ–

i+m
))

– Sα(θ – si)gi
(
si, x

(
θ–

i
))∥

∥

=
∥
∥Sα(θ – si)

∥
∥
∥
∥gi+m

(
si + ω, x

(
θ–

i+m
))

– gi
(
si, x

(
θ–

i
))∥

∥

≤ L
∥
∥gi+m

(
si + ω, x

(
θ–

i+m
))

– gi
(
si, x

(
θ–

i
))∥

∥. (22)

Moreover, in view of (3) and (14), we arrive at

∥
∥Kα

(
θ + ω – (si + ω)

)
g ′

i+m
(
si + ω, x

(
θ–

i+m
))

– Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))∥

∥

=
∥
∥Kα(θ – si)g ′

i+m
(
si+m, x

(
θ–

i+m
))

– Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))∥

∥

≤ ∥
∥Kα(θ – si)

∥
∥
∥
∥g ′

i+m
(
si+m, x

(
θ–

i+m
))

– g ′
i
(
si, x

(
θ–

i
))∥

∥

≤ 2κ2
(‖x‖ + 1

)∥
∥Kα(θ – si)

∥
∥

≤ 2κ2
(‖x‖ + 1

) L(θ – si + 1)
1 + |μ|(θ – si)α

. (23)

Next,

∥
∥
∥
∥

∫ θ+ω

0
Tα(θ + ω – τ )f (τ ) dτ –

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

=
∥
∥
∥
∥

∫ θ

–ω

Tα(θ – τ )f (τ + ω) dτ –
∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤
∫ 0

–ω

∥
∥Tα(θ – τ )

∥
∥
∥
∥f (τ + ω)

∥
∥dτ

+
∫ θ

0

∥
∥Tα(θ – τ )

∥
∥
∥
∥f (τ + ω) – f (τ )

∥
∥dτ

= I1 + I2. (24)

Let τ ∈ [–ω, 0] be fixed. Since F(τ + ω, 0) is compact, there is vτ+θ ∈ F(τ + ω, 0) such that

∥
∥f (τ + ω) – vτ+ω

∥
∥ = d(f (τ + ω), F(τ + ω, 0)

≤ h
(
F
(
τ + ω, x(τ + ω)

)
, F(τ + ω, 0)

)
. (25)
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From (7), (HF)(v) and (25), we get

∥
∥f (τ + ω)

∥
∥ ≤ h

(
F
(
τ + ω, x(τ + ω)

)
, F(τ + ω, 0)

)
+ ‖vτ+ω‖

≤ L1(τ + ω)
∥
∥x(τ + ω)

∥
∥ + σ (τ + ω)

≤ ‖x‖L1(τ + ω) + σ (τ + ω). (26)

Since L1 and σ are continuous on J , there are two positive numbers ω1, ω2 such that

sup
t∈[0,ω]

∣
∣L1(t)

∣
∣ ≤ ω1, and sup

t∈[0,ω]

∣
∣σ (θ )

∣
∣ ≤ ω2. (27)

Then, from (3), (26) and (27), we have

I1 =
∥
∥
∥
∥

∫ 0

–ω

Tα(θ – τ )f (τ + ω) dτ

∥
∥
∥
∥

≤ (
ω1‖x‖ + ω2

)
L

∫ 0

–ω

(θ – τ )α–1

1 + |μ|(θ – τ )α
dτ

≤ (ω1‖x‖ + ω2)L
|μ|

∫ 0

–ω

|μ|(θ – τ )α–1

1 + |μ|(θ – τ )α
dτ

=
(ω1‖x‖ + ω2)L

α|μ| ln
1 + |μ|(θ + ω)α

1 + |μ|θα
. (28)

Next, let τ ∈ [0, θ ] be fixed. From the fact that F(τ + ω, x(τ )) is compact, there are
zτ+ω, zτ ∈ F(τ , x(τ + ω)) such that d(f (τ + ω), zτ+ω) = d(f (τ + ω), F(τ , x(τ + ω))) and
d(f (τ ), zτ ) = d(f (τ , F(τ , x(τ + ω)))). Then, by (12), (13) and (25), we arrive at

∥
∥f (τ + ω) – f (τ )

∥
∥

≤ ∥
∥f (τ + ω) – zτ+ω

∥
∥ + ‖zτ+ω – zτ‖ +

∥
∥zτ – f (τ )

∥
∥

≤ d(f (τ + ω), F
(
τ + ω, x(τ )

)
+ ‖zτ+ω – zτ‖

+ d(f (τ , F
(
τ + ω, x(τ )

)

≤ h(F((τ + ω), x
(
(τ + ω)

)
, F

(
τ , x(τ + ω)

)

+ 2
∥
∥F

(
τ , x(τ + ω)

)∥
∥ + h

(
F
(
τ , x(τ + ω)

)
, F

(
τ , x(τ )

))

≤ L2(τ )
∥
∥1 + x(τ + ω)

∥
∥ + 2

∥
∥F(τ , 0)

∥
∥ + 2h

(
F
(
τ , x(τ + ω)

)
, F(τ , 0)

)

+ L1(τ )
∥
∥x(τ + ω) – x(τ )

∥
∥

≤ L2(τ )
(
1 + ‖x‖) + 2σ (τ ) + 3L1(τ )‖x‖. (29)

By (3) and (29), we arrive at

I2 =
∫ θ

0

∥
∥Tα(θ – τ )

∥
∥
∥
∥f (τ + ω) – f (τ )

∥
∥dτ

≤ 3L‖x‖
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ
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+ 2L
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
σ (τ ) dτ

+ L
(
1 + ‖x‖)

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L2(τ ) dτ . (30)

By arguing as in (24), (28) and (30), one can show
∥
∥
∥
∥

∫ si+ω

0
Tα(si + ω – τ )f (τ ) dτ –

∫ si

0
Tα(si – τ )f (τ ) dτ

∥
∥
∥
∥

≤ (ω1‖x‖ + ω2)L
α|μ| ln

1 + |μ|(si + ω)α

1 + |μ|sα
i

+ 3L‖x‖
∫ si

0

(si – τ )α–1

1 + |μ|(si – τ )α
L1(τ ) dτ

+ 2L
∫ si

0

(si – τ )α–1

1 + |μ|(si – τ )α
σ (τ ) dτ

+ L
(
1 + ‖x‖)

∫ si

0

(si – τ )α–1

1 + |μ|(si – τ )α
L2(τ ) dτ . (31)

Since si → ∞ when θ → ∞, we can derive (19) from (9), (10), (15), (16), (20), (21)–(23),
(28), (30) and (31).

Then, due to (21)–(24), (28), (30) and (31), we arrive at (19).
Step 2. In this step, we show that, if x ∈ SAPωPC(J , E) and y ∈ �(x), then y is bounded.
(i) Let θ ∈ [0, θ1]. Then, using (4)–(6), we get

∥
∥y(θ )

∥
∥ ≤ L‖x0‖ + L‖x1‖

(

1 + max

{

1,
1

|μ|
})

+ L max

{

1,
1

|μ|
}∫ θ

0

∥
∥f (τ )

∥
∥dτ . (32)

On the hand, from (7), (9) and (27), we derive

∥
∥f (τ )

∥
∥ ≤ ∥

∥F
(
τ , x(τ )

)∥
∥ ≤ ∥

∥F(τ , 0)
∥
∥ + h

(
F(τ , 0), F

(
τ , x(τ )

))

≤ σ (τ ) + L1(τ )‖x‖ ≤ ω1 + ω2‖x‖. (33)

Then, by (32) and (33), we conclude that

sup
θ∈[0,θ1]

∥
∥y(θ )

∥
∥ ≤ L‖x0‖ + L‖x1‖

(

1 + max

{

1,
1

|μ|
})

+ L max

{

1,
1

|μ|
}
[
ω1 + ω2‖x‖)

]
ω. (34)

(ii) Let θ ∈ (θi, si]; i ∈N. In view of (18) and (19), it follows that

∥
∥gi

(
θ , x

(
θ–

i
))∥

∥ ≤ κ1
(‖x‖ + 1

)
(35)

and

∥
∥g ′

i
(
si, x

(
θ–

i
))∥

∥ ≤ κ2
(‖x‖ + 1

)
. (36)
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(iii) Let θ ∈ [si, θi+1]; i ∈ N. In view of (4), (5), (35) and (36), we have

sup
θ∈[si ,θi+1]

∥
∥Sα(θ – si)gi

(
si, x

(
θ–

i
))

+ Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))∥

∥

≤ Lκ1
(‖x‖ + 1

)
+ L max

{

1,
1

|μ|
}

κ2
(‖x‖ + 1

)
. (37)

Furthermore, using (3) and (33), we arrive at

∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤ L
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
∥
∥f (τ )

∥
∥dτ

≤ L
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
σ (τ ) dτ

+ ‖x‖L
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ . (38)

From (9), (15) and (38), there is ξ > 0 with

sup
θ∈J

∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥ ≤ ς (39)

and

sup
i∈N

∥
∥
∥
∥

∫ si

0
Tα(si – τ )f (τ ) dτ

∥
∥
∥
∥ ≤ ς . (40)

As a result of (34), (35), (37), (39) and (40), we conclude that y is bounded on J .
Hence, � is a multivalued function from SAPωPC(J , E) to the non-empty subsets of

SAPωPC(J , E).
Step 3. The values of � are closed.
To show this, let x ∈ SAPωPC(J , E) and yn ∈ �(x), ∀n ≥ 1, with yn → y in SAPωPC(J , E).

Then we have fn ∈ S1
F(·,x(·)) such that

yn(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )fn(τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )fn(τ ) dτ

+
∫ θ

0 Tα(θ – τ )fn(τ ) dτ , θ ∈ [si, θi+1], i ∈N.

(41)

Let θ be a fixed point in [0, θ1] and put Jθ = [0, θ ]. Then

∥
∥fn(τ )

∥
∥ ≤ ∥

∥F
(
τ , x(τ )

)∥
∥ ≤ ∥

∥F(τ , 0)
∥
∥ + L1(τ )

∥
∥x(τ )

∥
∥

≤ σ (τ ) + L1(τ )‖x‖, ∀τ ∈ Jθ . (42)
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This relation with the fact that σ and L1 are continuous guarantee that the family {fn :
n ≥ 1} is bounded in L2(Jθ , E), and hence, by Mazur’s lemma, there is a sequence (zn)n≥1

of convex combinations of fn with zn → f strongly in L2(Jθ , E). Hence, we can suppose,
without loss of generality, that zn(θ ) → f (θ ), a.e. θ ∈ Jθ . Moreover, from (6) and (42), we
get

∥
∥Tα(θ – τ )fn(τ )

∥
∥

≤ L max

{

1,
1

|μ|
}
(
σ (τ ) + L1(τ )

)‖x‖, ∀τ ∈ Jθ .

Therefore, by the Lebesgue dominated convergence theorem and the continuity of Tα(θ –
τ ), we obtain

lim
n→∞

∫ θ

0
Tα(θ – τ )zn(τ ) dτ

=
∫ θ

0
Tα(θ – τ )f (τ ) dτ .

Consequently,

lim
n→∞ yn(θ ) = Sα(θ )x0 + Kα(θ )x1 +

∫ θ

0
Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1]. (43)

Similarly, one can show that, for any θ ∈ [si, θi+1]; i ∈ N, we have

lim
n→∞ yn(θ ) = Sα(θ – si)gi

(
si, x

(
θ–

i
))

+ Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))

–
∫ si

0
Tα(si – τ )f (τ ) dτ +

∫ θ

0
Tα(θ – τ )f (τ ) dτ . (44)

Remark that (HF)(iv) implies that f (θ ) ∈ F(θ , x(θ )), a.e. θ ∈ J . So, from (43) and (44), we
arrive at

y(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )f (τ ) dτ

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [si, θi+1], i ∈N.

Then y ∈ �(x).
Step 4. � is a contraction.
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Let u1, u2 ∈ SAPωPC(J , E) and y1 ∈ �(u1). Then we have f1 ∈ S1
F(·,u1(·)) such that

y1(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f1(τ ) dτ , θ ∈ [0, θ1],

gi(θ , u1(θ–
i )), θ ∈ (θi, si], i ∈N,

Cq(θ – si)gi(si, u1(θ–
i )) + Kα(θ – si)g ′

i(si, u1(θ–
i ))

–
∫ si

0 Tα(si – τ )f1(τ ) dτ

+
∫ θ

0 Tα(θ – τ )f1(τ ) dτ , θ ∈ [si, θi+1], i ∈N.

(45)

Consider the multivalued function � : J → 2E defined by

�(θ ) =
{

z ∈ E :
∥
∥z – f1(θ )

∥
∥ ≤ L1(θ )

∥
∥u1(θ ) – u2(θ )

∥
∥, a.e. θ ∈ J

}
.

We clarify that the values of � are non-empty. Let θ ∈ J . From (5), we get

h
(
F
(
θ , u1(θ )

)
, F

(
θ , u2(θ )

)) ≤ L1(θ )
∥
∥u1(θ ) – u2(θ )

∥
∥.

So, there is zθ ∈ F(θ , u2(θ )) such that

∥
∥f1(θ ) – zθ

∥
∥ ≤ h

(
F
(
θ , u1(θ )

)
, F

(
θ , u2(θ )

)) ≤ L1(θ )
∥
∥u1(θ ) – u2(θ )

∥
∥,

which leads to �(θ ) �= φ; θ ∈ J . Moreover, the set �(θ ) = �(θ ) ∩ F(θ , u2(θ )); θ ∈ J is not
empty. Because the functions f1, L1, u1, u2 are measurable, Proposition 3.4 in [47] or
(Corollary 1.3.1(a) in [48]) guarantees that the multivalued map θ → �(θ ) is measurable.
Notice that the set �(θ ); θ ∈ J is closed. Consequently, the values of � are non-empty and
compact, and hence, there exists a measurable selection f2 for � with

∥
∥f1(θ ) – f2(θ )

∥
∥ ≤ L1(θ )

∥
∥u1(θ ) – u2(θ )

∥
∥, a.e. θ ∈ J . (46)

We define y2 : J → E as follows:

y2(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kq(θ )x1

+
∫ θ

0 Tα(θ – τ )f2(τ ) dτ , θ ∈ [0, θ1],

gi(θ , u2(θ–
i )), θ ∈ (θi, si], i ∈N,

Cq(θ – si)gi(si, u2(θ–
i )) + Kα(θ – si)g ′

i(si, u2(θ–
i ))

–
∫ si

0 Tα(si – τ )f2(τ ) dτ

+
∫ θ

0 Tα(θ – τ )f2(τ ) dτ , θ ∈ [si, θi+1], i ∈N.

(47)

Obviously, y2 ∈ �(u1). Now, we estimate the quantity ‖y1 – y2‖. To do this, we consider
three cases.

Case 1. θ ∈ [0, θ1]. In view of (3), (15), (47), (46) and (47), we have

∥
∥y1(θ ) – y2(θ )

∥
∥

≤ ‖
∫ θ

0

∥
∥Tα(θ – τ )

∥
∥
∥
∥f1(τ ) – f2(τ )

∥
∥dτ
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≤ L‖u1 – u2‖
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ

≤ ξL‖u1 – u2‖. (48)

Case 2. θ ∈ (θi, si]. Using (11), we get

∥
∥y1(θ ) – y2(θ )

∥
∥

=
∥
∥gi

(
θ , u1

(
θ–

i
))

– gi
(
θ , u2

(
θ–

i
))∥

∥

≤ N
∥
∥u1

(
θ–

i
)

– u2
(
θ–

i
)∥
∥ ≤ N‖u1 – u2‖. (49)

Case 3. θ ∈ [si, θi+1], i ∈N. From (4) and (49), we derive

∥
∥Sα(θ – si)gi

(
si, u1

(
θ–

i
))

– Sα(θ – si)gi
(
si, u2

(
θ–

i
))∥

∥

≤ L
∥
∥gi

(
si, u1

(
θ–

i
))

– gi
(
si, u2

(
θ–

i
))∥

∥ ≤ LN‖u1 – u2‖. (50)

By (4) and (12), we arrive at

∥
∥Kα(θ – si)g ′

i
(
si, u1

(
θ–

i
))

– Kα(θ – si)g ′
i
(
si, u2

(
θ–

i
))∥

∥

≤ ∥
∥Kα(θ – si)

∥
∥
∥
∥g ′

i
(
si, u1

(
θ–

i
))

– g ′
i
(
si, u2

(
θ–

i
))∥

∥

≤ L
(

1 + max

{

1,
1

|μ|
})

N ‖u1 – u2‖. (51)

Moreover, as in (48), one can show that

∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f1(τ ) dτ –

∫ θ

0
Tα(θ – τ )f2(τ ) dτ

∥
∥
∥
∥

≤ Lξ‖u1 – u2‖ (52)

and
∥
∥
∥
∥

∫ si

0
Tα(si – τ )f1(τ ) dτ –

∫ si

0
Tα(si – τ )f2(τ ) dτ

∥
∥
∥
∥

≤ Lξ‖u1 – u2‖. (53)

Now, by (48)–(53), we conclude that

‖y1 – y2‖ ≤ ‖u – v‖L
(

2ξ + N· +
(

1 + max

{

1,
1

|μ|
})

N
)

. (54)

As a consequence of (17), Eq. (54) becomes

∥
∥y1(θ ) – y2(θ )

∥
∥ < ϑ‖u – v‖, (55)

where ϑ = L(2ξ + N· + (1 + max{1, 1
|μ| })N ) < 1. By interchange o the role of y1 and y2 in

the above discussion, we conclude that � is a contraction. So, applying Lemma 2, shows
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that � has a fixed point which is an S-asymptotically ω-periodic mild solution to Problem
(1). �

Remark 3 If there is no impulse effect, then N = N = 0, and hence inequality (17) becomes
2Lξ < 1.

Now, we present another result concerning the existence of S-asymptotically ω-periodic
solutions for Problem (1).

We need the following fixed point theorem for multivalued functions and a compactness
criterion in PC(J , E).

Lemma 3 ([49], Corollary 3.3.1) Let W be a closed convex subset of a Banach space X and
N : E → Pck(W ) be a closed multifunction which is ϑ-condensing on every bounded subset
of W , where ϑ is a non-singular measure of noncompactness defined on subsets of W , then
the set of fixed points for N is non-empty.

Lemma 4 ([50], Lemma 1.2) Let D ⊆ PC(J , E). Assume that
(i) Limθ→∞ ‖u(θ )‖ = 0, uniformly for u ∈ D.

(ii) The set D|Ji is equicontinuous for every i ∈N, where

D|Ji =
{

y∗ ∈ C(Ji, E) : y∗(t) = y(t), t ∈ Ji = (ti, ti+1], y∗(ti) = y
(
t+
i
)
, y ∈ D

}
.

(iii) For any i ∈N, and any θ ∈ J , the set {y∗(t) : y∗ ∈ D|Ji} is relatively compact in E.
Then D is relatively compact in PC(J , E).

Theorem 2 Assume that (HA) and the following conditions are verified:
(HF)∗ F : J × E → Pck(E) such that:

(i) For every x ∈ E, the multivalued function t −→ F(t, x) is measurable.
(ii) For almost t ∈ J , the multivalued function x −→ F(t, x) is upper

semicontinuous.
(iii) For any x ∈ PC(J , E), the set

S1
F(·,x(·)) :=

{
ψ : J → E,ψ is locally integrable and ψ(τ ) ∈ F

(
τ , x(τ )

)
,

a.e.τ ∈ J
}

is not empty.
(iv) There exists a continuous function ϕ : J → (0,∞) with

∥
∥F(t, z)

∥
∥ ≤ ϕ(t)

(
1 + ‖z‖) ∀(t, z) ∈ J × E.

(Hgi)∗ For any i ∈ N, gi : [θi, si] × E −→ E (i ∈N) is uniformly continuous on bounded sets
and for any z ∈ E, the function θ → gi(θ , z) is continuously differentiable at si such
that (10), (11), (14) and the following conditions are satisfied:

(i) There is a bounded continuous function h∗ : J → J with limθ→∞ h∗(θ ) = 0
and

∥
∥gi(θ , z)

∥
∥ ≤ h∗(θ )

(‖z‖ + 1
)
, ∀(i, θ , z) ∈N× [ti, si] × E. (56)
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(ii) For any t ∈ J , the function. z → gi(t, z) is compact.
Then Problem (1) has an S-asymptotically ω-periodic mild solution provided that the

families {Sα(t) : t > 0}, {Kα(t) : t > 0} and {Tα(t) : t > 0} are compact,

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
(
ϕ(τ + ω) + ϕ(t)

)
= 0, (57)

sup
θ∈J

∫ θ

0
ϕ(t) dτ <

1
4L max{1, 1

|μ| }
, (58)

and

η + Lη + Lκ2 max

{

1,
1

|μ|
}

<
1
2

, (59)

where η = supt∈J ‖h∗(t)‖, and κ2 is as defined in (14).

Proof Due to (HF)∗(iii), we can consider a multioperator � on SAPωPC(J , E) defined as
in (18).

In the following steps we show that � satisfies the assumptions of Lemma 3.
Step 1. In this step, we demonstrate that, if x ∈ SAPωPC(J , E), y ∈ �(x), then

limθ→∞ ‖y(θ + ω) – y(θ )‖ = 0.
Notice that condition (Hgi)∗(i) implies (Hgi)(ii), so Eqs. (21)–(23) are satisfied. Now, let

f ∈ S1
F(·,x(·)) and θ ∈ [s1, θi+1]; i > 1. As in (24), we have

∥
∥
∥
∥

∫ θ+ω

0
Tα(θ + ω – τ )f (τ ) dτ –

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤
∫ 0

–ω

Tα(θ – τ )
∥
∥f (τ + ω)

∥
∥dτ

+
∫ θ

0
Tα(θ – τ )

∥
∥f (τ + ω) – f (τ ) dτ

∥
∥

= I1 + I2. (60)

From the continuity of ϕ, there is ρ such that supt∈[0,ω| ϕ(t) ≤ ρ , and hence

sup
τ∈[–ω,0]

∥
∥f (τ + ω)

∥
∥ ≤ ρ

(
1 + ‖x‖). (61)

Then, using (3), (HF)∗(iv) and (61), we get

I1 ≤ (
1 + ‖x‖)ρL

∫ 0

–ω

(θ – τ )α–1

1 + |μ|(θ – τ )α
dτ

=
(1 + ‖x‖)ρL

α|μ| ln
1 + |μ|(θ + ω)α

1 + |μ|θα
. (62)
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Also, in view of (3) and (HF)∗(iv), we arrive at

I2 ≤
∫ θ

0

∥
∥Tα(θ – τ )

∥
∥
∥
∥f (τ + ω) – f (τ )

∥
∥dτ

≤ 2L
(
1 + ‖x‖)

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
(
ϕ(τ + ω) + ϕ(t)

)
dτ . (63)

Then, by (60), (62) and (63), it follows that

∥
∥
∥
∥

∫ θ+ω

0
Tα(θ + ω – τ )f (τ ) dτ –

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤ (1 + ‖x‖)ρL
α|μ| ln

1 + |μ|(θ + ω)α

1 + |μ|θα

+ 2L
(
1 + ‖x‖)

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
(
ϕ(τ + ω) + ϕ(t)

)
dτ . (64)

Similarly,

∥
∥
∥
∥

∫ si+ω

0
Tα(si + ω – τ )f (τ ) dτ –

∫ si

0
Tα(si – τ )f (τ ) dτ

∥
∥
∥
∥

≤ (1 + ‖x‖)ρL
α|μ| ln

1 + |μ|(si + ω)α

1 + |μ|sα
i

+ 2L
(
1 + ‖x‖)

∫ si

0

(si – τ )α–1

1 + |μ|(si – τ )α
(
ϕ(τ + ω) + ϕ(t)

)
dτ . (65)

Then, from (21)–(23), (57), (64) and (65), we derive limθ→∞ ‖y(θ + ω) – y(θ )‖ = 0.
Step 2. Put Dλ = {u ∈ SAPωPC(J , E) : ‖u‖ ≤ λ}, where

λ =
L‖x0‖ + L(‖x1‖ + κ2)(1 + max{1, 1

|μ| }) + η + Lη + 1
2

1 – [η + Lη + Lκ2 max{1, 1
|μ| } + 1

2 ]
. (66)

Due to Eq. (59), λ is well defined. In this step, we show that, if x ∈ Dλ and y ∈ �(x), then
‖y ‖ ≤ λ.

(i) Let θ ∈ [0, θ1]. Then from (4)–(6) and (HF)∗(iv), we get

∥
∥y(θ )

∥
∥ ≤ L‖x0‖ + L‖x1‖

(

1 + max

{

1,
1

|μ|
})

+
(
1 + ‖x‖)L max

{

1,
1

|μ|
}∫ θ1

0
ϕ(t) dτ

≤ L‖x0‖ + L‖x1‖
(

1 + max

{

1,
1

|μ|
})

+
1 + ‖x‖

4

≤ L‖x0‖ + L‖x1‖
(

1 + max

{

1,
1

|μ|
})

+
1 + λ

4
. (67)

(ii) Let θ ∈ (θi, si], for some i ∈N. In view of (56), we have

∥
∥gi

(
θ , x

(
θ–

i
))∥

∥ ≤ η(λ + 1), (68)
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where η = supt∈J ‖h∗(t)‖. Moreover, from (15), it follows that

sup
i∈N

∥
∥g ′

i
(
si, x

(
θ–

i
))∥

∥ ≤ κ2(λ + 1). (69)

Next, let θ ∈ [si, θi+1]. In view of (4), (5) and (69), we arrive at

∥
∥Sα(θ – si)gi

(
si, x

(
θ–

i
))

+ Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))∥

∥

≤
(

Lη + Lκ2 max

{

1,
1

|μ|
})

(λ + 1). (70)

Furthermore, by (6) and (HF)∗(iv), and (58), we obtain

∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤ L max

{

1,
1

|μ|
}
(
1 + ‖x‖)

∫ θ

0
ϕ(t) dτ

≤ (
1 + ‖x‖)L max

{

1,
1

|μ|
}

sup
θ∈J

∫ θ

0
ϕ(t) dτ <

λ + 1
4

. (71)

Similarly, we obtain

sup
i∈N

∥
∥
∥
∥

∫ si

0
Tα(si – τ )f (τ ) dτ

∥
∥
∥
∥ ≤ λ + 1

4
. (72)

As a result of (67), (68), (70)- (72), we arrive at

sup
θ∈J

∥
∥y(θ )

∥
∥ ≤ L‖x0‖ + L‖x1‖

(

1 + max

{

1,
1

|μ|
})

+
1 + λ

4

+ η(λ + 1) +
(

Lη + Lκ2 max

{

1,
1

|μ|
})

(λ + 1)

+
λ + 1

4

≤ L‖x0‖ + L‖x1‖
(

1 + max

{

1,
1

|μ|
})

+ η

+ Lη + Lκ2 max

{

1,
1

|μ|
}

+
1
2

+ λ

[

η + Lη + Lκ2 max

{

1,
1

|μ|
}

+
1
2

]

≤ λ.

Therefore, our aim in this step is achieved.
Now, as a result of Steps 1 and 2, � is a multivalued function from Dλ ⊆ SAPωPC(J , E)

to the non-empty subsets of Dλ.
Step 3. � is closed (its graph is closed) on Dλ.



Alsheekhhussain et al. Advances in Difference Equations        (2021) 2021:330 Page 19 of 31

Let (xn)n≥1, (yn)n≥1 be two sequences in Dλ with xn → x, yn → y and yn ∈ �(xn), ∀n ≥ 1.
Then we have fn ∈ S1

F(·,xn(·)) such that

yn(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )fn(τ ) dτ , θ ∈ [0, θ1],

gi(θ , xn(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, xn(θ–
i )) + Kα(θ – si)g ′

i(si, xn(θ–
i ))

–
∫ si

0 Tα(si – τ )fn(τ ) dτ

+
∫ θ

0 Tα(θ – τ )fn(τ ) dτ , θ ∈ [si, θi+1], i ∈N.

Let θ be a fixed point in [0, θ1] and Jθ = [0, θ ]. In view of (HF)∗(iv), we have

∥
∥fn(t)

∥
∥ ≤ ϕ(t)(1 + λ), a.e. t ∈ [0, θ ]. (73)

Using similar arguments to Step 3 in the proof of Theorem 1, one can show, by (73), that
fn ⇀ f weakly in L2(Jθ , E) and there is a sequence of convex combinations (zn) of (fn) such
that zn → f , a.e. t ∈ Jθ , and

lim
n→∞

∫ θ

0
Tα(θ – τ )zn(τ ) dτ =

∫ θ

0
Tα(θ – τ )f (τ ) dτ ; θ ∈ [0, θ1]. (74)

Now, due to the continuity of gi(θ , ·), g ′
i(si, ·), Sα(θ – si) and Kα(θ – si), we arrive at

lim
n→∞ gi

(
θ , xn

(
θ–

i
))

= gi
(
θ , x

(
θ–

i
))

(75)

and

lim
n→∞ Sα(θ – si)gi

(
si, xn

(
θ–

i
))

+ Kα(θ – si)g ′
i
(
si, xn

(
θ–

i
))

= Sα(θ – si)gi
(
si, x

(
θ–

i
))

+ Kα(θ – si)g ′
i
(
si, x

(
θ–

i
))

. (76)

Noting that (zn) is a subsequence of (fn), and hence by (74)–(76), there is a subsequence
of (yn) that converge to

y∗(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈ N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )f (τ ) dτ

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [si, θi+1], i ∈N.

Because yn → y, we arrive at y = y∗. Moreover, (HF)∗(ii) ensures that f (τ ) ∈ F(τ , x(τ )), a.e.
τ ∈ J . So, y ∈ �(x).

Step 4. limθ→∞‖y(θ )‖ = 0 uniformly on Dλ.
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Let x ∈ Dλ and y ∈ �(x). According to the definition of �, there is f ∈ S1
F(·,x(·)) such that

y is given by (18). We consider two cases:
Case 1. θ ∈ (θi, si], i ∈N. By (56), we get

∥
∥y(θ )

∥
∥ =

∥
∥gi

(
θ , x

(
θ–

i
))∥

∥ ≤ (λ + 1)
∥
∥h∗(θ )

∥
∥. (77)

Case 2. θ ∈ [si, θi+1], i ∈N. In view of (3), (15), (56) and (HF)∗(iv), we find

∥
∥y(θ )

∥
∥ =

∥
∥Sα(θ – si)gi

(
si, x

(
θ–

i
))∥

∥

+
∥
∥Kα(θ – si)g ′

i
(
si, x

(
θ–

i
))∥

∥

+
∥
∥
∥
∥

∫ si

0
Tα(si – τ )f (τ ) dτ

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤ (λ + 1)η
L

1 + |μ|(θ – si)α
+ (λ + 1)κ2

L(θ – si + 1)
1 + |μ|(θ – si)α

+ L(1 + λ)
∫ si

0

L(si – τ )α–1

1 + |μ|(si – τ )α
ϕ(τ ) dτ

+ L(1 + λ)
∫ θi

0

L(θi – τ )α–1

1 + |μ|(θi – τ )α
ϕ(τ ) dτ . (78)

It follows from (77) (78) and (57) that limθ→∞ ‖y(θ )‖ = 0 uniformly on Dλ.
Step 5. Let D = �(Dλ). In this step, we claim that the set D|Ji is equicontinuous for every

i ∈ N, where

D|Ji =
{

y∗ ∈ C(Ji, E) : y∗(θ ) = y(θ ), t ∈ Ji = ]θi, θi+1], y∗(θi) = y
(
θ+

i
)
, y ∈ D

}
.

Let y∗ ∈ D|Ji . Then we have x ∈ D and f ∈ S1
F(·,x(·)) such that

y(θ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sα(θ )x0 + Kα(θ )x1

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [0, θ1],

gi(θ , x(θ–
i )), θ ∈ (θi, si], i ∈N,

Sα(θ – si)gi(si, x(θ–
i )) + Kα(θ – si)g ′

i(si, x(θ–
i ))

–
∫ si

0 Tα(si – τ )f (τ ) dτ

+
∫ θ

0 Tα(θ – τ )f (τ ) dτ , θ ∈ [si, θi+1], i ∈N,

and y∗(θi) = y(θ+
i ).

Case 1. Let θ1, θ2 ∈ J0 = [0, θ1] with θ1 < θ2. We have

∥
∥y∗(θ2) – y∗(θ1)

∥
∥ =

∥
∥y(θ2) – y(θ1)

∥
∥

≤ ∥
∥Sα(θ2) – Sα(θ1)

∥
∥‖x0‖ +

∥
∥Kα(θ2) – Kα(θ1)

∥
∥‖x1‖

+
∥
∥
∥
∥

∫ θ2

0
Tα(θ2 – τ )f (s) ds –

∫ θ1

0
Tα(θ1 – τ )f (τ ) ds

∥
∥
∥
∥
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≤ ∥
∥Sα(θ2) – Sα(θ1)

∥
∥‖x0‖ +

∥
∥Kα(θ2) – Kα(θ1)

∥
∥‖x1‖

+
∫ θ2

θ1

∥
∥Tα(θ2 – τ )

∥
∥
∥
∥f (τ )

∥
∥dτ

+
∫ θ1

0

∥
∥Tα(θ2 – τ ) – Tα(θ1 – τ )

∥
∥
∥
∥f (τ )

∥
∥dτ

= Q1 + Q2 + Q3. (79)

From the compactness of the families {Sα(θ ) : θ > 0} and {Kα(θ ) : θ > 0}, we get

lim
θ2→θ1

Q1 = lim
θ2→θ1

∥
∥Sα(θ2) – Sα(θ1)

∥
∥‖x0‖ +

∥
∥Kα(θ2) – Kα(θ1)

∥
∥‖x1‖ = 0, (80)

and from the continuity of ϕ, we arrive at

lim
θ2→θ1

Q2 = lim
θ2→θ1

∫ θ2

θ1

∥
∥Tα(θ2 – τ )

∥
∥
∥
∥f (τ )

∥
∥dτ

≤ (1 + λ)L max

{

1,
1

|μ|
}

lim
θ2→θ1

∫ θ2

θ1

ϕ(τ ) dτ = 0. (81)

Moreover, since the family {Tα(θ ) : θ > 0} is compact, we get

lim
θ2→θ1

Q3 = lim
θ2→θ1

∫ θ1

0

∥
∥Tα(θ2 – τ ) – Tα(θ1 – τ )

∥
∥
∥
∥f (τ )

∥
∥dτ

≤ (1 + λ) lim
θ2→θ1

∫ θ1

0

∥
∥Tα(θ2 – τ ) – Tα(θ1 – τ )

∥
∥ϕ(τ ) dτ

= 0. (82)

Equations (79)–(82) lead to limθ2→θ1 ‖y∗(θ2) – y∗(θ1)‖ = 0.
Case 2. Let θ1, θ2 ∈ (θi, si] (i ∈ N) with θ1 < θ2. From the fact that gi is uniformly continu-

ous on bounded sets,

lim
θ2→θ1

∥
∥y∗(θ2) – y∗(θ1)

∥
∥ = lim

θ2→θ1

∥
∥y(θ2) – y(θ1)

∥
∥

≤ lim
θ2→θ1

∥
∥gi

(
θ2, x

(
θ–

i
))

– gi
(
θ , x

(
θ–

i
))∥

∥

≤ lim
θ2→θ1

sup
‖z‖≤λ

∥
∥gi(θ2, z) – gi(θ1, z)

∥
∥ = 0. (83)

Case 3. Let θ1, θ2 ∈ (si, θi+1] (i ∈N) with θ1 < θ2.

lim
θ2→θ1

∥
∥y∗(θ2) – y∗(θ1)

∥
∥ = lim

θ2→θ1

∥
∥y(θ2) – y(θ1)

∥
∥

≤ lim
θ2→θ1

∥
∥Sα(θ2 – si) – Sα(θ1 – si)

∥
∥
∥
∥gi

(
si, x

(
θ–

i
))∥

∥

+ lim
θ2→θ1

‖Kα(θ2 – si) – Kα(θ1 – si)
∥
∥g ′

i
(
si, x

(
θ–

i
))∥

∥

+ lim
θ2→θ1

∥
∥
∥
∥

∫ θ2

0
Tα(θ2 – τ )f (s) ds –

∫ θ1

0
Tα(θ1 – τ )f (s) ds

∥
∥
∥
∥. (84)
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Again, from the compactness of the families {Sα(θ ) : θ > 0} and {Kα(θ ) : θ > 0}, we have

lim
θ2→θ1

∥
∥Sα(θ2 – si) – Sα(θ1 – si)

∥
∥
∥
∥gi

(
si, x

(
θ–

i
))∥

∥

= lim
θ2→θ1

∥
∥Kα(θ2 – si) – Kα(θ1 – si)

∥
∥
∥
∥g ′

i
(
si, x

(
θ–

i
))∥

∥

= 0. (85)

Furthermore, by repeating the arguments employed in Case 1, one can show that

lim
θ2→θ1

∥
∥
∥
∥

∫ θ2

0
Tα(θ2 – τ )f (s) ds –

∫ θ1

0
Tα(θ1 – τ )f (s) ds

∥
∥
∥
∥ = 0. (86)

Equations (84) and (86) ensure that limθ2→θ1 ‖y∗(θ2) – y∗(θ1)‖. Therefore, T|Ji is equicon-
tinuous for any i ∈N.

Step 6. Our goal in this step is showing that, for any i ∈ N and any θ ∈ Ji, the set Zi
θ :=

{y(θ ) : y ∈ D = �(Dλ)} is relatively compact in E.
Case 1. Let θ ∈ J0 = [0, θ1]. If θ = 0, then Z1

θ = {x0} is compact. Let θ ∈ (0, θ1]. be a fixed
point. We have

Z1
θ =

{
y(θ ) : y ∈ �(Dλ)

}

=
{

Sα(θ )x0 + Kα(θ )x1 +
∫ θ

0
Tα(θ – τ )f (τ ) dτ : f ∈ S1

F(·,x(·)), x ∈ Dλ

}

.

Now, for any δ ∈ (0, θ ), let

Z1
θ ,δ :=

{

Sα(θ )x0 + Kα(θ )x1 +
∫ θ–δ

0
Tα(θ – τ )f (τ ) dτ : f ∈ S1

F(·,x(·)), x ∈ Dλ

}

.

Notice that ‖f (τ )‖ ≤ (1 + λ)ϕ(τ ), for any τ ∈ [0, θ – δ], any n ≥ 1. Because ϕ is continuous
on [0, θ ], the set {fn(τ ) : n ≥ 1} is bounded, and hence, by the compactness of Tα(θ – τ );
τ ∈ [0, θ – δ], the set Z1

θ ,δ is relatively compact in E. Moreover, for any x ∈ Dλ and any
f ∈ S1

F(·,x(·)), we get from (6), (HF)∗(iv) and the continuity of ϕ,

lim
δ→0

∥
∥
∥
∥

∫ θ

0
Tα(θ – τ )f (τ ) dτ –

∫ θ–δ

0
Tα(θ – τ )f (τ ) dτ

∥
∥
∥
∥

≤ L max

{

1,
1

|μ|
}

(1 + λ) lim
δ→0

∫ θ

θ–δ

ϕ(τ ) dτ

= 0.

Then there exist relatively compact sets that can be arbitrarily approximated to the set
Zi

θ . Then it is relatively compact in E.
Case 2. Let θ ∈ [si, θi]; i ∈ N be a fixed point. Since the set {x(θ–

i ) : x ∈ Dλ} is bounded,
then by (Hgi)∗(ii), the set {y(θ ) : y ∈ �(x), x ∈ Dλ} = {gi(θ , x(θ–

i )) : x ∈ Dλ} is relatively com-
pact in E.

Case 3. Let θ ∈ [θi, si+1] ; i ∈N be a fixed point. As in Case 2, the set {gi(θ , x(θ–
i )) : x ∈ Dλ}

is relatively compact in E, and hence, by the compactness of Sα(θ – si), we conclude that
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{Sα(θ – si)gi(si, x(θ–
i )) : x ∈ Dλ} is relatively compact in E. Also, due to the compactness of

Kα(t); t > 0, the set {Kα(θ – si)g ′
i(si, x(θ–

i )) : x ∈ Dλ} is relatively compact in E. Furthermore,
using the same arguments as in Case 1, one can show that the sets {∫ θ

0 Tα(θ – τ )f (τ ) dτ :
f ∈ S1

F(·,x(·)), x ∈ Dλ} and {∫ si
0 Tα(si – τ )f (τ ) dτ : f ∈ S1

F(·,x(·)), x ∈ Dλ} are relatively compact.
As a result of this discussion, we conclude that, for any i ∈ N and any t ∈ Ji, the set Zi

θ =
{y(θ ) : y ∈ �(Dλ)} is relatively compact in E.

Now, according to Lemma 4, Steps 4, 5 and 6 imply the set T = �(Dλ) is relatively com-
pact in SAPωPC(J , E).

Now, as a result of Steps 1–6, we conclude that � is closed and completely continuous
from Dλ to the family on non-empty convex compact of Dλ. Applying Lemma 3, � has a
fixed point which is an S-asymptotically ω-periodic mild solution to Problem (1). �

Remark 4 For any t ≥ 0, we have

tα–1

1 + |μ|tα
≤

⎧
⎨

⎩

2
|μ|(1+t) ; if 0 < |μ| ≤ 1,

2
1+t ; if |μ| > 1.

(87)

To clarify this, we consider the following cases:
Case 1. Let 0 < |μ| ≤ 1. Then

tα–1

1 + |μ|tα
≤

⎧
⎨

⎩

tα–1 ≤ 1 ≤ 2
|μ|(1+t) ; if 0 ≤ t ≤ 1,

tα–1

|μ|tα = 1
|μ|t ≤ 2

|μ|(1+t) ; if t > 1.

So,

tα–1

1 + |μ|tα
≤ 2

|μ|(1 + t)
, ∀t ≥ 0.

Case 2. Let |μ| > 1. In this case, we have

tα–1

1 + |μ|tα
≤

⎧
⎨

⎩

tα–1 ≤ 1 ≤ 2
1+t ; if 0 ≤ t ≤ 1,

tα–1

|μ|tα = 1
|μ|t ≤ 1

t ≤ 2
1+t ; if t > 1,

which yields

tα–1

1 + |μ|tα
≤ 2

1 + t
, ∀t ≥ 0.

Then (87) holds.

4 Examples
Example 1 Let α = 3

2 , m = 4, ω = 2π , J = [0,∞), si = i π
2 ; i ∈ {0}∪N, and θi = (2i–1) π

4 ; i ∈N.
Observe that, for i ∈ N, si+m = si+4 = (i + 4) π

2 = si + 2π , and θi+4 = (2(i + 4) – 1) π
4 = θi + 2π .

Let � = {s = (s1, s2) : s2
1 + s2

2 ≤ 1}, and E = L2(�). Define an operator A : D(A) ⊆ E → E by

A(u) := �u – u, (88)
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with D(A) = H2(�) ∩ H1
0 (�). It is known that (see [19]) A is a sectorial operator of type

{M,ϕ,α,μ} with μ = –1 and L = 3. Let Z be a non-empty, compact and convex subset of
E, υ = supz∈Z ‖z‖. Consider the multivalued function F : J × E → 2E defined by

F(θ , u) := {vθ ,u,z : z ∈ Z}, (89)

where for any z ∈ Z any (θ , u) ∈ J × E, vθ ,u,z : � →R; vθ ,u,z(s) = 1+ρ sin u(s)
(θ+1)υ ‖z‖; ρ > 0. Since Z

is a non-empty, convex and compact subset, the values of F also are. Moreover,

∥
∥F(θ , 0)

∥
∥ = sup

z∈Z

1
(θ + 1)υ

‖z‖ ≤ 1
θ + 1

= σ (θ ), ∀θ ∈ J , (90)

h
(
F(θ , u), F(θ , v)

) ≤
(∫

�

∣
∣vθ ,u,z(s) – vθ ,v,z(s)

∣
∣2 ds

) 1
2

, ∀z ∈ Z

=
ρ

θ + 1

∫

�

∣
∣sin u(s) – sin v(s)

∣
∣2dx)

1
2

≤ ρ

θ + 1

∫

�

∣
∣u(s) – v(s)

∣
∣2dx)

1
2

=
ρ

θ + 1
‖u – v‖, (91)

and

h
(
F(θ + 2π , u), F(θ , u)

) ≤
(∫

�

∣
∣vθ+2π ,u,z(s) – vθ ,u,z(s)

∣
∣2 ds

) 1
2

, ∀z ∈ Z

=
∫

�

∣
∣
∣
∣
ρ sin u(s) + 1
θ + 1 + 2π

–
ρ sin u(s) + 1

θ + 1

∣
∣
∣
∣

2

dx)
1
2

≤ 1
(θ + 1 + 2π )(θ + 1)

(∫

�

2π
∣
∣ρ sin u(s) + 1

∣
∣2 ds

) 1
2

≤ 2π (ρ + 1)
(θ + 1 + 2π )(θ + 1)

(‖u‖ + 1
)

= L2(θ )
(‖u‖ + 1

)
. (92)

Due to (91) and (92), Eqs. (7) and (8) are verified with L1(θ ) = ρ

θ+1 and L2(θ ) = 2π (ρ+1)
(θ+1+2π )(θ+1) ;

θ ∈ [0,∞).
Next, in view of (87), and since |μ| = 1, it follows that

(θ – τ )α–1

1 + |μ|(θ – τ )α
≤ 2

1 + θ – τ
, ∀θ ≥ 0, τ ∈ [0, θ ].

Therefore,
∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ

≤ 2ρ

∫ θ

0

1
1 + θ – τ

1
τ + 1

dτ

= 2ρ

∫ θ

0

1
θ + 2

[
1

1 + θ – τ
+

1
τ + 1

]

dτ

= 4ρ
ln |1 + θ |
(θ + 2)

,
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which yields limθ→∞
∫ θ

0
(θ–τ )α–1

1+|μ|(θ–τ )α L1(τ ) dτ = 0. Similarly, limθ→∞
∫ θ

0
(θ–τ )α–1

1+|μ|(θ–τ )α σ (τ ) dτ = 0.
Hence, (9) and (15) are verified. Moreover,

ξ = sup
θ∈J

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L1(τ ) dτ ≤ 4ρ. (93)

Now, again from (87), one has

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
L2(τ ) dτ

≤ (ρ + 1) lim
θ→∞

∫ θ

0

1
1 + θ – τ

(
2π

(τ + 1 + 2π )(τ + 1)

)

dτ

≤ (ρ + 1) lim
θ→∞

∫ θ

0

[
1

1 + θ – τ

1
τ + 1

–
1

1 + θ – τ

1
τ + 1 + 2π

]

dτ

= (ρ + 1) lim
θ→∞

[
1

θ + 2

∫ θ

0

[
1

1 + θ – τ
+

1
τ + 1

]

dτ

–
1

θ + 2 + 2π

∫ θ

0

[
1

1 + θ – τ
+

1
τ + 1 + 2π

]

dτ

]

= (ρ + 1) lim
θ→∞

2 ln |1 + θ |
θ + 2

– (ρ + 1) lim
θ→∞

1
θ + 2 + 2π

[
ln |1 + θ | + ln |1 + 2π + θ | – ln(2π + 1)

]

= 0, (94)

which means that (16) holds.
Furthermore, for any i ∈N, define gi : [ti, si] × E → E by

gi(θ , u)(s) :=
�u(s) sin iθ

i
; (θ , u) ∈ [θi, si] × E, s ∈ �, (95)

where � is a positive real number. Obviously for any u ∈ E, d
dθ

(gi(θ , u))(s) = �(cos iθ )u(s);
t ∈ J . Notice that, for any u ∈ E,

lim
θ→∞
i→∞

∥
∥gi+m(θ + 2π , u) – gi(θ , u)

∥
∥

= lim
θ→∞
i→∞

(∫

�

∣
∣
∣
∣
�u(s) sin(i + m)(θ + 2π )

i + m
–

�u(s) sin(iθ )
i

∣
∣
∣
∣

2

ds
) 1

2

≤ lim
i→∞

2�

i
‖u‖ = 0.

Then (10) is satisfied. Moreover, for any u1, u2 ∈ E,

∥
∥gi(θ , u1) – gi(θ , u2)

∥
∥

=
�

i

(∫

�

∣
∣u1(s) sin iθ – u2(s) sin iθ

∣
∣2 ds

) 1
2

≤ �‖u1 – u2‖ (96)
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and

∥
∥g ′

i(si, u1) – g ′
i(si, u2)

∥
∥ =

(∫

�

�2∣∣u1(s)(cos iθ ) – u2(s)(cos iθ )
∣
∣2 ds

) 1
2

≤ �‖u1 – u2)‖. (97)

From (96) and (97), it follows that (11) and (12) hold with N = N = �. In addition,

∥
∥gi(θ , u)

∥
∥ =

(∫

�

∣
∣
∣
∣
�u(s) sin iθ

i

∣
∣
∣
∣

2

ds
) 1

2 ≤ �

i
‖u‖ ≤ �

(‖u‖ + 1
)

(98)

and

∥
∥g ′

i(si, z)
∥
∥ =

(∫

�

∣
∣�u(s) cos isi

∣
∣2 ds

) 1
2 ≤ �‖u‖ ≤ �

(‖u‖ + 1
)
. (99)

By (98) and (99), we arrive at (13) and (14) are verified where κ1 = κ1 = �.
Now, all the assumptions of Theorem 1 are satisfied, so the problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
si ,θ x(θ , s) ∈ Ax(θ , s) + F(θ , x(θ )), a.e. θ ∈ (si, θi+1], i ∈N∪ {0}, s ∈ �,

x(θ+
i , s) = gi(θi, x(θ–

i , s)), i ∈N, s ∈ �,

x(θ , s) = gi(θ , x(θ–
i , s)), θ ∈ (θisi], i ∈ N, s ∈ �,

x(0, s) = x0(s), x′(0) = x1(s); s ∈ �,

x(θ , s) = 0, θ ∈ J , s ∈ ∂�,

has an S-asymptotically 2π-periodic mild solution, x : J → L2(�), provided that

8ρ + 3� <
1
3

, (100)

where A, F , gi are given by (88), (90) and (94). By choosing ρ and � sufficiently small, we
can arrive at (100).

Example 2 Let A, α, E, m, ω = 2π , J , si, θi; i ∈ N be as in Example 1, Z be a non-empty
convex compact subset of E, the families {Sα(t) : t > 0}, {Kα(t) : t > 0} and {Tα(t) : t > 0} are
compact [19]. Define a multivalued function F : J × E → Pck(E) by

F(θ , u) =
ρ(‖u‖ + 1)
υ(1 + θ ) 3

2
Z, (101)

where ρ > 0 and υ = Sup{‖z‖ : z ∈ Z}. Clearly for every x ∈ E, θ → F(θ , x) is strongly
measurable, F(θ , ·) is upper semicontinuous and, for any u ∈ PC(J , E), the function f (θ ) =
ρ(‖u‖+1)

υ(1+θ )
3
2

z0; z0 ∈ Z is locally integrable and f (θ ) ∈ F(θ , u(θ )); θ ∈ J . Moreover, in view of

(101), for any u ∈ E and any θ ∈ J ,

∥
∥F(θ , u)

∥
∥ ≤ ρ(‖u‖ + 1)

(1 + θ ) 3
2

= ϕ(θ )
(
1 + ‖u‖), (102)
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where

ϕ(θ ) =
ρ

(1 + θ ) 3
2

; θ ∈ J . (103)

We show that (57) and (58) are verified. In view of (87), and by arguing as in (94), one
has

lim
θ→∞

∫ θ

0

(θ – τ )α–1

1 + |μ|(θ – τ )α
(
ϕ(τ + 2π ) + ϕ(τ )

)
dτ

= ρ lim
θ→∞

∫ θ

0

[
1

1 + θ – τ

(
1

(τ + 1 + 2π ) 3
2

+
1

(τ + 1) 3
2

)]

dτ

≤ ρ lim
θ→∞

∫ θ

0

[
1

1 + θ – τ

(
1

τ + 1 + 2π
+

1
τ + 1

)]

dτ

≤ 2ρ lim
θ→∞

∫ θ

0

1
1 + θ – τ

1
τ + 1

dτ = 0.

Then (57) holds. Furthermore,

sup
θ∈J

∫ θ

0
ϕ(τ ) dτ = sup

θ∈J

2ρ√
1 + θ

= 2ρ. (104)

Next, let K : D(K) = E → E be a linear bounded compact operator and for any i ∈ N,
define gi : [θi, si] × E → E by

gi(θ , u)(s) =
(Ku)(s)
i(1 + θ )

, ∀s ∈ �. (105)

Notice that

g ′
i(si, u)(s) =

–(Ku)(s)
i(1 + si)2 , ∀s ∈ �. (106)

In view of (105) and (106), we get

lim
θ→∞
i→∞

∥
∥gi+m(θ + 2π , u) – gi(θ , u)

∥
∥

= ‖K‖ lim
θ→∞
i→∞

(
∫

�

∣
∣
∣
∣

u(s)
(i + 2π )(1 + θ + 2π )

–
u(s)

i(1 + θ )

∣
∣
∣
∣

2

ds)
1
2

= ‖K‖‖u‖ lim
θ→∞
i→∞

∣
∣
∣
∣

1
(i + 2π )(1 + θ + 2π )

–
1

i(1 + θ )

∣
∣
∣
∣ = 0,

∥
∥gi(θ , u1) – gi(θ , u2)

∥
∥

=
(∫

�

∣
∣
∣
∣
(Ku1)(s)
i(1 + θ )

–
(Ku2)(s)
i(1 + θ )

∣
∣
∣
∣

2

ds
) 1

2

≤ ‖K |
i(1 + θ )

‖u1 – u2‖ ≤ ‖K‖‖u1 – u2‖,
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∥
∥gi(θ , u)

∥
∥ =

(∫

�

∣
∣
∣
∣

(Ku)(s)
i(1 + θ )

∣
∣
∣
∣

2

ds
) 1

2

≤ ‖K‖‖u‖
1 + θ

= h∗(θ )‖u‖,

and

∥
∥g ′

i(si, u)
∥
∥ =

(∫

�

∣
∣
∣
∣

(Ku)(s)
i(1 + si)2

∣
∣
∣
∣

2

ds
) 1

2

≤ ‖K‖‖u‖
i(1 + si)2 ≤ ‖K‖(‖u‖ + 1

)
.

Then (10), (11), (14) and (56) are verified with N = N = ‖K‖ and h∗(θ ) = ‖K‖
1+θ

; θ ∈ J and
η = κ2 = ‖K‖. Notice that, by the compactness of K , the function gi(θ , ·); i ∈ N is com-
pact, and hence all assumptions of Theorem 2 are satisfied. So, by applying Theorem 2,
Problem (1), where A as be in example (1) and F , gi are given by (102) and (105), has an
S-asymptotically 2π-periodic mild solution provided that 2ρ < 1

4L = 1
12 and ‖k‖ < 1

14 .

Example 3 Let A, α, E, m, ω = 2π , J , �, si, θi;i ∈ N be as in Example 1, Z a non-empty
convex compact subset of E and x0, x1 two fixed elements of E. For any (θ , s) ∈ (J ,�) and
any x : J → E, we denote x(θ )(s) by x(θ , s). Consider the impulsive semilinear differential
inclusion:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
si ,θ x(θ , s) ∈ �x(θ , s) – x(θ , s) + cos x(θ ,s)

40(1+θ ) Z,

a.e. θ ∈ (si, θi+1], i ∈N∪ {0}, s ∈ �,

x(θ+
i , s) = x(θ–

i ,s) sin iθi
40i , i ∈ N, s ∈ �,

x(θ , s) = x(θ–
i ,s) sin iθ

40i , θ ∈ (θisi], i ∈N, s ∈ �,

x(0, s) = x0(s), x′(0) = x1(s); s ∈ �,

x(θ , s) = 0, θ ∈ J , s ∈ ∂�.

(107)

Let F : J × E → 2E be defined by

F(θ , u) =
cos u(s)

40(1 + θ )
Z. (108)

Obviously, F verifies (i) and (ii) of (HF). Moreover,

∥
∥F(θ , 0)

∥
∥ ≤ 1

40(1 + θ )
= σ (θ ), ∀θ ∈ J , (109)

h
(
F(θ , u), F(θ , v)

) ≤ 1
40(1 + θ )

‖u – v‖, (110)

and

h
(
F(θ + 2π , u), F(θ , u)

) ≤ 1
40(θ + 1 + 2π )(θ + 1)

‖u‖

≤ 1
40(θ + 1 + 2π )(θ + 1)

(‖u‖ + 1
)
. (111)
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It shows that (7) and (8) are satisfied with L1(θ ) = 1
40(1+θ ) and L2(θ ) = 1

40(θ+1+2π )(θ+1) ; θ ∈
[0,∞). Define

gi(θ , u)(s) :=
u(s) sin iθ

40i
; (θ , u) ∈ [θi, si] × E, s ∈ �. (112)

Using the same arguments as in Example 1, one can demonstrate that (9) and (10)–(16)
are obtained with N = N = κ1 = κ1 = 1

40 and ξ ≤ 1
10 . Notice that L = 3. So, L(2ξ + N· +

(1 + max{1, 1
|μ| })N ) < 1 By applying Theorem 1, Problem (107) has an S-asymptotically

2π-periodic mild solution.

Conclusion Two existence results of S-asymptotically ω-periodic of mild solutions to
non-instantaneous impulsive semilinear differential inclusions of order 1 < α < 2 and gen-
erated by sectorial operators are given This work generalizes much recent work such as
[18–20] to the case when there are impulse effects and the right-hand side is a multivalued
function. Moreover, our technique can be used to develop the work in [12, 15–17, 21, 23–
25] to the case when the linear part is a sectorial operator, the nonlinear part is a multi-
valued function and we have impulse effects. There are many directions for future work,
for example:

1— With the help of technique in [1], we study the existence of solutions for Problem (1)
on a time scales.

2— Investigation an existence theorem for a nonlinear singular-delay-fractional differen-
tial equation considered in [42, 43], when it contains a sectorial operator as a linear
term and the nonlinear term becomes a multivalued function instead of single-valued
function.

3— With the help of technique in [3], discuss the numerical solutions for Problem (1) on
a closed bounded interval.

4— Study the S-asymptotically periodic solutions to Problem (1) when the sectorial op-
erator is replaced by almost sectorial.

5— Study the S-asymptotically periodic solutions to Problem (1) when it involves p-
Laplacian operator ϕp as well as when the Caputo derivative is replaced by the ψ-
Caputo or ψ-Riemann–Liouville derivative. For contributions on BVP involving the
ψ-Riemann–Liouville derivative, see [3] and for references on BVP containing the
p-Laplacian operator ϕp, see [6, 8].

Acknowledgements
This research has been funded by the Scientific Research Deanship at University of Ha’il—Kingdom of Saudi Arabia
through project number BA-2012.

Funding
Not applicable.

Abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.



Alsheekhhussain et al. Advances in Difference Equations        (2021) 2021:330 Page 30 of 31

Consent for publication
Not applicable.

Authors’ contributions
All authors contributed equally and read and approved the final version of the manuscript.

Authors’ information
Not applicable.

Author details
1Department of Mathematics, Faculty of Science, University of Ha’il, Hail, Saudi Arabia. 2Department of Mathematics,
Guizhou University, Guiyang, China. 3Department of Mathematics and Statistics, College of Science, King Faisal University,
Al-Ahsa, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 February 2021 Accepted: 22 June 2021

References
1. Agarwal, P., Ammi, M.S., Asad, J.: Existence and uniqueness results on time scales for fractional nonlocal thermistor

problem in the conformable sense. Adv. Differ. Equ. 2021, 162 (2021)
2. Sunarto, A., Agarwal, P., Sulaiman, J., Chew, J.V., Aruchunan, E.: Iterative method for solving one-dimensional fractional

mathematical physics model via quarter-sweep and PAOR. Adv. Differ. Equ. 2021, 147 (2021)
3. Rezapour, S., Etemad, S., Tellab, B., Agarwal, P., Garcia Guirao, J.L.: Numerical solutions caused by DGJIM and ADM

methods for multi-term fractional BVP involving the generalized ψ -RL-operators. Symmetry 13(4), 532 (2021)
4. Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a non-local problem with integral transmitting condition for

mixed type equation with Caputo fractional derivative. Results Math. 71(3), 1235–1257 (2017)
5. Agarwal, R., Hristova, S., O’Regan, D.: A survey of Lyapunov functions, stability and impulsive Caputo fractional

differential equations. Fract. Calc. Appl. Anal. 19(2), 290–318 (2016)
6. Khan, H., Jarad, F., Abdeljawad, T., Khan, A.: A singular ABC-fractional differential equation with p-Laplacian operator.

Chaos Solitons Fractals 129, 56–61 (2019)
7. Khan, A., Gomez-Aguilar, J.F., Abdeljawad, T., Khan, H.: Stability and numerical simulation of a fractional order

plant-nectar-pollinator model. Alex. Eng. J. 59(1), 49–59 (2020)
8. Khan, H., Tunc, C., Chen, W., Khan, A.: Existence theorems and Hyers–Ulam stability for a class of hybrid fractional

differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 8(4), 1211–1226 (2018)
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