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Abstract
In this paper, we prove some new Opial-type dynamic inequalities on time scales. Our
results are obtained in frame of convexity property and by using the chain rule and
Jensen and Hölder inequalities. For illustration purpose, we obtain some particular
Opial-type inequalities reported in the literature.
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1 Introduction
The theory of convex analysis has become one of the most significant fields of mathemat-
ics due to its widespread usefulness in diverse fields of pure and applied sciences. The
concept of convexity has been utilized in several directions using innovative techniques
to study and unify different problems. Consequently, many new inequalities s associated
with convex functions have been derived by many researchers [6–8, 10].

On other direction, integral inequalities on time scale have been a topic of debate
amongst interested researchers. Due to their numerous application potentials, several
variants have been established by many authors; see for instance [1, 2]. One of the most
attractive inequalities that engaged many researchers is the Opial inequality [11]. During
the last years, it has been realized that the Opial inequality and its generalizations play
a fundamental role in establishing the existence-uniqueness and stability of initial and
boundary value problems for various types of differential equations [12, 14]. For the sake
of completeness, we review some relevant results of Opial inequalities in the context of
time scales calculus.

In [3], the authors proved some dynamic inequalities of Opial type on time scales. One
of the results states that: If � : [0, a] ∩T →R is delta differentiable with �(0) = 0, then

∫ a

0

∣∣�(t) + �σ (t)
∣∣∣∣��(t)

∣∣�t ≤ a
∫ a

0

∣∣��(t)
∣∣2

�t. (1)
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Further, it was proved that, if η and ζ are positive rd-continuous functions on [0, b]T, ζ is
non-increasing and � : [0, b] ∩T →R is delta differentiable with �(0) = 0, then

∫ b

0
ζ σ (t)

∣∣(�(t) + �σ (t)
)
��(t)

∣∣�t ≤
∫ b

0

�t
η(t)

∫ b

0
η(t)ζ (t)

∣∣��(t)
∣∣2

�t. (2)

In [9], the authors replaced ζ σ with ζ and proved an inequality similar to (2) of the form

∫ b

a
ζ (t)

∣∣(�(t) + �σ (t)
)
��(t)

∣∣�t ≤ Kζ (a, b)
∫ b

a

∣∣��(t)
∣∣2

�t, (3)

where ζ is a positive function on [a, b]T, � : [a, b] ∩ T→ R is delta differentiable with
�(0) = 0, and

Kζ (a, b) =
(

2
∫ b

a
ζ 2(η)

(
σ (η) – a

)
�η

)1/2

. (4)

On the other hand, the authors in [15, 16] proved that, if ζ is a positive and non-increasing
function on [a, b] ∩T, then

∫ b

a
ζ (t)

∣∣�(t)
∣∣ν∣∣��(t)

∣∣��t ≤ �

ν + �
(b – a)ν

∫ b

a
ζ (t)

∣∣��(t)
∣∣ν+�

�t, (5)

where � : [a, b] ∩T→R is delta differentiable with �(a) = 0.
In [13], the author generalized (5) and proved some new dynamic inequalities with two

weight functions η and ζ . In particular, it was proved that, if η and ζ are non-negative
functions on [a, b]T such that

∫ b

a
η–1/(ν+�–1)(t)�t < ∞

and � : [a, b] ∩T →R is delta differentiable with �(a) = 0, then

∫ b

a
ζ (t)

∣∣�(t)
∣∣ν∣∣��(t)

∣∣��t ≤ K1(a, b,ν,�)
∫ b

a
η(t)

∣∣��(t)
∣∣ν+�

�t, (6)

where

K1(a, b,ν,�) =
(

�

ν + �

)�/(ν+�)

×
(∫ b

a

(ζ (t))(ν+�)/ν

(η(t))�/ν

(∫ t

a
η

–1
(ν+�–1) (s)�s

)(ν+�–1)

�t
)ν/(ν+�)

. (7)

The objective of this paper is to prove some new dynamic inequalities of Opial type on
time scales by using the convexity property and Jensen inequality. Our results in particular
cases yield some of the recent results reported on Opial-type inequalities.

The paper adheres to the following plan. In Sect. 2, we present some essential prelim-
inaries on time scales as well as some fundamental inequalities. In Sect. 3, we prove the
main results of the paper. For illustration, we derive some particular cases of the main
results in Sect. 4.
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2 Preliminaries on time scales
In this section, we assemble some definitions and concepts on the theory of time scales
calculus. Further, some basic inequalities in the context of time scales are stated. For more
details, we refer the reader to the two pioneering monographs [4, 5].

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We assume
throughout that T has the topology that it inherits from the standard topology on the real
numbers R. We define the forward jump operator σ : T → T by σ (θ ) := inf{s ∈ T : s > θ},
for θ ∈ T. The mapping μ : T → [0,∞) defined by μ(θ ) := σ (θ ) – θ is called the graininess
of T.

A point θ ∈ T is said to be right-dense and right-scattered, if σ (θ ) = θ and σ (θ ) > θ ,
respectively. A function η : T→ R is called rd-continuous provided it is continuous at all
right-dense points in T and its left-sided limits exist (finite) at all left-dense points in T.
The set of all such rd-continuous functions is denoted by Crd(T). We define ησ := η ◦ σ

and define the time scale interval [a, b]T by [a, b]T := [a, b] ∩T.
Fix θ ∈ T and let η : T →R. Define η�(θ ) to be the number (if it exists) with the property

that given any ε > 0 there is a neighborhood s of θ with

∣∣[ησ (θ ) – η(s)
]

– η�(θ )
[
σ (θ ) – s

]∣∣ ≤ ε
∣∣σ (θ ) – s

∣∣, for s ∈ T.

In this case, we say η�(θ ) is the (delta) derivative of η at θ and that η is (delta) differentiable
at θ . We will make use of the following product and quotient rules for the derivative of the
product ηζ and the quotient η/ζ (where ζ ζ σ �= 0, here ζ σ := ζ ◦ σ ) of two differentiable
function η and ζ :

(ηζ )� = η�ζ + ησ ζ� = ηζ� + η�ζ σ ,
(

η

ζ

)�

=
η�ζ – ηζ�

ζζ σ
.

For a, b ∈ T and a delta differentiable function η, the Cauchy integral of η� is defined by∫ b
a η�(θ )�θ = η(b) – η(a). The integration by parts formula on time scales is given by

∫ b

a
η(θ )ζ�(θ )�θ = η(θ )ζ (θ )|ba –

∫ b

a
η�(θ )ζ σ (θ )�θ .

The chain rule formula (see [4, Theorem 1.87]) for appropriate functions η and ζ is given
as

(η ◦ ζ )�(θ ) = η′(ζ (d)
)
ζ�(θ ), where d ∈ [

θ ,σ (θ )
]
. (8)

However, we may define another chain rule by

(η ◦ ζ )�(θ ) =
{∫ 1

0
η′(hζ σ (θ ) + (1 – h)ζ (θ )

)
dh

}
ζ�(θ ), (9)

which is a simple consequence of Keller’s chain rule ([4, Theorem 1.90]). Hölder’s inequal-
ity (see [4, Theorem 6.13]) on time scales is given by

∫ b

a

∣∣η(θ )ζ (θ )
∣∣�θ ≤

[∫ b

a

∣∣η(θ )
∣∣p

�θ

] 1
p
[∫ b

a

∣∣ζ (θ )
∣∣q

�θ

] 1
q

, (10)
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where a, b ∈ T and η, ζ ∈ Crd(I,R), p > 1 and 1/p + 1/q = 1. The particular case when
p = q = 2 yields the Cauchy–Schwarz inequality,

∫ b

a

∣∣η(θ )ζ (θ )
∣∣�θ ≤

[∫ b

a

∣∣η(θ )
∣∣2

�θ

] 1
2
[∫ b

a

∣∣ζ (θ )
∣∣2

�θ

] 1
2

. (11)

On the other hand, Jensen’s inequality on time scales [4, Theorem 6.17] is given by

φ

(∫ b
a ζ (θ )�(θ )�θ∫ b

a �(θ )�θ

)
≤

∫ b
a φ(ζ (θ ))�(θ )�θ∫ b

a �(θ )�θ
, (12)

where a, b ∈ T, c, d ∈R, ζ , � ∈ Crd([a, b]T, (c, d)) and φ ∈ C((c, d),R) is a convex function.

3 Main results
In this section, we state and prove the main results. Throughout this paper we assume that
the appropriate functions are delta differentiable and the integrals in the statements of the
theorems are assumed to exist.

Theorem 3.1 Let T be a time scale with d, τ ∈ T and assume F is non-negative and in-
creasing on [0,∞). If F is convex and ζ : [d, τ ]T →R is such that ζ (d) = 0, then

∫ τ

d
F�

(∣∣ζ (t)
∣∣)�t ≤ F

(∫ τ

d

∣∣ζ�(t)
∣∣�t

)
. (13)

Proof Let η(θ ) =
∫ θ

d |ζ�(s)|�s, for θ ∈ [d, τ ]T. Then η�(θ ) = |ζ�(θ )|, and

η(θ ) =
∫ θ

d

∣∣ζ�(s)
∣∣�s ≥

∣∣∣∣
∫ θ

d
ζ�(s)�s

∣∣∣∣ =
∣∣ζ (θ )

∣∣, for θ ∈ [d, τ ]T.

This implies that

hησ (θ ) + (1 – h)η(θ ) ≥ h
∣∣ζ σ (θ )

∣∣ + (1 – h)
∣∣ζ (θ )

∣∣, for h ∈ (0, 1), (14)

and

(∣∣ζ (θ )
∣∣)� =

(∣∣∣∣
∫ θ

d
ζ�(s)�s

∣∣∣∣
)�

≤
(∫ θ

d

∣∣ζ�(s)
∣∣�s

)�

=
∣∣ζ�(θ )

∣∣. (15)

Applying the chain rule (9), we see that

∫ τ

d
F�

(
w(θ )

)
�θ =

∫ τ

d

{∫ 1

0
F ′(hwσ (θ ) + (1 – h)w(θ )

)
dh

}(
w(θ )

)�
�θ .

Replacing w(θ ) with |ζ (θ )| and using (15), we have

∫ τ

d
F�

(∣∣ζ (θ )
∣∣)�θ =

∫ τ

d

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}(∣∣ζ (θ )
∣∣)�

�θ

≤
∫ τ

d

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}∣∣ζ�(θ )
∣∣�θ .



Saker et al. Advances in Difference Equations        (2021) 2021:305 Page 5 of 16

Now using (14), we get (note F is a convex function)

∫ τ

d
F�

(∣∣ζ (θ )
∣∣)�θ ≤

∫ τ

d

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}∣∣ζ�(θ )
∣∣�θ

≤
∫ τ

d

{∫ 1

0
F ′(hησ (θ ) + (1 – h)η(θ )

)
dh

}
η�(θ )�θ

=
∫ τ

d
F�

(
η(θ )

)
�θ = F

(
η(τ )

)
– F

(
η(d)

)

= F
(
η(τ )

)
– F(0) ≤ F

(∫ τ

d

∣∣ζ�(θ )
∣∣�θ

)
,

which is (13). The proof is complete. �

Theorem 3.2 Let T be a time scale with τ ,� ∈ T and assume that F is non-negative and
increasing on [0,∞). If F is convex and ζ : [τ ,�]T →R is such that ζ (�) = 0, then

∫ �

τ

F�
(∣∣ζ (t)

∣∣)�t ≤ F
(∫ �

τ

∣∣ζ�(t)
∣∣�t

)
. (16)

Proof Let η(θ ) =
∫ �

θ
|ζ�(s)|�s, for θ ∈ [τ ,�]T. Then η�(θ ) = –|ζ�(θ )|, and

η(θ ) =
∫ �

θ

∣∣ζ�(s)
∣∣�s ≥

∣∣∣∣
∫ �

θ

ζ�(s)�s
∣∣∣∣ =

∣∣ζ (θ )
∣∣, for θ ∈ [τ ,�]T.

This implies that

hησ (θ ) + (1 – h)η(θ ) ≥ h
∣∣ζ σ (θ )

∣∣ + (1 – h)
∣∣ζ (θ )

∣∣, for h ∈ (0, 1), (17)

and

(∣∣ζ (θ )
∣∣)� =

(∣∣∣∣
∫ �

θ

ζ�(s)�s
∣∣∣∣
)�

≤
(∫ �

θ

∣∣ζ�(s)
∣∣�s

)�

=
∣∣ζ�(θ )

∣∣. (18)

Applying the chain rule (9), we see that

∫ �

τ

F�
(
w(θ )

)
�θ =

∫ �

τ

{∫ 1

0
F ′(hwσ (θ ) + (1 – h)w(θ )

)
dh

}(
w(θ )

)�
�θ .

Replacing w(θ ) with |ζ (θ )| and using (18), we have

∫ �

τ

F�
(∣∣ζ (θ )

∣∣)�θ =
∫ �

τ

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}(∣∣ζ (θ )
∣∣)�

�θ

≤
∫ �

τ

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}∣∣ζ�(θ )
∣∣�θ .

Now using (17), we get (note F is non-negative and convex)

∫ �

τ

F�
(∣∣ζ (θ )

∣∣)�θ ≤
∫ �

τ

{∫ 1

0
F ′(h

∣∣ζ σ (θ )
∣∣ + (1 – h)

∣∣ζ (θ )
∣∣)dh

}∣∣ζ�(θ )
∣∣�θ
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≤ –
∫ �

τ

{∫ 1

0
F ′(hησ (θ ) + (1 – h)η(θ )

)
dh

}
η�(θ )�θ

= –
∫ �

τ

F�
(
η(θ )

)
�θ = F

(
η(τ )

)
– F

(
η(�)

)

= F
(
η(τ )

)
– F(0) ≤ F

(∫ �

τ

∣∣ζ�(θ )
∣∣�θ

)
,

which is (16). The proof is complete. �

If we assume that there exists τ ∈ (d,�) so that

∫ τ

d

∣∣ζ�(θ )
∣∣�θ =

∫ �

τ

∣∣ζ�(θ )
∣∣�θ =

1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ , (19)

then we have the following two results when ζ (d) = 0 = ζ (�).

Theorem 3.3 Let (19) be satisfied and T be a time scale with d, � ∈ T. Assume that F
is non-negative and increasing on [0,∞). If F is convex and ζ : [d,�]T → R is such that
ζ (d) = 0 = ζ (�), then

∫ �

d
F�

(∣∣ζ (θ )
∣∣)�θ ≤ 2F

(
1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ

)
. (20)

Proof It follows that

∫ �

d
F�

(∣∣ζ (θ )
∣∣)�θ =

∫ τ

d
F�

(∣∣ζ (θ )
∣∣)�θ +

∫ �

τ

F�
(∣∣ζ (θ )

∣∣)�θ .

Thus, using Theorems 3.1, 3.2 and (19), we obtain

∫ �

d
F�

(∣∣ζ (θ )
∣∣)�θ =

∫ τ

d
F�

(∣∣ζ (θ )
∣∣)�θ +

∫ �

τ

F�
(∣∣ζ (θ )

∣∣)�θ

≤ F
(∫ τ

d

∣∣ζ�(θ )
∣∣�θ

)
+ F

(∫ �

τ

∣∣ζ�(θ )
∣∣�θ

)

= F
(

1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ

)
+ F

(
1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ

)

= 2F
(

1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ

)
,

which is the desired inequality (20). The proof is complete. �

Theorem 3.4 Let (19) be satisfied andT be a time scale with d, � ∈ T. Assume that F is non-
negative convex and increasing on [0,∞), and h is convex and increasing on [0,∞). Suppose
η is positive on [d,�]T and

∫ �

d η(t)�t = 1. If ζ : [d,�]T →R is such that ζ (d) = 0 = ζ (�), then

∫ �

d
F�

(∣∣ζ (θ )
∣∣)�θ ≤ 2F

(
h–1

(∫ �

d
η(θ )h

( |ζ�(θ )|
2η(θ )

)
�θ

))
. (21)
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Proof Since h is a convex function, then using Jensen’s inequality (12), we have

h
(∫ �

d η(θ )( |ζ�(θ )|
2η(θ ) )�θ∫ �

d η(θ )�θ

)
≤

∫ �

d η(θ )h( |ζ�(θ )|
2η(θ ) )�θ∫ �

d η(θ )�θ
,

and since
∫ �

d η(θ )�θ = 1 and h is increasing we obtain

1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ ≤ h–1

(∫ �

d
η(θ )h

( |ζ�(θ )|
2η(θ )

)
�θ

)
. (22)

Finally, using the increasing behavior of F and substituting (22) into (20), we have

∫ �

d
F�

(∣∣ζ (θ )
∣∣)�θ ≤ 2F

(
1
2

∫ �

d

∣∣ζ�(θ )
∣∣�θ

)

≤ 2F
(

h–1
(∫ �

d
η(θ )h

( |ζ�(θ )|
2η(θ )

)
�θ

))
,

which is (21). The proof is complete. �

4 Some applications
In this section, we use the main results of Sect. 3 to obtain Opial-type inequalities.

Theorem 4.1 Let T be a time scale with d, τ ∈ T and � > 1. If ζ : [d, τ ]T → R is delta
differentiable with ζ (d) = 0, then

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)ν

ν + �

∫ τ

d

∣∣ζ�(θ )
∣∣ν+�

�θ , for ν ≥ 0. (23)

Proof Let η(θ ) =
∫ θ

d |ζ�(s)|��s, for θ ∈ [d, τ ]T. Then η(d) = 0 and

η�(θ ) =
∣∣ζ�(θ )

∣∣� > 0. (24)

By Hölder’s inequality (10) with indices � and �/(� – 1), we get

∣∣ζ (θ )
∣∣ =

∣∣∣∣
∫ θ

d
ζ�(s)�s

∣∣∣∣ ≤
∫ θ

d

∣∣ζ�(s)
∣∣�s

≤
(∫ θ

d
�s

) �–1
�

(∫ θ

d

∣∣ζ�(s)
∣∣��s

) 1
�

≤ (θ – d)
�–1
� η

1
� (θ ),

which yields

∣∣ζ (θ )
∣∣ν ≤ (θ – d)

ν(�–1)
� η

ν
� (θ ). (25)

Applying the chain rule (8), we obtain

(
η

ν+�
� (θ )

)� =
ν + �

�
η

ν
� (d)η�(θ ), where d ∈ [

θ ,σ (θ )
]
.
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Since η�(θ ) > 0, and d ≥ θ , we see that

(
η

ν+�
� (θ )

)� ≥ ν + �

�
η

ν
� (θ )η�(θ ). (26)

By virtue of (24), (25) and (26) we have

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤
∫ τ

d
(θ – d)

ν(�–1)
� η

ν
� (θ )η�(θ )�θ

≤ (τ – d)
ν(�–1)

�

∫ τ

d
η

ν
� (θ )η�(θ )�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ .

Applying Theorem 3.1, by setting F(η) = η
ν+�
� , we obtain

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

(∫ τ

d
η�(θ )�θ

) ν+�
�

=
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d

∣∣ζ�(θ )
∣∣��θ

) ν+�
�

.

Now applying Hölder’s inequality (10) with indices (ν + �)/ν and (ν + �)/�, we have

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)ν

ν + �

∫ τ

d

∣∣ζ�(θ )
∣∣ν+�

�θ ,

which is the desired inequality (23). The proof is complete. �

Theorem 4.2 Let T be a time scale with d, τ ∈ T. If ζ : [d, τ ]T → R is delta differentiable
with ζ (d) = 0 then

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)ν

ν + 1

∫ τ

d

∣∣ζ�(θ )
∣∣ν+1

�θ , for ν ≥ 0. (27)

Proof Let η(θ ) =
∫ θ

d |ζ�(s)|�s, for θ ∈ [d, τ ]T. Then η(d) = 0 and

∣∣ζ (θ )
∣∣ =

∣∣∣∣
∫ θ

d
ζ�(s)�s

∣∣∣∣ ≤
∫ θ

d

∣∣ζ�(s)
∣∣�s = η(θ ). (28)

Applying the chain rule (8), we obtain

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ), where d ∈ [
θ ,σ (θ )

]
.

Since η�(θ ) > 0, and d ≥ θ , we see that

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ) ≥ (ν + 1)ην(θ )η�(θ ). (29)
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Now, from (28) and (29) we have

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤
∫ τ

d
ην(θ )η�(θ )�θ

≤
∫ τ

d
ην(d)η�(θ )�θ ≤ 1

ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ .

Applying Theorem 3.1, by setting F(η) = ην+1, we obtain

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ 1
ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ

≤ 1
ν + 1

(∫ τ

d
η�(θ )�θ

)ν+1

=
1

ν + 1

(∫ τ

d

∣∣ζ�(θ )
∣∣�θ

)ν+1

.

Now applying Hölder’s inequality (10) with indices (ν + 1) and (ν + 1)/ν , we have

∫ τ

d

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)ν

ν + 1

∫ τ

d

∣∣ζ�(θ )
∣∣ν+1

�θ ,

which is (27). The proof is complete. �

Remark 4.1 If ν = 1, then inequality (27) becomes the Olech inequality

∫ τ

d

∣∣ζ (θ )
∣∣∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)
2

∫ τ

d

∣∣ζ�(θ )
∣∣2

�θ .

Following the same arguments of the proofs of Theorem 4.1 and Theorem 4.2, one can
prove the following theorems.

Theorem 4.3 Let T be a time scale with τ ,� ∈ T and � > 1. If ζ : [τ ,�]T → R is delta
differentiable with ζ (�) = 0 then

∫ �

τ

∣∣ζ σ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(� – τ )ν

ν + �

∫ �

τ

∣∣ζ�(θ )
∣∣ν+�

�θ , for ν ≥ 0. (30)

Theorem 4.4 Let T be a time scale with τ ,� ∈ T. If ζ : [τ ,�]T → R is delta differentiable
with ζ (�) = 0 then

∫ �

τ

∣∣ζ σ (t)
∣∣ν∣∣ζ�(t)

∣∣�t ≤ (� – τ )ν

ν + 1

∫ �

τ

∣∣ζ�(t)
∣∣ν+1

�t, for ν ≥ 0. (31)

Remark 4.2 If ν = 1, then inequality (31) becomes

∫ �

τ

∣∣ζ σ (θ )
∣∣∣∣ζ�(θ )

∣∣�θ ≤ (� – τ )
2

∫ �

τ

∣∣ζ�(θ )
∣∣2

�θ .

Theorem 4.5 Let T be a time scale with d, τ ∈ T, � > 1, and � be non-negative and non-
increasing on [d, τ ]T. If ζ : [d, τ ]T →R is delta differentiable with ζ (d) = 0 then for ν ≥ 0

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)ν

ν + �

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+�

�θ . (32)
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Proof Let η(θ ) =
∫ θ

d �
�

ν+� (s)|ζ�(s)|��s, for θ ∈ [d, τ ]T. Then η(d) = 0 and

η�(θ ) = �
�

ν+� (θ )
∣∣ζ�(θ )

∣∣� > 0. (33)

Applying Hölder’s inequality (10) with indices � and �/(� – 1), we get

∣∣ζ (θ )
∣∣ =

∣∣∣∣
∫ θ

d
ζ�(s)�s

∣∣∣∣ ≤
∫ θ

d

∣∣ζ�(s)
∣∣�s

=
∫ θ

d
�

–1
ν+� (s)�

1
ν+� (s)

∣∣ζ�(s)
∣∣�s

≤
(∫ θ

d

(
�

–1
ν+� (s)

) �
�–1 �s

) �–1
�

(∫ θ

d
�

�
ν+� (s)

∣∣ζ�(s)
∣∣��s

) 1
�

≤ �
–1
ν+� (θ )(θ – d)

�–1
� η

1
� (θ ),

which yields

�
ν

ν+� (s)
∣∣ζ (θ )

∣∣ν ≤ (θ – d)
ν(�–1)

� η
ν
� (θ ). (34)

By applying the chain rule (8), we obtain

(
η

ν+�
� (θ )

)� =
ν + �

�
η

ν
� (d)η�(θ ), where d ∈ [

θ ,σ (θ )
]
.

Since η�(θ ) = �
�

ν+� (θ )|ζ�(θ )|� > 0, and d ≥ θ , we see that

(
η

ν+�
� (θ )

)� ≥ ν + �

�
η

ν
� (θ )η�(θ ). (35)

From (33), (34) and (35), we have

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ =
∫ τ

d
�

ν
ν+� (θ )

∣∣ζ (θ )
∣∣ν� �

ν+� (θ )
∣∣ζ�(θ )

∣∣�

≤
∫ τ

d
(θ – d)

ν(�–1)
� η

ν
� (θ )η�(θ )�θ

≤ (τ – d)
ν(�–1)

�

∫ τ

d
η

ν
� (θ )η�(θ )�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ .

Applying Theorem 3.1, with F(η) = η
ν+�
� , we obtain

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

(∫ τ

d
η�(θ )�θ

) ν+�
�
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=
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d
�

�
ν+� (θ )

∣∣ζ�(θ )
∣∣��θ

) ν+�
�

.

Now applying Hölder’s inequality (10) with indices (ν + �)/ν and (ν + �)/�, we get

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)ν

ν + �

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+�

�θ ,

which is the desired inequality (32). The proof is complete. �

Theorem 4.6 Let T be a time scale with d, τ ∈ T and � be non-negative and non-
increasing on [d, τ ]T. If ζ : [d, τ ]T →R is delta differentiable with ζ (d) = 0 then for ν ≥ 0

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)ν

ν + 1

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+1

�θ . (36)

Proof Let η(θ ) =
∫ θ

d �
1

ν+1 (s)|ζ�(s)|�s, for θ ∈ [d, τ ]T. Then η(d) = 0 and

∣∣ζ (θ )
∣∣ ≤

∫ θ

d

∣∣ζ�(s)
∣∣�s ≤

∫ θ

d
�

–1
ν+1 (s)�

1
ν+1 (s)

∣∣ζ�(s)
∣∣�s

≤ �
–1
ν+1 (θ )

∫ θ

d
�

1
ν+1 (s)

∣∣ζ�(s)
∣∣�s ≤ �

–1
ν+1 (θ )η(θ ). (37)

Applying the chain rule (8), we obtain

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ), where d ∈ [
θ ,σ (θ )

]
.

Since η�(θ ) = �
1

ν+1 (θ )|ζ�(θ )| > 0, and d ≥ θ , we see that

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ) ≥ (ν + 1)ην(θ )η�(θ ). (38)

From (37) and (38) we have

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ

≤
∫ τ

d
�

ν
ν+1 (θ )

∣∣ζ (θ )
∣∣ν� 1

ν+1 (θ )
∣∣ζ�(θ )

∣∣�θ ≤
∫ τ

d
ην(θ )η�(θ )�θ

≤
∫ τ

d
ην(d)η�(θ )�θ ≤ 1

ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ .

Applying Theorem 3.1, with F(η) = ην+1, we obtain

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ 1
ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ .

≤ 1
ν + 1

(∫ τ

d
η�(θ )�θ

)ν+1

=
1

ν + 1

(∫ τ

d
�

1
ν+1 (θ )

∣∣ζ�(θ )
∣∣�θ

)ν+1

.
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By applying Hölder’s inequality (10) with indices (ν + 1) and (ν + 1)/ν , we have

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)ν

ν + 1

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+1

�θ ,

which is (36). The proof is complete. �

Remark 4.3 If ν = 1, then inequality (36) becomes

∫ τ

d
�(θ )

∣∣ζ (θ )
∣∣∣∣ζ�(θ )

∣∣�θ ≤ (τ – d)
2

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣2

�θ .

Similar to Theorem 4.5 and Theorem 4.6, one can prove the following theorems.

Theorem 4.7 Let T be a time scale with τ ,� ∈ T, � > 1 and � be non-negative and nonde-
creasing on [τ ,�]T. If ζ : [τ ,�]T →R is delta differentiable with ζ (�) = 0 then for ν ≥ 0

∫ �

τ

�(θ )
∣∣ζ σ (θ )

∣∣ν∣∣ζ�(θ )
∣∣��θ ≤ �(� – τ )ν

ν + �

∫ �

τ

�(θ )
∣∣ζ�(θ )

∣∣ν+�
�θ . (39)

Theorem 4.8 Let T be a time scale with τ ,� ∈ T and � be non-negative and nondecreasing
on [τ ,�]T. If ζ : [τ ,�]T →R is delta differentiable with ζ (�) = 0 then for ν ≥ 0

∫ �

τ

�(θ )
∣∣ζ σ (θ )

∣∣ν∣∣ζ�(θ )
∣∣�θ ≤ (� – τ )ν

ν + 1

∫ �

τ

�(θ )
∣∣ζ�(θ )

∣∣ν+1
�θ . (40)

Remark 4.4 If ν = 1, then inequality (40) becomes

∫ �

τ

�(t)
∣∣ζ σ (t)

∣∣∣∣ζ�(t)
∣∣�t ≤ (� – τ )

2

∫ �

τ

�(t)
∣∣ζ�(t)

∣∣2
�t.

Theorem 4.9 Let T be a time scale with d, τ ∈ T, � > 1, s be non-negative and non-
increasing on [d, τ ]T, and � be a non-negative function on [d, τ ]T. If ζ : [d, τ ]T → R is
delta differentiable with ζ (d) = 0 then for ν ≥ 0

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ K1(d, τ ,ν,�)
∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+�

�θ , (41)

where

K1(d, τ ,ν,�) =
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d

(
s(θ )
�(θ )

)�/ν

�θ

)ν/�

.

Proof Let η(θ ) =
∫ θ

d s
�

ν+� (x)|ζ�(x)|��x, for θ ∈ [d, τ ]θ . Then η(d) = 0 and

η�(θ ) = s
�

ν+� (θ )
∣∣ζ�(θ )

∣∣� > 0. (42)

By Hölder’s inequality (10) with indices � and �/(� – 1) we get

∣∣ζ (θ )
∣∣ =

∣∣∣∣
∫ θ

d
ζ�(x)�x

∣∣∣∣ ≤
∫ θ

d

∣∣ζ�(x)
∣∣�x
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=
∫ θ

d
s

–1
ν+� (x)s

1
ν+� (x)

∣∣ζ�(x)
∣∣�x

≤
(∫ θ

d

(
s

–1
ν+� (x)

) �
�–1 �x

) �–1
�

(∫ θ

d
s

�
ν+� (x)

∣∣ζ�(x)
∣∣��x

) 1
�

≤ s
–1
ν+� (θ )(θ – d)

�–1
� η

1
� (θ ),

which yields

s
ν

ν+� (θ )
∣∣ζ (θ )

∣∣ν ≤ (θ – d)
ν(�–1)

� η
ν
� (θ ). (43)

By applying the chain rule (8), we obtain

(
η

ν+�
� (θ )

)� =
ν + �

�
η

ν
� (d)η�(θ ), where d ∈ [

θ ,σ (θ )
]
.

Since η�(θ ) = s
�

ν+� (θ )|ζ�(θ )|� > 0, and d ≥ θ , we see that

(
η

ν+�
� (θ )

)� ≥ ν + �

�
η

ν
� (θ )η�(θ ). (44)

Now, from (42), (43) and (44) we have

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ =
∫ τ

d
s

ν
ν+� (θ )

∣∣ζ (θ )
∣∣νs

�
ν+� (θ )

∣∣ζ�(θ )
∣∣��θ

≤
∫ τ

d
(θ – d)

ν(�–1)
� η

ν
� (θ )η�(θ )�θ

≤ (τ – d)
ν(�–1)

�

∫ τ

d
η

ν
� (θ )η�(θ )�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ .

Applying Theorem 3.1, with F(η) = η
ν+�
� , we obtain

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ ≤ �(τ – d)
ν(�–1)

�

ν + �

∫ τ

d

(
η

ν+�
� (θ )

)�
�θ

≤ �(τ – d)
ν(�–1)

�

ν + �

(∫ τ

d
η�(θ )�θ

) ν+�
�

=
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d
s

�
ν+� (θ )

∣∣ζ�(θ )
∣∣��θ

) ν+�
�

.

Now applying Hölder’s inequality (10) with indices (ν + �)/ν and (ν + �)/� we have

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣��θ

=
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d
s

�
ν+� (θ )�

–�
ν+� (θ )�

�
ν+� (θ )

∣∣ζ�(θ )
∣∣��θ

) ν+�
�
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≤ �(τ – d)
ν(�–1)

�

ν + �

(∫ τ

d

(
s(θ )
�(θ )

)�/ν

�θ

)ν/� ∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+�

�θ

= K1(d, τ ,ν,�)
∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+�

�θ ,

where

K1(d, τ ,ν,�) =
�(τ – d)

ν(�–1)
�

ν + �

(∫ τ

d

(
s(θ )
�(θ )

)�/ν

�θ

)ν/�

,

which is the desired inequality (41). The proof is complete. �

Theorem 4.10 LetT be a time scale with d, τ ∈ T, s be non-negative and non-increasing on
[d, τ ]T, and � be a non-negative function on [d, τ ]T. If ζ : [d, τ ]T →R is delta differentiable
with ζ (d) = 0 then for ν ≥ 0

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ K1(d, τ ,ν)
∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+1

�θ , (45)

where

K1(d, τ ,ν) =
1

ν + 1

(∫ τ

d

(
s(θ )
�(θ )

)1/ν

�θ

)ν

.

Proof Let η(θ ) =
∫ θ

d s 1
ν+1 (x)|ζ�(x)|�x, for θ ∈ [d, τ ]T. Then η(d) = 0 and

∣∣ζ (θ )
∣∣ ≤

∫ θ

d

∣∣ζ�(x)
∣∣�x ≤

∫ θ

d
s

–1
ν+1 (x)s

1
ν+1 (x)

∣∣ζ�(x)
∣∣�x

≤ s
–1
ν+1 (θ )

∫ θ

d
s

1
ν+1 (x)

∣∣ζ�(x)
∣∣�x ≤ s

–1
ν+1 (θ )η(θ ). (46)

Applying the chain rule (8), we obtain

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ), where d ∈ [
θ ,σ (θ )

]
.

Since η�(θ ) = s 1
ν+1 (θ )|ζ�(θ )| > 0, and d ≥ θ , we see that

(
ην+1(θ )

)� = (ν + 1)ην(d)η�(θ ) ≥ (ν + 1)ην(θ )η�(θ ). (47)

Now, from (46) and (47) we have

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤
∫ τ

d
s

ν
ν+1 (θ )

∣∣ζ (θ )
∣∣νs

1
ν+1 (θ )

∣∣ζ�(θ )
∣∣�θ

≤
∫ τ

d
ην(θ )η�(θ )�θ ≤

∫ τ

d
ην(d)η�(θ )�θ

≤ 1
ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ .
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Applying Theorem 3.1, with F(η) = ην+1, we obtain

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ 1
ν + 1

∫ τ

d

(
ην+1(θ )

)�
�θ ≤ 1

ν + 1

(∫ τ

d
η�(θ )�θ

)ν+1

=
1

ν + 1

(∫ τ

d
s

1
ν+1 (θ )

∣∣ζ�(θ )
∣∣�θ

)ν+1

=
1

ν + 1

(∫ τ

d
s

1
ν+1 (θ )�

–1
ν+1 (θ )�

1
ν+1 (θ )

∣∣ζ�(θ )
∣∣�θ

)ν+1

.

Now applying Hölder’s inequality (10) with indices (ν + 1) and (ν + 1)/ν we have

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣ν∣∣ζ�(θ )

∣∣�θ ≤ 1
ν + 1

(∫ τ

d

(
s(θ )
�(θ )

) 1
ν

�θ

)ν ∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣ν+1

�θ ,

which is the desired inequality (45). The proof is complete. �

Remark 4.5 If ν = 1, then inequality (45) becomes

∫ τ

d
s(θ )

∣∣ζ (θ )
∣∣∣∣ζ�(θ )

∣∣�θ ≤ 1
2

∫ τ

d

s(θ )
�(θ )

�θ

∫ τ

d
�(θ )

∣∣ζ�(θ )
∣∣2

�θ .

As in the proofs of Theorem 4.9 and Theorem 4.10, one can prove the following theo-
rems.

Theorem 4.11 Let T be a time scale with τ ,� ∈ T, � > 1, s be non-negative and nonde-
creasing on [τ ,�]T, and � be a non-negative function on [τ ,�]T. If ζ : [τ ,�]T → R is delta
differentiable with ζ (�) = 0 then for ν ≥ 0

∫ �

τ

s(θ )
∣∣ζ σ (θ )

∣∣ν∣∣ζ�(θ )
∣∣��θ ≤ K2(τ ,�,ν,�)

∫ �

τ

�(θ )
∣∣ζ�(θ )

∣∣ν+�
�θ , (48)

where

K2(τ ,�,ν,�) =
�(� – τ )

ν(�–1)
�

ν + �

(∫ �

τ

(
s(θ )
�(θ )

)�/ν

�θ

)ν/�

.

Theorem 4.12 Let T be a time scale with τ ,� ∈ T, s be non-negative and nondecreasing on
[τ ,�]T, and � be a non-negative function on [τ ,�]T. If ζ : [τ ,�]T →R is delta differentiable
with ζ (�) = 0 then for ν ≥ 0

∫ �

τ

s(θ )
∣∣ζ σ (θ )

∣∣ν∣∣ζ�(θ )
∣∣�θ ≤ K2(τ ,�,ν)

∫ �

τ

�(θ )
∣∣ζ�(θ )

∣∣ν+1
�θ , (49)

where

K2(τ ,�,ν) =
1

ν + 1

(∫ �

τ

(
s(θ )
�(θ )

)1/ν

�θ

)ν

.
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Remark 4.6 If ν = 1, then inequality (49) becomes

∫ �

τ

s(θ )
∣∣ζ σ (θ )

∣∣∣∣ζ�(θ )
∣∣�θ ≤ 1

2

∫ �

τ

s(θ )
�(θ )

�θ

∫ �

τ

�(θ )
∣∣ζ�(θ )

∣∣2
�θ .
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