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Abstract
In the present paper, by using the concept of convolution and q-calculus, we define a
certain q-derivative (or q-difference) operator for analytic and multivalent (or p-valent)
functions. This presumably new q-derivative operator is an extension of the known
q-analogue of the Ruscheweyh derivative operator. We also give some interesting
applications of this q-derivative operator for multivalent functions by using the
method of differential subordination. Relevant connections with a number of earlier
works on this subject are also pointed out.
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1 Introduction, definitions, and motivation
Let A(p) denote the class of multivalent (or p-valent) functions of the form:

f (z) = zp +
∞∑

n=2

an+p–1zn+p–1 (
p ∈N = {1, 2, 3, . . .}),

which are analytic in the open unit disk U given by

U =
{

z : z ∈C and |z| < 1
}

.

We note that

A(1) =: A.
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Definition 1 The Hadamard product or convolution of the following two functions fj(z) ∈
A(p) (j = 1, 2)

fj(z) = zp +
∞∑

n=2

an+p–1,jzn+p–1 (p ∈N)

is given by

(f1 ∗ f2)(z) = zp +
∞∑

n=2

an+p–1,1an+p–1,2zn+p–1.

Definition 2 For two analytic functions fj (j = 1, 2) in U, the function f1 is said to be sub-
ordinate to the function f2, which is written as follows:

f1 ≺ f2 or f1(z) ≺ f2(z) (z ∈U),

if we can find a Schwartz function w, analytic in U, with

w(0) = 0 and
∣∣w(z)

∣∣ < 1,

such that

f1(z) = f2
(
w(z)

)
.

Further, if the function f2 is univalent in U, then the following equivalence relation holds
true:

f1(z) ≺ f2(z) (z ∈U) ⇐⇒ f1(0) = f2(0) and f1(U) ⊂ f2(U).

We denote by P(β) the class of functions of the form

ϕ(z) = 1 + c1z + c2z2 + · · · , (1.1)

which are analytic in U and satisfy the following inequalities:

	(
ϕ(z)

)
> β (0 � β < 1).

It can be seen that

P(0) = P ,

where P is the well-known class of Carathéodory functions (see, for details, [6] and [49]).
We next define the function h(A, B; z) given by (see [3])

h(A, B; z) =
1 + Az
1 + Bz

(z ∈U; –1 � B � A � 1).
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This function h(A, B; z) is known to be the conformal map of the unit disk U to a circle
which is symmetrical with respect to the real axis having the center at 1–AB

1–B2 (B 
= ±1) and
the radius equal to A–B

1–B2 (B 
= ±1).
In order to present some of the noteworthy and useful details of the definitions and

principles of q-difference calculus, we assume throughout this article that

0 < q < 1 and p ∈N = {1, 2, 3, . . .}.

Definition 3 For f ∈A, the q-difference (or the q-derivative) operator Dq in a given sub-
set of the set C of complex numbers is defined by (see [9] and [10])

(Dqf )(z) =

⎧
⎨

⎩

f (z)–f (qz)
(1–q)z (z 
= 0),

f ′(0) (z = 0),
(1.2)

provided that f ′(0) exists.

It is readily observed from equation (1.2) that

lim
q→1–

(Dqf )(z) = lim
q→1–

f (z) – f (qz)
(1 – q)z

= f ′(z)

for a differentiable function f in a given subset of the complex space C (see also [37], [39]
and [40] for some recent applications of the q-difference operators in the theory of q-series
and q-polynomials).

Definition 4 Let q ∈ (0, 1) and define the q-number [τ ]q as follows:

[τ ]q =

⎧
⎪⎪⎨

⎪⎪⎩

1–qτ

1–q (τ ∈C),
∑n–1

k=0 qk (τ = n ∈N),

0 (τ = 0).

It follows from Definition 4 with τ = n (n ∈N) that

[n]q! =

⎧
⎨

⎩
1 (n = 0),
∏n

k=1[k]q (n ∈N).

Definition 5 The generalized q-Pochhammer symbol given by

[τ ]n,q
(
τ ∈C; n ∈N0 := N∪ {0}; |q| < 1

)

is defined as follows:

[τ ]n,q =
(qτ ; q)n

(1 – q)n =

⎧
⎨

⎩
1 (n = 0)

[τ ]q[τ + 1]q[τ + 2]q · · · [τ + n – 1]q (n ∈N).
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Moreover, the q-gamma function �q(z) satisfies the following recurrence relation:

�q(z + 1) = [z]q�q(z) and �q(1) = 1,

where

�q(z) = (1 – q)1–z
∞∏

n=0

(
1 – qn+1

1 – qn+z

)
.

The intensive applications of the q-calculus in exploring new directions in various di-
verse areas of mathematics and physics have fascinated a number of researchers to work
in several distinctive areas of the mathematical and physical sciences. The q-derivative
(Dq) operator’s versatile applications makes it significantly more important. Initially, in
the year 1990, Ismail et al. [8] presented the idea of a q-extension of the class S∗ of starlike
functions. However, historically speaking, in the article [32] published in 1989, Srivastava
gave a firm footing of the usages of the q-calculus and the basic (or q-) hypergeometric
functions:

v�s

(
v, s ∈N0 = {0, 1, 2, . . .})

in the study of geometric function theory (GFT) (see, for details, [32]). More recently, the
state-of-the-art survey and applications of the operators of the q-calculus and the frac-
tional q-calculus, such as the q-derivative operator and the fractional q-derivative opera-
tors in geometric function theory of complex analysis, were investigated in a survey-cum-
expository review article by Srivastava [33]. In this same survey-cum-expository review
article, Srivastava [33] revealed and exposed the triviality of the so-called (p, q)-calculus
associated with an obviously redundant and inconsequential additional parameter p (see,
for details, [33, p. 340]).

The aforementioned works [8] and [33] have inspired a number of researchers to con-
tribute significantly in geometric function theory of complex analysis. Several convolu-
tion and fractional q-operators, which have been already defined, were surveyed in the
above-cited work [33]. For example, Kanas and Răducanu [11] introduced the q-analogue
of Ruscheweyh’s derivative operator and, by using the concept of the Hadamard prod-
uct (or convolution), Srivastava et al. [45] introduced a q-extension of Noor’s integral
operator and studied some of its applications. Aldweby [2] and Sokól [21] studied some
classes of analytic functions defined by means of the q-analogue of Ruscheweyh’s deriva-
tive operator. Many q-derivative and q-integral operators can be written in terms of the
Hadamard product (or convolution). For details, we refer the reader to the earlier works
[1, 7, 18, 21, 23]. Moreover, several authors (see, for example, [13, 19, 42, 47, 48]) have
concentrated upon the classes of q-starlike functions related with the Janowski and other
functions from several different viewpoints and the references cited therein. For some
more recent investigations involving q-calculus, we may refer the interested reader to
[4, 5, 12, 14–17, 20, 22, 26–28, 31, 34–36, 38, 43, 46].

In this paper, we first define an extended q-analogue of Ruscheweyh’s derivative oper-
ator for multivalent (or p-valent) functions. In order to define this extended q-analogue
of Ruscheweyh’s derivative operator, we use the concepts of the Hadamard product (or
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convolution). We then give some interesting applications of this operator for multivalent
functions by making use of the method of differential subordination. The extended q-
analogue of Ruscheweyh’s derivative operator is defined below.

Definition 6 For f ∈ A(p), the extended q-derivative operator Rλ+p–1
q : A(p) → A(p) for

multivalent functions is defined as follows:

Rλ+p–1
q f (z) = Qp

λ,q(z) ∗ f (z)

= zp +
∞∑

n=2

[λ + p]n–p,q

[n – p]q!
an+p–1zn+p–1 (λ > –1), (1.3)

where

Qp
λ,q(z) = zp–1

(
z +

∞∑

n=2

[λ + p]n–p,q

[n – p]q!
zn

)
.

The following identity can easily be verified by using (1.3):

qλzDqRλ+p–1
q f (z) = [λ + p]qRλ+p

q f (z) – [λ]qRλ+p–1
q f (z). (1.4)

It can also be seen that, by putting p = 1 in (1.4), we have

qλzDqRλ
qf (z) = [λ + 1]qRλ+1

q f (z) – [λ]qRλ
qf (z),

which is the well-known relation studied by Kanas [11].

Remark 1 It is easily seen that, upon setting p = 1, the extended q-analogue of Rusche-
weyh’s derivative operator Rλ+p–1

q f (z) reduces to the q-Ruscheweyh derivative operator
which was studied by Kanas [11]. For p = 1 and q → 1–, the extended q-analogue of
Ruscheweyh’s derivative operator Rλ+p–1

q f (z) reduces to the familiar derivative operator
introduced by Ruscheweyh [30]. Moreover, if we put p = 1 and λ = 0, we have

R0+1–1
q f (z) = R0

qf (z) = f (z).

2 A set of lemmas
To prove our main results, we need the following lemmas.

Lemma 1 (see [25]) Let ϕj ∈P(βj) be given by (1.1) for (0 � βj < 1; j = 1, 2). Then

ϕ1 ∗ ϕ2 ∈P(β3),

where

β3 = 1 – (1 – β1)(1 – β2).
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Lemma 2 (see [24]) Let the function ϕ, given by (1.4), be in the class P(β). Then

	(
ϕ(z)

)
> 2β – 1 +

2(1 – β)
1 + |z| (0 � β < 1).

Lemma 3 (see [29]) The function given by

(1 – z)γ = eγ log(1–z) (γ 
= 0)

is univalent in U if and only if γ is either in the closed disk |γ – 1| � 1 or in the closed disk
|γ + 1| � 1.

Lemma 4 (see [3]) Let the function h(z) be analytic and convex univalent in U with h(0) =
1. Also, let the function g(z) given by

g(z) = 1 + b1z + b2z2 + · · ·

be analytic in U. If

g(z) +
zDqg(z)

c
≺ h(z) (z ∈U; c 
= 0),

then, for 	(c) � 0, the following subordination relation holds true:

g(z) ≺ c
zc

∫ z

0
tc–1h(t) dt.

Lemma 5 (see [3]) Let the function u(z) be univalent in U, and let the functions θ (w) and
ϕ(w) be analytic in the domain D containing u(U) with ϕ(w) 
= 0 when w ∈ u(U). Set

Q(z) = zDq
(
u(z)

)
ϕ
(
u(z)

)
and h(z) = θ

(
u(z) + Q(z)

)

and suppose that
(i) Q(z) is starlike univalent in U.
(ii) 	( zDqh(z)

Q(z) ) = 	( zDqθ (u(z))
(ϕ(u(z)) ) + ( zDqQ(z)

Q(z) ) > 0.
If m(z) is analytic in U,

m(z) = u(0) and m(U) ⊂D

and

θ
(
m(z)

)
+ zDq

(
m(z)

)
ϕ
(
m(z)

) ≺ θ
(
u(z)

)
+ zDq

(
u(z)

)
ϕ
(
u(z)

)
= h(z),

then

m(z) ≺ u(z) (z ∈U)

and u(z) is the best dominant.
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3 Main results
Our first main result in this section is stated as Theorem 1.

Theorem 1 Let λ > 0, α > 0, and –1 � B � A < 1. If f ∈ A(p) satisfies the following subor-
dination relation:

(1 – α)
Rλ+p–1

q f (z)
zp + α

Rλ+p
q f (z)

zp ≺ h(A, B, z),

then

	
({Rλ+p–1

q f (z)
zp

} 1
n
)

�
(

[λ + p]q

α[p]qqλ

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 – Au
1 – Bu

)
du

) 1
n

(n � 1). (3.1)

The result is sharp.

Proof Let

g(z) =
Rλ+p–1

q f (z)
zp . (3.2)

Then, for f ∈A(p), the function g given by

g(z) = 1 + b1z + b2z2 + · · · (z ∈U)

is analytic in U. By using the logarithmic q-differentiation on both sides of (3.2) and mul-
tiplying the resulting equation by z, we have

zDq(g(z))
g(z)

=
zRλ+p–1

q f (z)
Rλ+p–1

q f (z)
– [p]q.

By making use of (1.4), we obtain

zDq(g(z))
g(z)

=
[λ + p]q

qλ

Rλ+p
q f (z)

Rλ+p–1
q f (z)

–
[λ]q

qλ
– [p]q.

Taking into account that

[λ + p]q = [λ]q + [p]qqλ,

we get

qλ

[λ + p]q
zDq

(
g(z)

)
+ g(z) =

Rλ+p
q f (z)

zp . (3.3)

Also, from (1.4), (3.2), and (3.3), we have

g(z) +
αqλ[p]q

[λ + p]q
zDqg(z) ≺ h(A, B, z). (3.4)
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Now, by applying Lemma 4, we find that

g(z) ≺ [λ + p]q

αqλ[p]q
z

– [λ+p]q
α[p]qqλ

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 + At
1 + Bt

)
dt. (3.5)

Also, by making use of the concept of subordination on (3.5), we have

(Rλ+p–1
q f (z)

zp

)
=

[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 + Auw(z)
1 + Buw(z)

)
du. (3.6)

It follows from (3.6), together with –1 � B < A � 1 and λ > 0, that

	
(Rλ+p–1

q f (z)
zp

)
>

[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 – Au
1 – Bu

)
du. (3.7)

Since

	(
w

1
n
)
�

{	(w)
}1/n (	(w) > 0; n � 1

)
, (3.8)

by making use of concept (3.8), the inequality in (3.1) follows directly from (3.7).
In order to show the sharpness of (3.1), we define the function f ∈A(p) by

Rλ+p–1
q f (z)

zp =
[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 + Auz
1 + Buz

)
du. (3.9)

For this function f involved in (3.9), we find that

(1 – α)
Rλ+p–1

q f (z)
zp + α

Rλ+p
q f (z)

zp =
1 + Az
1 + Bz

and

Rλ+p–1
q f (z)

zp → [λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 – Au
1 – Bu

)
du (z → –1).

This completes the proof of Theorem 1. �

Remark 2 If we set p = 1 in Theorem 1, we are led to the results similar to those given by
Aldweby and Darus [3].

We next state and prove Theorem 2.

Theorem 2 Let A = 1 – 2α, B = –1, α,λ > 1, n � 1, and 0 � β < 1. If the function f ∈ A(p)
satisfies the following subordination condition:

(1 – α)
Rλ+p–1

q f (z)
zp + α

Rλ+p
q f (z)

zp ≺ h(1 – 2α, –1, z),
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then

	
({Rλ+p–1

q f (z)
zp

} 1
n
)

>
(

(2β – 1)u
[λ+p]q
α[p]qqλ +

2(1 – β)[λ + p]q

α[p]qqλ

∫ 1

0

u
( [λ+p]q
α[p]qqλ

)–1

1 + u
du

) 1
n

.

Proof Following the same steps as those in the proof of Theorem 1 and considering the
function g given by

g(z) =
Rλ+p–1

q f (z)
zp ,

the differential subordination in (3.4) becomes

g(z) +
αqλ[p]q

[λ + p]q
zDqg(z) ≺ 1 + (2β – 1)z

1 + z
.

Therefore, we have

	
({Rλ+p–1

q f (z)
zp

} 1
n
)

>
(

[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

1 + (2β – 1)u
1 + u

)
du

) 1
n

=
(

[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
α[p]qqλ

)–1
(

(2β – 1) +
2(1 – β)u

1 + u

)
du

) 1
n

=
(

(2β – 1)u
( [λ+p]q
α[p]qqλ

)–1
+

2(1 – β)[λ + p]q

αqλ[p]q

∫ 1

0

u
( [λ+p]q
α[p]qqλ

)–1

1 + u
du

) 1
n

.

Our demonstration of Theorem 2 is now completed. �

Theorem 3 Let λ > 0 and 0 � ρ < 1. Also, let the parameter γ ∈ C \ {0} satisfy either

∣∣∣∣2γ (1 – ρ)
(

[λ + p]q

αqλ[p]q
– 1

)∣∣∣∣ � 1

or

∣∣∣∣2γ (1 – ρ)
(

[λ + p]q

αqλ[p]q
+ 1

)∣∣∣∣ � 1.

If f ∈A(p) satisfies the following inequality:

	
( Rλ+p

q f (z)
Rλ+p–1

q f (z)

)
> ρ, (3.10)
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then

	
(Rλ+p–1

q f (z)
zp

)γ

≺ 1

(1 – z)
2γ (1–ρ) [λ+p]q

αqλ[p]q

, (3.11)

where u(z) is the best dominant.

Proof Let

m(z) =
(Rλ+p–1

q f (z)
zp

)γ

.

Then, by making use of (1.4), (3.10), and (3.11), we obtain

1 +
qλ[p]q

γ [λ + p]q

zDq(g(z)
g(z)

≺ 1 + (1 – 2ρ)z
1 – z

. (3.12)

We now assume that

u(z) =
1

(1 – z)
2γ (1–ρ) [λ+p]q

qλ[p]q

, θ (w) = 1 and ϕ(w) =
qλ[p]q

γ [λ + p]qw
.

Then, by Lemma 3, u(z) is univalent in U. Further, it is easy to show that the functions u(z),
θ (w), and ϕ(w) satisfy the condition of Lemma 5. We note also that the functions given by

Q(z) = zDq
(
u(z)

)
ϕ
(
u(z)

)
=

2(1 – ρ)z
1 – z

and

h(z) = θ
(
u(z) + Q(z)

)
=

1 + (1 – 2ρ)z
1 – z

are univalent starlike in U. Hence, by finally combining (3.12) and Lemma 5, we get the
assertion of Theorem 3. �

Remark 3 If we set p = 1 in Theorem 3, we are led to the results similar to those given by
Aldweby and Darus [3].

Theorem 4 Let λ > 0, α < 1, and –1 � Bj � Aj < 1 (j = 1, 2). If each of the functions fj ∈A(p)
(j = 1, 2) satisfies the following subordination condition:

(1 – α)
Rλ+p–1

q fj(z)
zp + α

Rλ+p
q fj(z)

zp ≺ h(Aj, Bj, z) (j = 1, 2),

then

(1 – α)
Rλ+p–1

q �(z)
zp + α

Rλ+p
q �(z)

zp ≺ h(1 – 2γ , –1, z),
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where

�(z) = Rλ+p–1
q (f1 ∗ f2)(z) (3.13)

and

γ = 1 –
4(A1 – B1)(A2 – B2)

(1 – B1)(1 – B2)
·
(

1 –
[λ + p]q

α[p]qqλ

∫ 1

0

u
( [λ+p]q

qλ[p]q
)–1

1 + u
du

)
.

Proof We define the functions hj (j = 1, 2) by

hj = (1 – α)
Rλ+p–1

q fj(z)
zp + α

Rλ+p
q fj(z)

zp , (3.14)

where fj ∈A(p) (j = 1, 2). We have hj ∈P(βj) (j = 1, 2), where

βj =
1 – Aj

1 – Bj
(j = 1, 2).

By making use of (1.4) and (3.14), we obtain

Rλ+p–1
q fj(z) =

[λ + p]q

αqλ[p]q
z

1–( [λ+p]q
qλ[p]q

)
∫ 1

0
t

( [λ+p]q
qλ[p]q

)–1
hj(t) dt (j = 1, 2),

which, in light of (3.13), shows that

Rλ+p–1
q �(z) =

[λ + p]q

αqλ[p]q
z

1–( [λ+p]q
qλ[p]q

)
∫ 1

0
t

( [λ+p]q
qλ[p]q

)–1
h0(t) dt,

where, for convenience,

h0 = (1 – α)
Rλ+p–1

q �(z)
zp + α

Rλ+p
q �(z)

zp

=
[λ + p]q

αqλ[p]q
z

1–( [λ+p]q
qλ[p]q

)
∫ 1

0
t

( [λ+p]q
qλ[p]q

)1
(h1 ∗ h2)(t) dt.

If we apply Lemma 1, we get (h1 ∗ h2) ∈P(β3), where

β3 = 1 – 2(1 – β1)(1 – β2).

Now, with an application of Lemma 2, we have

	(
h0(z)

)
=

[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
qλ[p]q

)–1	(h1 ∗ h2)(uz) du

� [λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
qλ[p]q

)–1
(

(2β3 – 1) +
2(1 – β3)
1 + u|z|

)
du



Khan et al. Advances in Difference Equations        (2021) 2021:279 Page 12 of 14

>
[λ + p]q

αqλ[p]q

∫ 1

0
u

( [λ+p]q
qλ[p]q

)–1
(

(2β3 – 1) +
2(1 – β3)

1 + u

)
du

= 1 –
4(A1 – B1)(A2 – B2)

(1 – B1)(1 – B2)

(
1 –

[λ + p]q

α[p]qqλ

∫ 1

0

u
( [λ+p]q

qλ[p]q
)–1

1 + u
du

)

= γ ,

which leads us to the desired assertion of Theorem 4. �

Remark 4 If we set p = 1 in Theorem 4, we are led to the results similar to those given by
Aldweby and Darus [3].

4 Conclusion
In our present work, we are motivated by the well-established usage of the basic (or q-) cal-
culus and fractional basic (or q-) calculus in geometric function theory of complex analysis
as described by Srivastava’s survey-cum-expository review article [33]. The extended q-
version of the q-Ruscheweyh type derivative operator for p-valent functions in U has been
introduced here. We have also derived several interesting results for this newly defined
q-operator. The importance of the results demonstrated in this paper lies in the demon-
strated fact that these results would generalize and extend various previously known re-
sults derived in many earlier works.

Basic (or q-) polynomials and basic (or q-) series, especially the basic (or q-) hypergeo-
metric functions and basic (or q-) hypergeometric polynomials, are relevant specially in
many areas (see, for example, [41, pp. 350–351]; see also [28, 44], and [16]). Moreover, as
we remarked above and in the introductory Sect. 1, based upon the recently-published
survey-cum-expository review article by Srivastava [33], the so-called (p, q)-calculus is a
relatively insignificant and inconsequential translation of the traditional q-calculus, the
extra parameter p being redundant or superfluous (see, for details, [33, p. 340]). This ob-
servation by Srivastava [33] will indeed apply also to any attempt to produce the rather
straightforward (p, q)-variations of the results which we have presented in this paper.
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