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Abstract
In this paper, we investigate a class of nonlocal boundary value problems of nonlinear
fractional functional differential coupled systems with state dependent delays. The
method of upper and lower solutions is established and some new results for the
multiplicity of solutions of the boundary value problem are obtained. An example is
also presented to illustrate our main results.
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1 Introduction
It is well know that fractional calculus is the generalization of classical calculus from inte-
ger to real numbers, even in the complex field. In the past decades, fractional differential
equations have been widely used in various research fields, such as chemical engineer-
ing, automatic control, and thermoelasticity. In consequence, the theoretical researches
of fractional differential equations have been highly valued by more and more scholars;
see [1–6].

When there are many state variables depending on each other in the system, the sys-
tems are often described as coupled systems; for details and examples, see [7–20] and the
references therein. In recent years, the method of upper and lower solutions has played a
more and more important role in the theoretical studies of differential equations. There
are a large number of publications using the method of upper and lower solutions to study
the existence and uniqueness of solutions of fractional differential equations; see [21–25]
and the references therein.

In [10], the authors considered the three-point boundary value problems of nonlinear
fractional coupled systems,

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) = f (t, v(t), Dβ–1

0+ v(t)), 0 < t < 1,

Dβ

0+ v(t) = g(t, u(t), Dα–1
0+ u(t)), 0 < t < 1,

u(0) = v(0) = 0, u(1) = σ1u(η1), v(1) = σ2v(η2),
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where Dα
0+ is the Riemann–Liouville differentiation, 1 < α, β ≤ 2, 0 < η1, η2 ≤ 1, σ1,σ2 >

0, σ1η
α–1
1 = σ2η

β–1
2 , f , g ∈ C([0, 1] × R

2,R). The existence theorems of two solutions of
boundary value problems at resonance are given by using the coincidence degree theory.

In scientific research, if the system is assumed to be controlled by an equation contain-
ing the current state and the rate of change of state, then we consider ordinary or partial
differential equations. However, in some applications, the system may also include the past
state of the system. In this case, it would be more accurate to describe them by functional
differential equations; see [26–28]. In recent years, the boundary value problems of the
fractional functional differential equations have attracted the attention of researchers and
many research results have been obtained; see [29–31].

At the same time, some problems may have already occurred for some time before we
begin to study them, such as infectious diseases. In this way, we have to consider the values
of state variables for the previous period of time. The purpose of this paper is to study
the existence of multiple solutions for nonlocal boundary value problems of fractional
functional differential coupled systems with time delays,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + f (t, v(t), vt) = 0, t ∈ (0, 1),

Dβ

0+ v(t) + g(t, u(t), ut) = 0, t ∈ (0, 1),

u(t) = φ(t), v(t) = ψ(t), t ∈ [–τ , 0],

Dγ1
0+ u(1) = aDγ1

0+ u(ξ ), Dγ2
0+ v(1) = bDγ2

0+ v(η),

(1.1)

where 0 < γ1, γ2 ≤ 1, 1 +γ1 ≤ α ≤ 2, 1 +γ2 ≤ β ≤ 2, ξ ,η ∈ (0, 1), a, b ∈R. Dα
0+ , Dβ

0+ , Dγ1
0+ , Dγ2

0+

are the Riemann–Liouville fractional derivative operators. The functions f , g ∈ C([0, 1] ×
R× C[–τ , 0]). ut = u(t + θ ), vt = v(t + θ ), θ ∈ [–τ , 0], φ,ψ ∈ C([–τ , 0]) and φ(0) = ψ(0) = 0.
Some new results for the existence of at least three solutions for the coupled system are
established by using upper and lower solutions methods.

2 Preliminaries
In this section, we present some necessary definitions and lemmas which will be used in
the proof of our main results.

Definition 2.1 (see [1]) The Riemann–Liouville fractional integral of a function h :
(0,∞) →R of order α > 0 is given by

Iα
0+ h(t) =

1
�(α)

∫ t

0
(t – s)α–1h(s) ds,

provided the right side is pointwise defined on (0,∞).

Definition 2.2 (see [1]) The Riemann–Liouville fractional derivative of order α > 0 of a
continuous function h : (0,∞) →R is given by

Dα
0+ h(t) = DnIn–α

0+ h(t) =
1

�(n – α)

(
d
dt

)n ∫ t

0

h(s)
(t – s)α–n+1 ds,

where n = [α] + 1 and [α] denote the integer parts of the real number α, provided the right
side is pointwise defined on (0,∞).
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Lemma 2.1 (see [1]) (1) If h ∈ L(0, 1), ρ > σ > 0, then

Dσ Iρh(t) = Iρ–σ h(t), Dσ Iσ h(t) = h(t).

(2) If ρ > 0, λ > 0, then

Dρtλ–1 =
�(λ)

�(λ – ρ)
tλ–ρ–1.

Lemma 2.2 (see [1]) Assume α > 0, then the solution of the equation Dα
0+ h(t) = 0 is given

by

h(t) = c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈R, i = 1, 2, . . . , n, and n ∈N with n – 1 < α ≤ n.

For convenience, we denote

ρα := �(α)
(
1 – aξα–γ1–1), ρβ := �(β)

(
1 – bηβ–γ2–1), (2.1)

and we always assume that ρα > 0, ρβ > 0.

Lemma 2.3 Suppose a0, b0 are constants. Then for any given functions x, y ∈ C[0, 1], the
boundary value problem of the linear fractional differential system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + x(t) = 0, t ∈ (0, 1),

Dβ

0+ v(t) + y(t) = 0, t ∈ (0, 1),

u(0) = v(0) = 0,

Dγ1
0+ u(1) = aDγ1

0+ u(ξ ) – a0, Dγ2
0+ v(1) = bDγ2

0+ v(η) – b0

(2.2)

has a unique solution (u, v) = (u(t), v(t)) as

u(t) =
∫ 1

0
Gα(t, s)x(s) ds –

1
ρα

a0�(α – γ1)tα–1, (2.3)

v(t) =
∫ 1

0
Gβ (t, s)y(s) ds –

1
ρβ

b0�(β – γ2)tβ–1, (2.4)

where

Gα(t, s) =
1
ρα

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tα–1(1 – s)α–γ1–1 – (1 – aξα–γ1–1)(t – s)α–1 – atα–1(ξ – s)α–γ1–1,

0 ≤ s ≤ min{t, ξ} ≤ 1,

tα–1(1 – s)α–γ1–1 – atα–1(ξ – s)α–γ1–1,

0 ≤ t < s ≤ ξ ≤ 1,

tα–1(1 – s)α–γ1–1 – (1 – aξα–γ1–1)(t – s)α–1,

0 ≤ ξ ≤ s < t ≤ 1,

tα–1(1 – s)α–γ1–1,

0 ≤ max{t, ξ} ≤ s ≤ 1,

(2.5)
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Gβ (t, s) =
1
ρβ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tβ–1(1 – s)β–γ2–1 – (1 – bηβ–γ2–1)(t – s)β–1 – btβ–1(η – s)β–γ2–1,

0 ≤ s ≤ min{t,η} ≤ 1,

tβ–1(1 – s)β–γ2–1 – btβ–1(η – s)β–γ2–1,

0 ≤ t < s ≤ η ≤ 1,

tβ–1(1 – s)β–γ2–1 – (1 – bηβ–γ2–1)(t – s)β–1,

0 ≤ η ≤ s < t ≤ 1,

tβ–1(1 – s)β–γ2–1,

0 ≤ max{t,η} ≤ s ≤ 1.

(2.6)

Proof Assume (u, v) = (u(t), v(t)) is a solution of the linear fractional system (2.2). By ap-
plying Lemma 2.2,

u(t) = –Iα
0+ x(t) + c1tα–1 + c2tα–2,

v(t) = –Iβ

0+ y(t) + d1tβ–1 + d2tβ–2,

where c1, c2, d1, d2 ∈R. In view of u(0) = v(0) = 0, we have c2 = 0, d2 = 0. Then

u(t) = –Iα
0+ x(t) + c1tα–1,

v(t) = –Iβ

0+ y(t) + d1tβ–1.

By Lemma 2.1, we have

Dγ1
0+ u(t) = –Dγ1

0+ Iα
0+ x(t) + c1Dγ1

0+ tα–1 = –Iα–γ1
0+ x(t) + c1

�(α)
�(α – γ1)

tα–γ1–1,

Dγ2
0+ v(t) = –Dγ2

0+ Iβ

0+ y(t) + d1Dγ2
0+ tβ–1 = –Iβ–γ2

0+ y(t) + d1
�(β)

�(β – γ2)
tβ–γ2–1.

And

Dγ1
0+ u(1) = –

1
�(α – γ1)

∫ 1

0
(1 – s)α–γ1–1x(s) ds + c1

�(α)
�(α – γ1)

,

Dγ1
0+ u(ξ ) = –

1
�(α – γ1)

∫ ξ

0
(ξ – s)α–γ1–1x(s) ds + c1

�(α)
�(α – γ1)

ξα–γ1–1,

Dγ2
0+ v(1) = –

1
�(β – γ2)

∫ 1

0
(1 – s)β–γ2–1y(s) ds + d1

�(β)
�(β – γ2)

,

Dγ2
0+ v(η) = –

1
�(β – γ2)

∫ η

0
(η – s)β–γ2–1y(s) ds + d1

�(β)
�(β – γ2)

ηβ–γ2–1.

By the boundary conditions Dγ1
0+ u(1) = aDγ1

0+ u(ξ ) – a0, Dγ2
0+ v(1) = bDγ2

0+ v(η) – b0, we have

c1 =
1
ρα

(∫ 1

0
(1 – s)α–γ1–1x(s) ds – a

∫ ξ

0
(ξ – s)α–γ1–1x(s) ds – a0�(α – γ1)

)

,

d1 =
1
ρβ

(∫ 1

0
(1 – s)β–γ2–1y(s) ds – b

∫ η

0
(η – s)β–γ2–1y(s) ds – b0�(β – γ2)

)

.
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So,

u(t) = –
1

�(α)

∫ t

0
(t – s)α–1x(s) ds +

tα–1

ρα

(∫ 1

0
(1 – s)α–γ1–1x(s) ds

– a
∫ ξ

0
(ξ – s)α–γ1–1x(s) ds – a0�(α – γ1)

)

=
∫ 1

0
Gα(t, s)x(s) ds –

1
ρα

a0�(α – γ1)tα–1.

Similarly,

v(t) =
∫ 1

0
Gβ (t, s)y(s) ds –

1
ρβ

b0�(β – γ2)tβ–1.

On the other hand, we can easily see that (u, v) = (u(t), v(t)) is a solution of the linear
fractional system (2.2) if u = u(t), v = v(t) for t ∈ [0, 1] satisfy (2.3) and (2.4), respectively. �

Lemma 2.4 Assume ρα > 0, ρβ > 0, then Gα(t, s), Gβ (t, s) defined by (2.5) and (2.6), respec-
tively, have the following properties:

(1) Gα(t, s), Gβ (t, s) are continuous on (t, s) ∈ [0, 1] × [0, 1];
(2) 0 < Gα(t, s) ≤ max0≤t≤1 Gα(t, s) ≤ w1(s), t, s ∈ (0, 1);
(3) 0 < Gβ (t, s) ≤ max0≤t≤1 Gβ (t, s) ≤ w2(s), t, s ∈ (0, 1), where w1(s) = (1–s)α–γ1–1

�(α) (sα–1 +
aξα–γ1–1

1–aξα–γ1–1 ), w2(s) = (1–s)β–γ2–1

�(β) (sβ–1 + bηβ–γ2–1

1–bηβ–γ2–1 ).

Proof (1) The continuity of Gα(t, s), Gβ (t, s) is obvious by (2.5) and (2.6).
(2) Let

g1(t, s) =
1

�(α)
(
tα–1(1 – s)α–γ1–1 – (t – s)α–1), t, s ∈ (0, 1).

It is clear that

g1(t, s) =
1

�(α)
(
tα–1(1 – s)α–γ1–1 – (t – s)α–1)

>
1

�(α)
(
tα–1(1 – s)α–1 – (t – s)α–1) > 0, t, s ∈ (0, 1),

and for 0 < s ≤ t < 1,

∂g1(t, s)
∂t

=
α – 1
�(α)

(
tα–2(1 – s)α–γ1–1 – (t – s)α–2)

=
1

�(α – 1)
tα–2

(

(1 – s)α–γ1–1 –
(

1 –
s
t

)α–2)

< 0,

and for 0 < t ≤ s < 1,

∂g1(t, s)
∂t

=
α – 1
�(α)

(
tα–2(1 – s)α–γ1–1 – (t – s)α–2)

=
1

�(α – 1)
tα–2

(

(1 – s)α–γ1–1 –
(

1 –
s
t

)α–2)

> 0,
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which imply that g1(t, s) > 0, and g1(t, s) is decreasing with respect to t as s ≤ t and increas-
ing with respect to t as t ≤ s.

So,

max
0≤t≤1

g1(t, s) = g1(s, s) =
1

�(α)
sα–1(1 – s)α–γ1–1, (2.7)

min
0≤t≤1

g1(t, s) = g1(1, s) ≥ 0. (2.8)

For 0 < s ≤ min{t, ξ} < 1,

Gα(t, s) =
1
ρα

(
tα–1(1 – s)α–γ1–1 –

(
1 – aξα–γ1–1)(t – s)α–1 – atα–1(ξ – s)α–γ1–1)

=
1

�(α)

(

1 +
aξα–γ1–1

1 – aξα–γ1–1

)

tα–1(1 – s)α–γ1–1

–
1

�(α)
(t – s)α–1 –

1
ρα

atα–1(ξ – s)α–γ1–1

=
1

�(α)
(
tα–1(1 – s)α–γ1–1 – (t – s)α–1)

+
atα–1

ρα

(
ξα–γ1–1(1 – s)α–γ1–1 – (ξ – s)α–γ1–1)

= g1(t, s) +
atα–1

ρα

(
ξα–γ1–1(1 – s)α–γ1–1 – (ξ – s)α–γ1–1)

≥ g1(t, s) +
atα–1

(1 – aξα–γ1–1)
g1(ξ , s) > 0.

In a similar way we show Gα(t, s) > 0 for 0 < t < s ≤ ξ < 1 or 0 < ξ ≤ s < t < 1 or 0 <
max{t, ξ} ≤ s < 1. Hence, Gα(t, s) > 0 for t, s ∈ (0, 1), and it is obvious Gα(1, s) > 0 for s ∈
(0, 1).

Next, we will prove that max0≤t≤1 Gα(t, s) ≤ w1(s).
If 0 ≤ s ≤ min{t, ξ} ≤ 1, we have

max
s≤t≤1

Gα(t, s) = max
s≤t≤1

(

g1(t, s) +
1
ρα

(
atα–1(ξα–γ1–1(1 – s)α–γ1–1 – (ξ – s)α–γ1–1))

)

≤ g1(s, s) +
1
ρα

aξα–γ1–1(1 – s)α–γ1–1 = w1(s).

If 0 < ξ ≤ s < t ≤ 1, by (2.7), we get

max
s≤t≤1

Gα(t, s)

= max
s≤t≤1

1
ρα

(
tα–1(1 – s)α–γ1–1 –

(
1 – aξα–γ1–1)(t – s)α–1)

= max
s≤t≤1

(
1

�(α)

(

1 +
aξα–γ1–1

1 – aξα–γ1–1

)

tα–1(1 – s)α–γ1–1 –
1

�(α)
(t – s)α–1

)

= max
s≤t≤1

(
1

�(α)
(
tα–1(1 – s)α–γ1–1 – (t – s)α–1) +

1
ρα

aξα–γ1–1tα–1(1 – s)α–γ1–1
)
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= max
s≤t≤1

(

g1(t, s) +
1
ρα

aξα–γ1–1tα–1(1 – s)α–γ1–1
)

≤ 1
�(α)

sα–1(1 – s)α–γ1–1 +
1
ρα

aξα–γ1–1(1 – s)α–γ1–1

≤ w1(s).

If 0 ≤ t < s ≤ ξ < 1, we can see that

max
0≤t≤s

Gα(t, s) = max
0≤t≤1

1
ρα

(
tα–1(1 – s)α–γ1–1 – atα–1(ξ – s)α–γ1–1)

= max
0≤t≤s

(
tα–1(1 – s)α–γ1–1

�(α)
+

1
ρα

atα–1(ξα–γ1–1(1 – s)α–γ1–1 – (ξ – s)α–1)
)

≤ w1(s).

If 0 ≤ max{t, ξ} ≤ s ≤ 1, then

max
0≤t≤s

Gα(t, s) = max
0≤t≤s

1
ρα

tα–1(1 – s)α–γ1–1

= max
0≤t≤s

1
�(α)

(

1 +
aξα–γ1–1

1 – aξα–γ1–1

)

tα–1(1 – s)α–γ1–1

≤ w1(s).

Hence,

0 < Gα(t, s) ≤ max
0≤t≤1

Gα(t, s) ≤ w1(s), s, t ∈ (0, 1).

(3) Similarly, we can prove the inequality. �

By Lemma 2.3, let a0 = b0 = 0, and we can get the following lemma.

Lemma 2.5 The fractional differential coupled system (1.1) is equivalent to the systems of
integral systems

u(t) =

⎧
⎨

⎩

∫ 1
0 Gα(t, s)f (s, v(s), vs) ds, t ∈ (0, 1],

φ(t), t ∈ [–τ , 0],
(2.9)

v(t) =

⎧
⎨

⎩

∫ 1
0 Gβ (t, s)g(s, u(s), us) ds, t ∈ (0, 1],

ψ(t), t ∈ [–τ , 0].
(2.10)

Let E = {(u, v) : u, v ∈ C[–τ , 1]} and be endowed with norm

∥
∥(u, v)

∥
∥

E = max
{

max
t∈[–τ ,1]

∣
∣u(t)

∣
∣, max

t∈[–τ ,1]

∣
∣v(t)

∣
∣
}

and C[–τ , 0] endowed with the norm ‖x‖τ = maxt∈[–τ ,0] |x(t)|. Then (E,‖ · ‖E) and
(C[–τ , 0],‖ · ‖τ ) are Banach spaces.
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Let

E0 =
{

(r, z) ∈ E :
(
r(t), z(t)

) ≡ (0, 0), t ∈ [–τ , 0]
}

be endowed with norm

∥
∥(r, z)

∥
∥

E0
= max

{
max

t∈[–τ ,1]

∣
∣r(t)

∣
∣, max

t∈[–τ ,1]

∣
∣z(t)

∣
∣
}

= max
{

max
t∈[0,1]

∣
∣r(t)

∣
∣, max

t∈[0,1]

∣
∣z(t)

∣
∣
}

and P = {(r, z) ∈ E0 : r(t) ≥ 0, z(t) ≥ 0, t ∈ (0, 1]}. Obviously, E0 ⊂ E and (E0,‖ · ‖E0 ) is a
Banach space, and P ⊂ E0 is a normal solid cone.

For (u1, v1), (u2, v2) ∈ E0, (u1, v1) 
 (u2, v2) if and only if (u2 – u1, v2 – v1) ∈ P. Hence,
(E0,
) is a partial order Banach space. We denote (u1, v1) ≺ (u2, v2) if (u1, v1) 
 (u2, v2) ∈ E0

and (u1, v1) �= (u2, v2); we denote (u1, v1) ≺≺ (u2, v2) if (u2 – u1, v2 – v1) ∈ P◦.
Redefine functions φ(t) and ψ(t) on t ∈ [0, 1]. Let φ(t) = ψ(t) = 0, t ∈ [0, 1]. Obviously,

φ,ψ ∈ E.
For any (r, z) ∈ E0, let

u(t) = φ(t) + r(t) =

⎧
⎨

⎩

r(t), t ∈ [0, 1],

φ(t), t ∈ [–τ , 0],

and

v(t) = ψ(t) + z(t) =

⎧
⎨

⎩

z(t), t ∈ [0, 1],

ψ(t), t ∈ [–τ , 0].

Then for t ∈ [0, 1], ut = φt +rt = φ(t +θ )+r(t +θ ), vt = ψt +zt = ψ(t +θ )+z(t +θ ), θ ∈ [–τ , 0].
It is easy to see that the following lemma holds.

Lemma 2.6 (u, v) ∈ E is a solution of systems (2.9) and (2.10) if and only if (r, z) ∈ E0 is a
solution of the following integral systems:

r(t) =

⎧
⎨

⎩

0, t ∈ [–τ , 0],
∫ 1

0 Gα(t, s)f (s, z(s),ψs + zs) ds, t ∈ (0, 1],
(2.11)

and

z(t) =

⎧
⎨

⎩

0, t ∈ [–τ , 0],
∫ 1

0 Gβ (t, s)g(s, r(s),φs + rs) ds, t ∈ (0, 1],
(2.12)

which implies that (u, v) ∈ E is a solution of system (1.1) if and only if (r, z) ∈ E0 is a solution
of the following coupled system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ r(t) + f (t, z(t),ψt + zt) = 0, t ∈ (0, 1),

Dβ

0+ z(t) + g(t, r(t),φt + rt) = 0, t ∈ (0, 1),

Dγ1
0+ r(1) = aDγ1

0+ r(ξ ), Dγ2
0+ z(1) = bDγ2

0+ z(η),

r(t) = 0, z(t) = 0, t ∈ [–τ , 0].

(2.13)
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Define an operator T : E0 → E0 by

T(r, z) =
(
A(r, z), B(r, z)

)
,

where

A(r, z)(t) =

⎧
⎨

⎩

0, t ∈ [–τ , 0],
∫ 1

0 Gα(t, s)f (s, z(s),ψs + zs) ds, t ∈ (0, 1],
(2.14)

B(r, z)(t) =

⎧
⎨

⎩

0, t ∈ [–τ , 0],
∫ 1

0 Gβ (t, s)g(s, r(s),φs + rs) ds, t ∈ (0, 1].
(2.15)

It is clear that the Lemma 2.7 holds.

Lemma 2.7 A solution of the system (1.1) on E is equivalent to a fixed point of operator T
on E0.

Lemma 2.8 The operator T : E0 → E0 is completely continuous.

Proof Firstly, we prove that operator T is continuous on E0.
Let {rn, zn} ⊂ E0, (r, z) ∈ E0 such that ‖(rn, zn)–(r, z)‖E0 → 0 as n → ∞. Then, there exists

a constant M0 ≥ 0 such that ‖(rn, zn)‖E0 ≤ M0 for n = 1, 2, . . . and ‖(r, z)‖E0 ≤ M0, and then
‖rnt‖τ ≤ M0, ‖znt‖τ ≤ M0, ‖rt‖τ ≤ M0 and ‖zt‖τ ≤ M0 for t ∈ [0, 1]. Due to θ ∈ [–τ , 0], we
have θ + t ∈ [–τ , 1] for t ∈ [0, 1]. Therefore, we have ‖(rnt , znt) – (rt , zt)‖E0 → 0 as n → ∞.

By the continuity of f , g ,

lim
n→∞

∣
∣f

(
t, zn(t),ψt + znt

)
– f

(
t, z(t),ψt + zt

)∣
∣ = 0 and

lim
n→∞

∣
∣g

(
t, rn(t),φt + rnt

)
– g

(
t, r(t),φt + rt

)∣
∣ = 0.

And there exist constants M1, M2 > 0 such that

∣
∣f

(
t, zn(t),ψt + znt

)∣
∣ ≤ M1 and

∣
∣g

(
t, rn(t),φt + rnt

)∣
∣ ≤ M2, t ∈ [0, 1], n = 1, 2, . . . ,

and

∣
∣f

(
t, z(t),ψt + zt

)∣
∣ ≤ M1,

∣
∣g

(
t, r(t),φt + rt

)∣
∣ ≤ M2.

Then

∣
∣f

(
t, zn(t),ψt + znt

)
– f

(
t, z(t),ψt + zt

)∣
∣ ≤ 2M1 and

∣
∣g

(
t, rn(t),φt + rnt

)
– g

(
t, r(t),φt + rt

)∣
∣ ≤ 2M2.

It follows from Lemma 2.4 that for t ∈ [–τ , 1]

∣
∣A(rn, zn)(t) – A(r, z)(t)

∣
∣ ≤

∣
∣
∣
∣

∫ 1

0
Gα(t, s)

(
f
(
t, zn(s),ψs + zns

)
– f

(
s, z(s),ψs + zs

))
∣
∣
∣
∣ds

≤
∫ 1

0
w1(s)

∣
∣f

(
t, zn(s),ψs + zns

)
– f

(
s, z(s),ψs + zs

)∣
∣ds → 0
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and

∣
∣B(rn, zn)(t) – B(r, z)(t)

∣
∣ ≤

∣
∣
∣
∣

∫ 1

0
Gβ (t, s)

(
g
(
t, rn(s),φs + rns

)
– f

(
s, r(s),φs + rs

))
∣
∣
∣
∣ds

≤
∫ 1

0
w2(s)

∣
∣g

(
t, rn(s),φs + rns

)
– g

(
s, r(s),φs + rs

)∣
∣ds → 0.

By Lebesgue’s dominated convergence theorem, as n → ∞,

A(rn, zn) → A(r, z), B(rn, zn) → B(r, z).

Consequently, the operator T is continuous.
Assume that S ⊂ E0 is a bounded set, and there exists a constant l1 > 0 such that we have

‖(r, z)‖E0 ≤ l1 for any (r, z) ∈ S. There exist constants M3 > 0 and M4 > 0 such that

∣
∣f

(
t, z(t),ψt + zt

)∣
∣ ≤ M3,

∣
∣g

(
t, r(t),φt + rt

)∣
∣ ≤ M4.

Therefore, by Lemma 2.4, we have

∣
∣A(r, z)(t)

∣
∣ ≤

∫ 1

0

∣
∣Gα(t, s)

∣
∣
∣
∣f

(
s, z(s),ψs + zs

)∣
∣ds ≤ M3

∫ 1

0
ω1(s) ds

≤ M3

�(α)

∫ 1

0

(

sα–1 +
aξα–γ1–1(1 – s)α–γ1–1

1 – aξα–γ1–1

)

ds

=
(

1
�(α + 1)

+
aξα–γ1–1

(α – γ1)ρα

)

M3.

Similarly, we can prove that

∣
∣B(r, z)(t)

∣
∣ ≤

(
1

�(β + 1)
+

bηβ–γ2–1

(β – γ2)ρβ

)

M4.

Therefore, there exists a constant l > 0, such that ‖T(r, z)‖E0 ≤ l for (r, z) ∈ S. So T(S) is
uniformly bounded.

By the continuity of Gα(t, s) and Gβ (t, s) on [0, 1] × [0, 1], we have Gα(t, s) and Gβ (t, s)
are uniformly continuous on [0, 1] × [0, 1]. Therefore, for any ε > 0, there exists δ > 0 such
that

∣
∣Gα(t1, s) – Gα(t2, s)

∣
∣ <

ε

M3
,

∣
∣Gβ (t1, s) – Gβ (t2, s)

∣
∣ <

ε

M4

whenever t1, t2, s ∈ [0, 1] and |t1 – t2| < δ.
If t1, t2 ∈ [0, 1] and |t1 – t2| < δ, we get

∣
∣A(r, z)(t1) – A(r, z)(t2)

∣
∣ =

∣
∣
∣
∣

∫ 1

0

(
Gα(t1, s) – Gα(t2, s)

)
f
(
s, z(s),φs + zs

)
ds

∣
∣
∣
∣

≤ M3

∫ 1

0

∣
∣Gα(t1, s) – Gα(t2, s)

∣
∣ds < ε.
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Similarly,

∣
∣B(r, z)(t1) – B(r, z)(t2)

∣
∣ < ε.

And if t1, t2 ∈ [–τ , 0] and |t1 – t2| < δ, we have

∣
∣A(r, z)(t1) – A(r, z)(t2)

∣
∣ = 0,

∣
∣B(r, z)(t1) – B(r, z)(t2)

∣
∣ = 0.

Hence, T(S) is equicontinuous. According to the Arzela–Ascoli theorem, T(S) is a rela-
tive compact set.

So the operator T is completely continuous on E0. �

Lemma 2.9 (see [2]) Let E be a Banach space, and P ⊂ E be a normal solid cone. Suppose
that there exist y1, z1, y2, z2 ∈ E, with y1 ≺ z1 ≺ y2 ≺ z2, and A : [y1, z2] → E is a completely
continuous strongly increasing operator such that

y1 
 Ay1, Az1 ≺ z1, y2 
 Ay2, Az2 
 z2.

Then the operator A has at least three fixed points x1, x2, x3 such that

y1 
 x1 ≺≺ z1, y2 ≺≺ x2 
 z2, y2 � x3 � z1.

3 Multiple solutions of the coupled systems
Definition 3.1 (u, v) ∈ E0 ∩ (AC2(0, 1) × AC2(0, 1)) is called an upper solution of coupled
system (2.13), if it satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + f (t, v(t),ψt + vt) ≤ 0, t ∈ (0, 1),

Dβ

0+ v(t) + g(t, u(t),φt + ut) ≤ 0, t ∈ (0, 1),

Dγ1
0+ u(1) ≤ aDγ1

0+ u(ξ ), Dγ2
0+ v(1) ≤ bDγ2

0+ v(η),

u(t) = 0, v(t) = 0, t ∈ [–τ , 0].

(3.1)

Definition 3.2 (x, y) ∈ E0 ∩ (AC2(0, 1) × AC2(0, 1)) is called a lower solution of coupled
system (2.13), if it satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ x(t) + f (t, y(t),ψt + yt) ≥ 0, t ∈ (0, 1),

Dβ

0+ y(t) + g(t, x(t),φt + xt) ≥ 0, t ∈ (0, 1),

Dγ1
0+ x(1) ≥ aDγ1

0+ x(ξ ), Dγ2
0+ y(1) ≥ bDγ2

0+ y(η),

x(t) = 0, y(t) = 0, t ∈ [–τ , 0].

(3.2)

Lemma 3.1 Let (u, v) ∈ E0 ∩ (AC2(0, 1) × AC2(0, 1)), if

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) ≤ 0, t ∈ (0, 1),

Dβ

0+ v(t) ≤ 0, t ∈ (0, 1),

Dγ1
0+ u(1) ≤ aDγ1

0+ u(ξ ), Dγ2
0+ v(1) ≤ bDγ2

0+ z(η),

u(t) = 0, v(t) = 0, t ∈ [–τ , 0],

(3.3)

then u(t) ≥ 0 and v(t) ≥ 0, t ∈ [0, 1].
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Proof Let Dα
0+ u(t) = –x(t) ≤ 0, Dα

0+ v(t) = –y(t) ≤ 0, Dγ1
0+ u(1) – aDγ1

0+ u(ξ ) = a0 ≤ 0, Dγ2
0+ z(1) –

bDγ2
0+ z(η) = b0 ≤ 0. Then x(t) ≥ 0, y(t) ≥ 0, a0 ≤ 0, b0 ≤ 0. By Lemma 2.3, the coupled

system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ u(t) + x(t) = 0, t ∈ (0, 1),

Dβ

0+ v(t) + y(t) = 0, t ∈ (0, 1),

u(0) = v(0) = 0, t ∈ [–τ , 0],

Dγ1
0+ u(1) = aDγ1

0+ u(ξ ) – a0, Dγ2
0+ v(1) = bDγ2

0+ v(η) – b0,

has a unique solution

u(t) =

⎧
⎨

⎩

∫ 1
0 Gα(t, s)x(s) ds – 1

ρα
a0�(α – γ1)tα–1, t ∈ (0, 1],

0, t ∈ [–τ , 0],

v(t) =

⎧
⎨

⎩

∫ 1
0 Gβ (t, s)y(s) ds – 1

ρβ
b0�(β – γ2)tβ–1, t ∈ (0, 1],

0, t ∈ [–τ , 0].

By Lemma 2.4, u(t) ≥ 0 and v(t) ≥ 0, t ∈ [0, 1]. �

For convenience, we assume that the functions f and g satisfy the following properties.
(H) For any x1, x2 ∈ [0, +∞) with 0 ≤ x1 ≤ x2 and any p1, p2 ∈ C([–τ , 0]) with p1 ≤ p2,

f (t, x1, p1) ≤ f (t, x2, p2), g(t, x1, p1) ≤ g(t, x2, p2), t ∈ [0, 1],

when at least x1 < x2 and/or p1 < p2 holds,

f (t, x1, p1) < f (t, x2, p2), g(t, x1, p1) < g(t, x2, p2), t ∈ [0, 1].

Lemma 3.2 Suppose (H) holds, then T is a strongly increasing operator.

Proof For any (h1, k1), (h2, k2) ∈ E0 with (h1, k1) ≺ (h2, k2), i.e., h1(t) ≤ h2(t), k1(t) ≤ k2(t)
and h1(t) �≡ h2(t) or k1(t) �≡ k2(t) for t ∈ [–τ , 1].

By (H), we have

f
(
t, k1(t),ψt + k1t

) ≤ f
(
t, k2(t),ψt + k2t

)
,

g
(
t, h1(t),φt + h1t

) ≤ g
(
t, h2(t),φt + h2t

)
, t ∈ [0, 1].

Since h1(t) �≡ h2(t) and k1(t) �≡ k2(t), there exist two intervals [a1, b1], [a2, b2] ⊂ [0, 1]
such that k1(t) < k2(t) for t ∈ [a1, b1] or h1(t) < h2(t) for t ∈ [a2, b2]. Then

f
(
t, k1(t),ψt + k1t

)
< f

(
t, k2(t),ψt + k2t

)
, t ∈ [a1, b1], (3.4)

and

g
(
t, h1(t),φt + h1t

)
< g

(
t, h2(t),φt + h2t

)
, t ∈ [a2, b2]. (3.5)
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From (2.14), (2.15), (3.3), (3.4) and Lemma 2.4, for any t ∈ (0, 1],

A(h2, k2)(t) – A(h1, k1)(t)

=
∫ 1

0
Gα(t, s)f

(
s, k2(s),ψs + k2s

)
ds –

∫ 1

0
Gα(t, s)f

(
s, k1(s),ψs + k1s

)
ds > 0,

B(h2, k2)(t) – B(h1, k1)(t)

=
∫ 1

0
Gβ (t, s)g

(
s, h2(s),φs + h2s

)
ds –

∫ 1

0
Gβ (t, s)g

(
s, h1(s),φs + h1s

)
ds > 0.

For any t ∈ [–τ , 0], we have

A(h2, k2)(t) – A(h1, k1)(t) = 0, (3.6)

B(h2, k2)(t) – B(h1, k1)(t) = 0. (3.7)

In conclusion, we have T(h1, k1) ≺≺ T(h2, k2), T is a strongly increasing operator. �

Theorem 3.3 Suppose (H) holds, and there exist two lower solutions (x1, y1), (x2, y2) and
two upper solutions (u1, v1), (u2, v2) of coupled system (2.13) such that (x1, y1), (u2, v2) are
not solutions of the coupled system (2.13) with

(x1, y1) ≺ (u1, v1) ≺ (x2, y2) ≺ (u2, v2).

Then the coupled system (1.1) has at least three distinct solutions (r1 +φ, z1 +ψ), (r2 +φ, z2 +
ψ), (r3 + φ, z3 + ψ) ∈ E and for t ∈ [0, 1],

(
x1(t), y1(t)

) ≤ (
r1(t), z1(t)

)
<

(
u1(t), v1(t)

)
,

(
x2(t), y2(t)

)
<

(
r2(t), z2(t)

) ≤ (
u2(t), v2(t)

)
,

(
u2(t), v2(t)

) � ≤(r3, z3) � ≤(
u1(t), v1(t)

)
.

Proof By Lemma 2.8 and Lemma 3.2, we see that T : E0 → E0 is a completely continuous
strongly increasing operator.

Let A(x1, y1) := x(1)
1 , B(x1, y1) := y(1)

1 , then from the definition of T ,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+ x(1)

1 (t) + f (t, y1(t),ψt + y1t) = 0, t ∈ (0, 1),

Dβ

0+ y(1)
1 (t) + g(t, x1(t),φt + x1t) = 0, t ∈ (0, 1),

Dγ1
0+ x(1)

1 (1) = aDγ1
0+ x1(ξ ), Dγ2

0+ y(1)
1 (1) = bDγ2

0+ y1(η),

x(1)
1 (t) = 0, y(1)

1 (t) = 0, t ∈ [–τ , 0].

(3.8)

By (3.2) and (3.8),

Dα
0+

(
x1(t) – x(1)

1 (t)
)

= Dα
0+ x1(t) – Dα

0+ x(1)
1 (t)

≥ –f
(
t, y1(t),ψt + y1t

)
+ f

(
t, y1(t),ψt + y1t

)
= 0,
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Dα
0+

(
y1(t) – y(1)

1 (t)
)

= Dα
0+ y1(t) – Dα

0+ y(1)
1 (t)

≥ –g
(
t, x1(t),φt + x1t

)
+ g

(
t, x1(t),φt + x1t

)
= 0.

Dγ1
0+

(
x1(1) – x(1)

1 (1)
) ≥ aDγ1

0+ x1(ξ ) – aDγ1
0+ x1(ξ ),

Dγ2
0+

(
y1(1) – y(1)

1 (1)
) ≥ bDγ2

0+ y1(η) – bDγ2
0+ y1(η).

It is clear that

x(1)
1 (t) – x1(t) = 0, y(1)

1 (t) – y1(t) = 0, t ∈ [–τ , 0].

By Lemma 3.1,

x(1)
1 (t) – x1(t) ≥ 0, y(1)

1 (t) – y1(t) ≥ 0, t ∈ [0, 1].

Therefore,

(x1, y1) 
 T(x1, y1).

Similarly, we can prove T(x2, y2) 
 (x2, y2). Because (x2, y2) is a lower solution of coupled
system (2.13) and not a solution of (2.13), we have T(x2, y2) �= (x2, y2). Thus

T(x2, y2) ≺ (x2, y2).

In the same way, we get

T(u1, v1) ≺ (u1, v1), T(u2, v2) 
 (u2, v2).

It follows that T has at least three fixed points (r1, z1), (r2, z2), (r3, z3) ∈ [(x1, y1), (u2, v2)]
from Lemma 2.9.

Hence, by Lemma 2.6, the coupled system (1.1) has at least three distinct solutions (r1 +
φ, z1 + ψ), (r2 + φ, z2 + ψ), (r3 + φ, z3 + ψ) ∈ E, and for t ∈ [0, 1],

(
x1(t), y1(t)

) ≤ (
r1(t), z1(t)

)
<

(
u1(t), v1(t)

)
,

(
x2(t), y2(t)

)
<

(
r2(t), z2(t)

) ≤ (
u2(t), v2(t)

)
,

(
u2(t), v2(t)

) � ≤(r3, z3) � ≤(
u1(t), v1(t)

)
. �

4 Illustration
To illustrate the applicability of the conclusion, we consider the following nonlinear dif-
ferential fractional coupled system:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ u(t) + 1

π
arctan(

√
tv(t)) + 0.01‖vt‖τ = 0, t ∈ [0, 1],

D
5
4
0+ v(t) + 1

π
arctan(t 1

4 u(t)) + 0.01‖ut‖τ = 0, t ∈ [0, 1],

u(t) = t2, v(t) = t4, t ∈ [– 1
2 , 0],

D
3
8
0+ u(1) = D

3
8
0+ u( 1

2 ), D
5
8
0+ v(1) = 29

50 D
5
8
0+ v( 1

4 ).

(4.1)
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The coupled system (4.1) can be regarded as the form of (1.1), where α = 3
2 , β = 5

4 ,
τ = 1

2 , γ1 = 3
8 , γ2 = 5

8 , ξ = 1
2 , η = 1

4 , a = 1, b = 3
5 , f (t, v(t), vt) = 1

π
arctan(

√
tv(t)) + 0.01‖vt‖τ ,

g(t, u(t), ut) = 1
π

arctan(t 1
4 u(t)) + 0.01‖ut‖τ , ϕ(t) = t2, ψ(t) = t4.

It is obvious that

1 – aξα–γ1–1 = 1 –
(

1
2

) 3
2 – 3

8 –1

≈ 0.082996 > 0, 1 – bηβ–γ2–1

= 1 –
29
50

(
1
4

) 5
4 – 5

8 –1

≈ 0.02456 > 0.

Take

u1(t) =

⎧
⎨

⎩

1√
π

(16 – 2t)
√

t, t ∈ [0, 1],

t2, t ∈ [– 1
2 , 0],

v1(t) =

⎧
⎨

⎩

1
�(0.25) (10 – 2t)t 1

4 , t ∈ [0, 1],

t4, t ∈ [– 1
2 , 0],

u2(t) =

⎧
⎨

⎩

1√
π

(60 – 8t)
√

t, t ∈ [0, 1],

t2, t ∈ [– 1
2 , 0],

v2(t) =

⎧
⎨

⎩

1
�(0.25) (80 – 3t)t 1

4 , t ∈ [0, 1],

t4, t ∈ [– 1
2 , 0],

x1(t) =

⎧
⎨

⎩

0, t ∈ [0, 1],

t2, t ∈ [– 1
2 , 0],

y1(t) =

⎧
⎨

⎩

0, t ∈ [0, 1],

t4, t ∈ [– 1
2 , 0],

x2(t) =

⎧
⎨

⎩

15
√

π

�( 15
8 )

(5 – 4t
1

16 )t 7
8 , t ∈ [0, 1],

t2, t ∈ [– 1
2 , 0],

y2(t) =

⎧
⎨

⎩

t
3
8

�( 5
8 )

(23 – 8
5 t 3

4 ), t ∈ [0, 1],

t4, t ∈ [– 1
2 , 0].

By simple computations, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ u1(t) + f (t, v1(t), v1t + ψt) = – 3

2 + f (t, v1(t), v1t + ψt) ≤ 0, t ∈ [0, 1],

D
5
4
0+ v1(t) + g(t, u1(t), u1t + φt) ≈ –0.625 + g(t, u1(t), u1t + φt) ≤ 0, t ∈ [0, 1],

u1(t) = 0, v1(t) = 0, t ∈ [– 1
2 , 0],

D
3
8
0+ u1(1) ≈ 7.07907 ≤ D

3
8
0+ u1( 1

2 ) ≈ 7.14069,

D
5
8
0+ v1(1) ≈ 1.04565 ≤ 29

50 D
5
8
0+ v1( 1

4 ) ≈ 1.52995,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ u2(t) + f (t, v2(t), v2t + ψt) = –6 + f (t, v2(t), v2t + ψt) ≤ 0, t ∈ [0, 1],

D
5
4
0+ v2(t) + g(t, u2(t), u2t + φt) ≈ –0.9375 + g(t, u2(t), u2t + φt) ≤ 0, t ∈ [0, 1],

u2(t) = 0, v2(t) = 0, t ∈ [– 1
2 , 0],

D
3
8
0+ u2(1) ≈ 26.19258 ≤ D

3
8
0+ u2( 1

2 ) ≈ 26.61531,

D
5
8
0+ v2(1) ≈ 12.89631 ≤ 29

50 D
5
8
0+ v2( 1

4 ) ≈ 13.34455,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ x1(t) + f (t, y1(t), y1t + ψt) = 0 + f (t, y1(t), y1t + ψt) ≥ 0, t ∈ [0, 1],

D
5
4
0+ y1(t) + g(t, x1(t), x1t + φt) = 0 + g(t, x1(t), x1t + φt) ≥ 0, t ∈ [0, 1],

x1(t) = 0, y1(t) = 0, t ∈ [– 1
2 , 0],

D
3
8
0+ x1(1) = 0 ≥ D

3
8
0+ x1( 1

2 ) = 0,

D
5
8
0+ y1(1) = 0 ≥ 29

50 D
5
8
0+ y1( 1

4 ) = 0,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ x2(t) + f (t, y2(t), y2t + ψt)

= 5π

64�( 1
2 )

(99t –5
8 ( 5

�( 19
8 )

– 4t
1

16 �( 31
16 )

�( 15
8 )�( 39

16 )
) – 87�( 31

16 )t
–9
16

�( 15
8 )�( 39

16 )
) + f (t, y2(t), y2t + ψt)

≥ 0, t ∈ [0, 1],

D
5
4
0+ y2(t) + g(t, x2(t), x2t + φt)

= ( 1842
1
4 �( 11

8 )√
π�( 5

4 )
– 9t

3
4 �( 17

8 )
�( 13

8 )�( 23
8 )

)64t –7
8 – 3�( 17

8 )t
–1
8

2�( 13
8 )�( 23

8 )
+ g(t, x2(t), x2t + φt)

≥ 0, t ∈ [0, 1],

x2(t) = 0, y2(t) = 0, t ∈ [– 1
2 , 0],

D
3
8
0+ x2(1) ≈ 27.76526 ≥ D

3
8
0+ x2( 1

2 ) ≈ 23.29748,

D
5
8
0+ y2(1) ≈ 10.29709 ≥ 29

50 D
5
8
0+ y2( 1

4 ) ≈ 9.15314,

which show (u1, v1) and (u2, u2) are upper solutions, (x1, y1) and (x2, y2) are lower solutions
of the coupled systems (4.1), and it is not hard to get (x1, y1) ≺ (u1, v1) ≺ (x2, y2) ≺ (u2, v2).

It is easy to obtain

0 ≤ f
(
t, v2(t), v2t + ψt

)
– f

(
t, v1(t), v1t + φt

)

≤ 1
π

‖v2 – v1‖ + 0.01
∥
∥(v2t + ψt) – (v1t + φt)

∥
∥

τ
≤

(
1
π

+ 0.01
)

‖v2 – v1‖

and

0 ≤ g
(
t, u2(t), u2t + ψt

)
– g

(
t, u1(t), u1t + φt

)

≤ 1
π

‖u2 – u1‖ + 0.01
∥
∥u2t + ψt) – (u2t + φt)

∥
∥

τ
≤

(
1
π

+ 0.01
)

‖u2 – u1‖.

Similarly,

f
(
t, y2(t), y2t + ψt

) ≥ f
(
t, y1(t), y1t + ψt

)
, g

(
t, x2(t), x2t + φt

) ≥ g
(
t, x1(t), x1t + φt

)
.

Then condition (H) is satisfied. And all conditions of Theorem 3.3 are satisfied. In view
of Theorem 3.3, the coupled system (4.1) has at least three distinct solutions (r1 + φ, z1 +
ψ), (r2 + φ, z2 + ψ), (r3 + φ, z3 + ψ) ∈ [(x1, y1), (u2, v2)] and, moreover,

(
x1(t), y1(t)

) ≤ (
r1(t), z1(t)

)
<

(
u1(t), v1(t)

)
,

(
x2(t), y2(t)

)
<

(
r2(t), z2(t)

) ≤ (
u2(t), v2(t)

)
,

(
u2(t), v2(t)

) � ≤(
r3(t), z3(t)

) � ≤(
u1(t), v1(t)

)
.

5 Conclusion
In this paper, we present the method of upper and lower solutions for a class of fractional
coupled systems including state dependent delays with nonlocal boundary conditions. By
using the method of upper and lower solutions and fixed point theorems on the normal
cone, the multiplicity results for the boundary value problem are established. The method
and main results obtained in this paper can also be extended to the boundary value prob-
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lems of function fractional differential high dimensional systems of the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα1
0+ u1(t) + f1(t, u2(t), u2t) = 0, t ∈ (0, 1),

Dα2
0+ u2(t) + f2(t, u3(t), u3t) = 0, t ∈ (0, 1),

· · ·
Dαm

0+ um(t) + fm(t, u1(t), u1t) = 0, t ∈ (0, 1),

ui(t) = ϕi(t), t ∈ [–τ , 0], i = 1, 2, · · · , m,

Dγi
0+ ui(1) = aiD

γi
0+ ui(ξi), i = 1, 2, · · · , m.
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