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Abstract
For a stochastic COVID-19 model with jump-diffusion, we prove the existence and
uniqueness of the global positive solution. We also investigate some conditions for
the extinction and persistence of the disease. We calculate the threshold of the
stochastic epidemic system which determines the extinction or permanence of the
disease at different intensities of the stochastic noises. This threshold is denoted by ξ
which depends on white and jump noises. The effects of these noises on the
dynamics of the model are studied. The numerical experiments show that the
random perturbation introduced in the stochastic model suppresses disease
outbreak as compared to its deterministic counterpart. In other words, the impact of
the noises on the extinction and persistence is high. When the noise is large or small,
our numerical findings show that COVID-19 vanishes from the population if ξ < 1;
whereas the epidemic cannot go out of control if ξ > 1. From this, we observe that
white noise and jump noise have a significant effect on the spread of COVID-19
infection, i.e., we can conclude that the stochastic model is more realistic than the
deterministic one. Finally, to illustrate this phenomenon, we put some numerical
simulations.
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1 Introduction
Infectious diseases are the public enemy of the human population and have brought a great
impact on the mankind. In the present time, the novel coronavirus is the major disease in
the world. This new strain of coronavirus is called COVID-19 or SARS-Cov2. COVID-19
has been declared by the World Health Organization as a global emergency in January
2020 and a pandemic in March 2020 [1]. Since the first breakout of the pandemic, accord-
ing to the data released by World barometer [2], there have been more than 52 million
confirmed (from which 17 million are active) cases, 1.29 million deaths, and 33.5 million
recoveries from the disease.

Researchers are working around the clock to gain in-depth understanding of the nature
of the disease. Scientists are also battling to produce a vaccine for this new virus.
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Numerous scholars have conducted investigation to predict the spread of COVID-19
in order to seek the best prevention measures. For example, [3–8] studied mathemati-
cal models of COVID-19 to describe the spread of the coronavirus. Stochastic transition
models were established in [9–11] to evaluate the spread of COVID-19. The importance
of isolation and quarantine was also emphasized in those articles. Dalal et al. [12] studied
the impact of the environment on the AIDS model using the method of parameter pertur-
bation. In papers [13–20] fractal-fractional differentiation and integration was discussed.
This approach is very important in investigating the stochastic COVID-19 model.

Stochastic dynamical systems are widely used to describe different complex phenomena.
The random fluctuations in complex phenomena usually portray intermittent jumps, i.e.,
the noises are non-Gaussian. In other words, epidemic models are inevitably subject to en-
vironmental noise, and it is necessary to reveal how the environmental noise influences the
epidemic model. In the natural world, there are different types of random noises, such as
the well-known white noise, the Lévy jump noise which considers the motivation that the
continuity of solutions may be inevitably under severe environmental perturbations, such
as earthquakes, floods, volcanic eruptions, SARS, influenza [21–23], and a jump process
should be introduced to prevent and control diseases, and so on. Mathematically, several
authors [24–27] used the Lévy process to describe the phenomena that cause a big jump
to occur occasionally.

Recently, Zhang et al. [28] investigated the stochastic COVID-19 mathematical model
driven by Gaussian noise. The authors assumed environmental fluctuations in the con-
stant β , so that β −→ β + λḂt , where Bt is a one-dimensional Brownian motion [29]. The
stochastic COVID-19 model which they considered is

dSt = (� – βStIt – νSt + σRt) dt – λStIt dBt ,

dIt =
(
βStIt – (ν + γ )It

)
dt + λStIt dBt ,

dRt =
(
γ It – (ν + σ )Rt

)
dt, (1)

where the variables St , It , and Rt represent the susceptible population, infectious popula-
tion, and recovered (removed) population, respectively. The parameters �,β ,ν,γ , and σ

are all positive constant numbers, and they represent the joining rate of the population
to susceptible class through birth or migration, the rate at which the susceptible tend to
infected class (like social distancing β ∈ (0, 1)), due to a natural cause and from COVID-
19, the recovery rate, and the rate of health deterioration, respectively. Bt is the standard
Brownian motion defined on the complete probability space (	,F , {Ft}t≥0,P) and λ is the
intensity of the Gaussian noise. The researchers proved the existence and uniqueness of
the nonnegative solution of system (1), and they also showed the extinction and persis-
tence of the disease. But they did not consider the jump noise.

Since the stochastic model (1) that does not take randomness cannot efficiently model
these phenomena, the Lévy noise, which is more comprehensive, is a better candidate [30].

Here, we consider that the environmental Gaussian and non-Gaussian noises are directly
proportional to the state variables St , It , and Rt . Several scholars used this approach, for
instance, we refer to [31–33] and the references therein. The system which we consider
has the following form:

dSt = (� – βSt–It– – νSt– + σRt–) dt + λ1St– dB1
t +

∫

Y

ε1(y)St–N̄(dt, dy),
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dIt =
(
βSt–It– – (ν + γ )It–

)
dt + λ2It– dB2

t +
∫

Y

ε2(y)It–N̄(dt, dy),

dRt =
(
γ It– – (ν + σ )Rt–

)
dt + λ3Rt– dB3

t +
∫

Y

ε3(y)Rt–N̄(dt, dy), (2)

where St– is the left limit of St . The description of the parameters �,β ,ν,γ , and σ are the
same as in model (1). For j = 1, 2, 3, εj(y) is a bounded function satisfying εj(y) + 1 > 0 on
the intervals |y| ≥ 1 or |y| < 1. N(t, dy) is the independent Poisson random measure on
R

+ × R \ {0}, N̄(t, dy) is the compensated Poisson random measure satisfying N̄(t, dy) =
N(t, dy) –π (dy) dt, where π (.) is a δ-finite measure on a measurable subset Y of (0,∞) and
π (Y) < ∞ [30, 34]. Bj

t is mutually independent standard Brownian motion and λj stands
for the intensities of the Gaussian noise [35]. To the best of our knowledge, this model is
not studied before.

In this study, we are going to investigate the stochastic COVID-19 model with jump-
diffusion (2). The existence of the solution of the stochastic model (2) is analyzed. We
use the Euler–Maruyama (EM) method, which was proposed in [36, 37], after revising
and changing it a bit to fit our model. The consistency, convergence, and stability of this
numerical method is also proved in the afore-mentioned papers. This method helps to
evaluate explanations based on the notion of adversarial robustness. Using numerical sim-
ulations, we study the impact of the deterministic parameters and noise intensities on the
proposed system. We think this is a better tool to demonstrate the interactions between
the epidemic system and its complex surrounding. Especially, we focus on the extinction
and persistence of the SARS-Cov2 and present the biological interpretations. The evalua-
tion criteria further allow us to derive new explanations which capture pertinent features
qualitatively and quantitatively. From the plotted figures, we can observe that the noise
intensities have a great impact on systems (4) and (2). More details are given in Sects. 4
and 5.

The goal of the present work is to make contributions to understanding the dynamics of
the novel disease (COVID-19) epidemic models with both Gaussian and non-Gaussian
noises, i.e., we aspire to study the effect of Gaussian noise and jumps intensities on
COVID-19 epidemic.

The rest of the paper is constituted as follows. In Sect. 2, we recall some important no-
tations and lemmas. In Sect. 3, we discuss the dynamical behavior of the deterministic
COVID-19 model. Section 4 has two subsections. The existence and uniqueness of the
solution of the stochastic COVID-19 model (2) is given in Sect. 4.1; while in Sect. 4.2, by
finding the value of the threshold, we show the conditions for the extinction and persis-
tence to COVID-19. The discussion and numerical experiments of our work are given in
Sect. 5. Finally, we present conclusion of our study in Sect. 6.

2 Preliminaries
In this section, we introduce some basic notations and lemmas. Throughout this paper,
we have

a. (	,F , {Ft}t≥0,P) denotes a complete filtered probability space;
b. R

3
+ := {x = (x1, x2, x3) ∈R

3 : xj ≥ 0, j = 1, 2, 3}, R+ = (0,∞);
c. For the jump-diffusion, let n ≥ 0, there is a positive constant Ln such that

(i.)
∫
Y

|Hj(x, y) – Hj(x̄, y)|2π (dy) ≤ Ln|x – x̄|2, where Hj(x, y) = εj(y)Xt , j = 1, 2, 3. For
more details, we refer to [38, p. 78], [39];
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(ii.) 1 + εj(y) ≥ 0, y ∈ Y, j = 1, 2, 3, there exists C > 0 such that
∫
Y

(ln(1 + εj(y)))2π (dy) < C;
d. 〈M〉t = 1

t
∫ t

0 Mr dr, 〈M〉∗t = limt→∞ inf 1
t
∫ t

0 Mr dr, 〈M〉∗∗
t = limt→∞ sup 1

t
∫ t

0 Mr dr;

e. For j = 1, 2, 3, ϕj =
λ2

j
2 +

∫
Y

(εj(y) – ln(1 + εj(y)))π (dy), j = 1, 2, 3;
f. ψj =

∫
Y

(ln(1 + εj(y)))N̄(dt, dy), < ψj,ψj >= t
∫
Y

(ln(1 + εj(y)))π (dy) < tC;
g. For some positive m > 2, M = ν – m–1

2 �̄2 – 1
m ε̄ , where �̄ = max{λ2

1,λ2
2,λ2

3}, and
ε̄ =

∫
Y

(1 + ε̃)m – 1 – mε̂π (dy), where ε̃ = max{ε1(y), ε2(y), ε3(y)}, and
ε̂ = min{ε1(y), ε2(y), ε3(y)};

h. inf∅ = ∞, where ∅ denotes an empty set.

Remark 1 For some positive x, the following is true: x – 1 – ln x > 0.

Lemma 1 (The one-dimensional Itô formula) Here we will give Itô’s formula for the fol-
lowing n-dimensional stochastic differential equation (SDE) with jump noise [30]:

dY (t) = G
(
Y (t)

)
dt + F

(
Y (t)

)
dBt +

∫

|y|<1
H

(
Y (t), y

)
N̄(dt, dy), t ≥ 0, (3)

where G : R+ × R
n → R

n, F : R+ × R
n → R

n ×R
d , H : R+ × R

n ×R
n → R

n for n ≥ 2 are
considered as measurable.

Assume Y to be a solution of SDE (3). Then, for each W ∈ C2(Rn), t ∈ [0,∞), with prob-
ability one, we have [38]

W
(
Y (t)

)
– W

(
Y (0)

)

=
∫ t

0
∂jW

(
Yc

(
r–))

dY j +
1
2

∫ t

0
∂j∂iW

(
Yc

(
r–))

d
[
Y j

c , Y i
c
]
(r)

+
∫ t

0

∫

|y|<1

[
W

(
Y

(
r–)

+ H
(
Y (r), y

))
– W

(
Y

(
r–))]

N̄(dr, dy)

+
∫ t

0

∫

|y|<1

[
W

(
Y

(
r–)

+ H
(
Y (r), y

))
– W

(
Y

(
r–))

– Hi(Y (r), y
)
∂iW

(
Y

(
r–))]

π (dy) dr,

where Yc is the continuous part of Y given by Y i
c(t) =

∫ t
0 Fi

k(s) dBk(s) +
∫ t

0 Gi(s) ds, 1 ≤ i ≤
n, 1 ≥ k ≤ m, t ≥ 0. The proof of this lemma is given in [30, p. 226].

Next, let us denote by LW : [0,∞) × R
n → R the linear function associated with SDE

(3) which is given by

(LW )(η) = Gi(η)(∂iW )
(
η(0)

)
+

1
2
[
F(η)(F(η)T]ik(∂i∂kW )

(
η(0)

)

+
∫

|y|<1

[
W

(
η(0) + H(η, y)

)
– W

(
η(0)

)
– Hi(η, y)(∂iW )

(
η(0)

)]
π (dy),

where η ∈ [0,∞) ×R
n.
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Lemma 2 Assume that (c) holds. The stochastic model (2) has a unique nonnegative solu-
tion (St , It , Rt) ∈ R

3
+ for any given initial value (S0, I0, R0) ∈ R

3
+ on time t ≥ 0 almost surely

(a.s.). Under (g), the solution of model (2) satisfies the following conditions:
(i.) limt→∞( St+It+Rt

t ) = 0 a.s.
Moreover, limt→∞( St

t ) = 0, limt→∞( It
t ) = 0, limt→∞( Rt

t ) = 0;

(ii.) limt→∞
St dB1

t
t = 0, limt→∞

It dB2
t

t = 0, limt→∞
Rt dB3

t
t = 0, limt→∞

∫ t
0

∫
Y

Srε1(y)N̄(dr,dy)
t = 0,

limt→∞
∫ t

0
∫
Y

Irε2(y)N̄(dr,dy)
t = 0, limt→∞

∫ t
0

∫
Y

Rrε3(y)N̄(dr,dy)
t = 0. a.s.

Proof The proof of this lemma is similar to [33] and hence is omitted. �

3 Dynamical analysis of the deterministic COVID-19 model
The deterministic version of systems (1) and (2) is

dSt

dt
= � – βStIt – νSt + σRt ,

dIt

dt
= βStIt – (ν + γ )It ,

dRt

dt
t = γ It – (ν + σ )Rt , (4)

and

dX
dt

=
dSt

dt
+

dIt

dt
+

dRt

dt
= � – νX, (5)

where X = St + It + Rt . For � = νX, equation (5) shows that X is the total constant popula-
tion with the initial value X0 = S0 + I0 + R0. This equation has analytical solution

X =
�

ν
+ X0e–νt . (6)

Since the initial values are nonnegative, we have St ≥ 0, It ≥ 0, Rt ≥ 0, and limt→∞ X =
�
ν

. One can easily conclude that 0 < X ≤ �
ν

. Therefore, Eq. (6) has a positivity property.
Thus the deterministic COVID-19 model (4) is biologically meaningful and bounded in
the domain

D =
{

(St , It , Rt) ∈ R
3
+ : 0 < X ≤ �

ν

}
.

The equilibrium point of system (4) satisfies the following:

� – βStIt – νSt + σRt = 0,

βStIt – (ν + γ )It = 0,

γ It – (ν + σ )Rt = 0,

having the equilibria:

E0 =
(
S0, I0, R0) =

(
�

ν
, 0, 0

)
,
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E1 =
(
S1, I1, R1) =

(
ν + γ

β
,
β� – ν(ν + γ )

ν + γ
, 0

)
,

E2 =
(
S2, I2, R2) =

(
ν + γ

β
, 0,

ν(ν + γ ) – β�

βσ

)
,

E3 =
(
S3, I3, R3) =

(
ν + γ

β
,

(� – νS3)(ν + σ )
βS3(ν + σ ) – γ σ

,
γ (� – νS3)

βS3(ν + σ ) – γ σ

)
,

where S3 = ν+γ

β
.

E0 is called disease-free equilibrium point (free virus equilibrium point) because there
are no infectious individuals in the population, which indicates that I = 0 and R = 0. E3 is
known as endemic equilibrium point (the positive virus point) of model (4).

From the expressions of I1 and I3, noting that if

�

ν
>

ν + γ

β
,

the deterministic system (4) has unique positive equilibria E1 and E3. From this, the re-
productive number of system (4) is given by

ξ0 =
β�

(ν + γ )ν
.

Similarly, at equilibrium point E3, all the eigenvalues are nonpositive if ξ0 > 1. Hence the
proposed model is globally stable if ξ0 > 1.

Theorem 1 The deterministic system (4) has
(i) a unique stable ‘disease-extinction’ (disease-free equilibrium) equilibrium point Ej for

j = 0, 1, 2, 3 if ξ0 < 1. This indicates the extinction of the disease from the population.
(ii) a stable positive equilibrium Ej for j = 0, 1, 2, 3 exists if ξ0 > 1 that shows the

permanence of the disease.

Proof The Jacobian matrix of system (4) is

J =

⎛

⎜
⎝

–βI – ν –βS σ

βI βS – (ν + γ ) 0
0 γ –(ν + σ )

⎞

⎟
⎠ .

Now let us show for j = 0 (E0), then similarly we can show for j = 1, 2, 3.
The Jacobian of system (4) at E0 gives

J0 =

⎛

⎜
⎝

–ν –β �
ν

σ

0 β �
ν

– (ν + γ ) 0
0 γ –(ν + σ )

⎞

⎟
⎠ .

The eigenvalues are calculated as follows:

JE0
=

∣∣∣
∣∣
∣∣

–ν – λ̄ –β �
ν

σ

0 β �
ν

– (ν + γ ) – λ̄ 0
0 γ –(ν + σ ) – λ̄

∣∣∣
∣∣
∣∣
. (7)
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The characteristic polynomial of equation (7) is

(–ν – λ̄)
(

β
�

ν
– (ν + γ ) – λ̄

)
(
–(ν + σ ) – λ̄

)
= 0,

so the eigenvalue is

λ̄ = β
�

ν
– (ν + γ ).

From the stability theory, E0 is stable if and only if

λ̄ < 0,

or equivalently

β
�

ν
– (ν + γ ) < 0

implies

ξ0 = β
�

ν(ν + γ )
< 1. �

4 Dynamics of the stochastic COVID-19 system
4.1 Existence and uniqueness of the solution
To study the dynamical behavior of a dynamic biological system, the main concern is to
check whether the solution of the system is uniquely global and positive. A dynamical sys-
tem has a uniquely global solution if it exhibits no explosion in a given finite time. To have a
uniquely global solution, the coefficients of the system must satisfy the following two con-
ditions: (i) local Lipschitz condition, (ii) linear growth condition; see [30, 35]. However,
the coefficients of the stochastic COVID-19 model (2) do not satisfy the second condi-
tion (linear growth condition), so the solution (St , It , Rt) of system (2) can explode in a
finite time t. The following theorem helps us to show that there exists a unique positive
solution (St , It , Rt) ∈R

3
+ to COVID-19 system (2).

Theorem 2 For any given initial condition (S0, I0, R0) ∈ R
3
+, there is a unique nonnegative

solution (St , It , Rt) ∈R
3
+ of model (2) for time t ≥ 0.

Proof The differential equation (2) has a locally Lipschitz continuous coefficient, so the
model has a unique local solution (St , It , Rt) on t ∈ [0, te), where te is the time for noise
for the explosion. In order to have a global solution, we need to show that te = ∞ almost
surely. To do this, assume that k0 is a very large positive number (k0 > 0) so that the initial
condition (S0, I0, R0) ∈ [ 1

k0
, k0]. For every integer k ≥ k0, the stopping time is defined as

follows:

τe = inf

{
t ∈ [0, te) : min(St , It , Rt) ≤ 1

k0
, or max(St , It , Rt) ≥ k

}
.
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As k goes to ∞, τk increases. Define limk→∞ τk = τ∞ with τ∞ ≤ τe. If we can prove that
τ∞ = ∞ almost surely, then τe = ∞. If this is false, then there are two positive constants
T > 0 and δ ∈ (0, 1) such that

P{τ∞ ≤ T} > δ.

Thus there is k1 ≥ k0 that satisfies

P{τk ≤ T} ≥ δ, k ≥ k1.

Now, let us define a C2-function W : R3
+ →R+ by

W (S, I, R) =
(

S – α – α
ln S
α

)
+ (I – 1 – ln I) + (R – 1 – ln R). (8)

Applying Itô’s formula in Lemma 1 to Eq. (8) yields

dW (S, I, R) = (1 – α/S) dS +
(dS)2

2S2 + (1 – 1/I) dI +
(dI)2

2I2 + (1 – 1/S) dS +
(dR)2

2R2

:= LW dt + W̄ , (9)

where L is a differential operator [30].

W̄ = λ1S dB1
t +

∫

Y

ε1(y)SN̄(dt, dy) – αλ1 dB1
t – α

∫

Y

ε1(y)N̄(dt, dy)

+ λ2I dB2
t +

∫

Y

ε2(y)IN̄(dt, dy) – λ2 dB2
t –

∫

Y

ε2(y)N̄(dt, dy)

+ λ3R dB3
t +

∫

Y

ε3(y)RN̄(dt, dy) – λ3 dB3
t –

∫

Y

ε3(y)N̄(dt, dy),

and LW : R3
+ →R+ is defined as

LW = � – νS + σR – α
�

S
+ αβI + αν – α

σR
S

+
λ2

1
2

+
∫

Y

ε2
1 (y)π (dy) – (ν + γ )I – βS + (ν + γ ) +

λ2
2

2

+
∫

Y

ε2
2 (y)π (dy) + γ I – (ν + σ )R – γ + (ν + σ ) +

λ2
3

2
+

∫

Y

ε2
3 (y)π (dy)

≤ � + αν +
(
αβ – (ν + γ )

)
I + (ν + γ ) – γ + (ν + σ ) +

λ2
1

2
+

λ2
2

2
+

λ2
3

2

+
∫

Y

ε2
1 (y)π (dy) +

∫

Y

ε2
2 (y)π (dy) +

∫

Y

ε2
3 (y)π (dy).

By plugging in α = ν+γ

β
, we get

LW ≤ � + αν + (ν + γ ) – γ + (ν + σ ) +
λ2

1
2

+
λ2

2
2

+
λ2

3
2

+
∫

Y

ε2
1 (y)π (dy)
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+
∫

Y

ε2
2 (y)π (dy) +

∫

Y

ε2
3 (y)π (dy)

:= C,

where the parameter C is a positive constant. The rest of the proof follows Cai et al. [40,
Lemma 2.2] and Zhu et al. [41, Theorem 1]. �

4.2 Extinction and persistence of the disease
Since this paper considers the epidemic dynamic systems, we are focused on prevalence
and persistence of COVID-19 in a population.

4.2.1 Extinction of the disease
In this subsection, we give some conditions for the extinction of COVID-19 in the stochas-
tic COVID-19 system (2). Since the extinction of disease (epidemics) in small populations
has the major challenges in population dynamics [42], it is important to study the extinc-
tion of COVID-19.

Define a parameter ξ as

ξ =
β�

ν

1
γ + ν + ϕ2

,

where ϕ2 = 1
2λ2 +

∫
Y

[ε2(y) – ln(1 + ε2(y))]π (dy). Here, ξ is the basic reproduction number
for the stochastic COVID-19 model (2).

Remark 2 From (e) and Remark 1, we have

ϕ2 =
λ2

2
2

+
∫

Y

[
ε2(y) – ln

(
1 + ε2(y)

)]
π (dy)

=
λ2

2
2

+
∫

Y

[(
1 + ε2(y)

)
– 1 – ln

(
1 + ε2(y)

)]
π (dy)

≥ λ2
2

2
.

Definition 1 For the stochastic model (2), if limt→∞ It = 0, then the disease It is said to be
extinct, a.s.

Theorem 3 Assume that (g) holds. Then, for any initial condition (S0, I0, R0) ∈ R
3
+, the

solution (St , It , Rt) ∈R
3
+ of the stochastic COVID-19 model (2) has the following properties:

lim
t→∞ sup

ln It

t
≤ β

�

ν

(
1 –

1
ξ

)
, a.s.

If ξ < 1 holds, then It can go to zero with probability one.
Moreover,

lim
t→∞〈S〉t =

�

ν
= S0, lim

t→∞〈R〉t = 0, a.s.
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Proof Integrating both sides of model (2) and dividing by t gives

St – S0

t
= � – β〈S〉t〈I〉t – ν〈S〉t + σ 〈R〉t +

λ1

t

∫ t

0
Sr dB1

r

+
1
t

∫ t

0

∫

Y

ε1(y)SrN̄(dr, dt), (10)

It – I0

t
= β〈S〉t〈I〉t – (γ + ν)〈I〉t +

λ2

t

∫ t

0
Ir dB2

r +
1
t

∫ t

0

∫

Y

ε2(y)IrN̄(dr, dt), (11)

Rt – R0

t
= γ 〈I〉t – (ν + σ )〈R〉t +

λ3

t

∫ t

0
Rr dB3

r +
1
t

∫ t

0

∫

Y

ε3(y)RrN̄(dr, dt). (12)

Multiplying both sides of Eq. (12) by σ
ν+σ

, we have

σ

ν + σ

Rt – R0

t
=

σ

ν + σ
γ 〈I〉t – σ 〈R〉t +

σ

ν + σ

λ3

t

∫ t

0
Rr dB3

r

+
σ

ν + σ

1
t

∫ t

0

∫

Y

ε3(y)RrN̄(dr, dt). (13)

Adding Eqs. (10), (11), and (13), we obtain

St – S0

t
+

It – I0

t
+

σ

ν + σ

Rt – R0

t

= � – ν〈S〉t +
λ1

t

∫ t

0
Sr dB1

r +
1
t

∫ t

0

∫

Y

ε1(y)SrN̄(dr, dt)

– (γ + ν)〈I〉t +
λ2

t

∫ t

0
Ir dB2

r +
1
t

∫ t

0

∫

Y

ε2(y)IrN̄(dr, dt)

× σ

ν + σ
γ 〈I〉t +

σ

ν + σ

λ3

t

∫ t

0
Rr dB3

r +
σ

ν + σ

1
t

∫ t

0

∫

Y

ε3(y)RrN̄(dr, dt)

= � – ν〈S〉t –
(

(γ + ν) –
σ

ν + σ
γ

)
〈I〉

+
λ1

t

∫ t

0
Sr dB1

r +
1
t

∫ t

0

∫

Y

ε1(y)SrN̄(dr, dt)

+
λ2

t

∫ t

0
Ir dB2

r +
1
t

∫ t

0

∫

Y

ε2(y)IrN̄(dr, dt)

+
σ

ν + σ

λ3

t

∫ t

0
Rr dB3

r +
σ

ν + σ

1
t

∫ t

0

∫

Y

ε3(y)RrN̄(dr, dt). (14)

Rewrite Eq. (14) as

〈S〉t =
�

ν
–

(
γ + ν + σ

ν + σ

)
〈I〉t + �̄t , (15)

where

�̄t = –
1
ν

(
St – S0

t
+

It – I0

t
+

σ

ν + σ

Rt – R0

t

)

+
1
ν

(
λ1

t

∫ t

0
Sr dB1

r +
1
t

∫ t

0

∫

Y

ε1(y)SrN̄(dr, dt)
)
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+
1
ν

(
λ2

t

∫ t

0
Ir dB2

r +
1
t

∫ t

0

∫

Y

ε2(y)IrN̄(dr, dt)
)

+
1
ν

(
σ

ν + σ

λ3

t

∫ t

0
Rr dB3

r +
σ

ν + σ

1
t

∫ t

0

∫

Y

ε3(y)RrN̄(dr, dt)
)

.

From Lemma 2(i)–(ii),

lim
t→∞ �̄t = 0, a.s. (16)

Therefore, Eq. (15) becomes

〈S〉t =
�

ν
–

(
γ + ν + σ

ν + σ

)
〈I〉t . (17)

Setting Z = ln It and applying Itô’s formula to Z yields

dZ = d ln It =
1
It

dIt –
1

2I2
t

[dIt]2

=
(
βSt – (ν + γ ) – ϕ2

)
dt + λ2It dB2

t +
∫

Y

ln
(
1 + ε2(y)

)
N̄(dt, dy). (18)

Integrating both sides of Eq. (18) and dividing by t gives

ln It

t
= β〈S〉t – (ν + γ ) – ϕ2 +

λ2It dB2
t

t
+

1
t

∫

Y

ln
(
1 + ε2(y)

)
N̄(dt, dy) +

ln I0

t
. (19)

Upon plugging in 〈S〉t of Eq. (17) into Eq. (19), we get

ln It

t
= β

(
�

ν
–

(
γ + ν + σ

ν + σ

)
〈I〉t

)
– (ν + γ ) – ϕ2 +

λ2It dB2
t

t

+
1
t

∫

Y

ln
(
1 + ε2(y)

)
N̄(dt, dy) +

ln I0

t

= β
�

ν
– (ν + γ ) – ϕ2 – β

(
γ + ν + σ

ν + σ

)
)〈I〉t +

λ2It dB2
t

t

+
1
t

∫

Y

ln
(
1 + ε2(y)

)
N̄(dt, dy) +

ln I0

t

= β
�

ν
– (ν + γ + ϕ2) – β

(
γ + ν + σ

ν + σ

)
〈I〉t +

λ2It dB2
t

t
+

ψ2(t)
t

+
ln I0

t

≤ β
�

ν

(
1 –

ν

β�
(ν + γ + ϕ2)

)
– β

(
γ + ν + σ

ν + σ

)
〈I〉t +

λ2It dB2
t

t
+

ψ2(t)
t

+
ln I0

t

≤ β
�

ν

(
1 –

1
ξ

)
– β

(
γ + ν + σ

ν + σ

)
〈I〉t +

λ2It dB2
t

t
+

ψ2(t)
t

+
ln I0

t

≤ β
�

ν

(
1 –

1
ξ

)
– β

(
γ + ν

ν + σ

)
〈I〉t +

λ2It dB2
t

t
+

ψ2(t)
t

+
ln I0

t
,

since –
γ + ν + σ

ν + σ
< –

γ + ν

ν + σ
. (20)
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From (f ) and the theorem of large numbers [43] we have

lim
t→∞

ψ2(t)
t

= 0, a.s. (21)

and

lim
t→∞

Bt

t
= 0, a.s. (22)

By applying the superior limit (limt→∞ sup) on both sides of Eq. (20) gives

lim
t→∞ sup

ln It

t
≤ β

�

ν

(
1 –

1
ξ

)
, a.s. (23)

If ξ < 1 holds, then β �
ν

(1 – 1
ξ

) < 0.
Therefore,

lim
t→∞ It = 0. (24)

From Definition 1, this implies that It can tend to zero with probability one. Similarly, we
can show that

lim
t→∞〈R〉t = 0. (25)

Recall Eq. (6),

X =
�

ν
+ X0e–νt .

Using Eqs. (24) and (25), and

lim
t→∞ X = lim

t→∞(St + It + Rt) =
�

ν
,

we obtain

lim
t→∞〈S〉t =

�

ν
= S0. �

4.2.2 Persistence of the disease
This section deals with the persistence in mean of the disease in model (2). Before we state
the theorem, we define persistence in mean.

Definition 2 If limt→∞〈S〉t > 0, limt→∞〈I〉t > 0, limt→∞〈R〉t > 0, almost surely, then we
can say that system (2) is persistent in mean.

Theorem 4 For given initial values (S0, I0, R0) ∈ R
3
+, the solution (St , It , Rt) ∈ R

3
+ of model

(2) exists when ξ > 1,

lim
t→∞〈S〉t = S̃, lim

t→∞〈I〉t = Ĩ, lim
t→∞〈R〉t = R̃, a.s.,
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where

S̃ =
�

ν
–

γ + ν + σ

γ + ν

�

ν

(
1 –

1
ξ

)
, Ĩ =

ν + σ

γ + ν

�

ν

(
1 –

1
ξ

)
,

R̃ =
1

γ + ν

�

ν

(
1 –

1
ξ

)
.

Proof Recall Eq. (20)

ln It

t
= β

�

ν

(
1 –

1
ξ

)
– β

(
γ + ν

ν + σ

)
〈I〉t +

λ2It dB2
t

t
+

ψ2(t)
t

+
ln I0

t
, (26)

or equivalently,

β

(
γ + ν

ν + σ

)
〈I〉t = –

ln It

t
+ β

�

ν

(
1 –

1
ξ

)
+

λ2

t
It dB2

t + ψ2(t) +
ln I0

t
. (27)

From Lemma 2 and Eqs. (16), (21), and (22), we get

lim
t→∞〈I〉t =

ν + σ

γ + ν

�

ν

(
1 –

1
ξ

)
= Ĩ, a.s. (28)

Substituting Eq. (28) into Eq. (17), and taking limit on both sides, yields

lim
t→∞〈S〉t =

�

ν
–

γ + ν + σ

γ + ν

�

ν

(
1 –

1
ξ

)
= S̃. (29)

Furthermore, applying limt→∞ to Eq. (12) and replacing 〈I〉t by Eq. (28) yields

lim
t→∞〈R〉t =

1
γ + ν

�

ν

(
1 –

1
ξ

)
= R̃. (30)

The proof is complete. �

Remark 3 From Theorems 3 and 4, we can take the value of ξ as the threshold of system
(2). The value of ξ indicates the prevalence and extinction of COVID-19. Here, we can
observe that the Gaussian and jump noises have a significant effect on the behavior of
system (2).

5 Discussion and numerical experiments
This section deals with the theoretical results of the investigated deterministic and
stochastic epidemic systems by applying numerical simulations. Here, to find out the im-
pact of Gaussian and non-Gaussian noise intensities on this epidemic dynamics, we com-
pare the trajectories of the deterministic and stochastic systems. We choose the initial
value (S0, I0, R0) = (70, 50, 20),� = 0.0072,β = 0.002,σ = 0.01,γ = 0.02. The other values
of the parameters are given in the figures.

Figure 1 plots the numerical simulation of the deterministic epidemic model (4). Fig-
ure 1(a) shows the results of Theorem 1 for different values of the reproductive number
ξ0. We can easily see from the results that the infectious disease of system (4) goes to ex-
tinction for ξ0 < 1, almost surely, whereas the disease persists if ξ0 > 1. The parameter ν



Tesfay et al. Advances in Difference Equations        (2021) 2021:228 Page 14 of 19

Figure 1 Sample path of dI
dt (a) when ξ0 = 1.0286 and ξ0 = 0.0103. (b) The phaseline of dIt/dt at different

values of ν . (c) When the reproduction number ξ0 < 1

will lead to a decrease in ξ0. This tells us that the extinction of the disease is very fast as ν

increases, this phenomenon is plotted in Fig. 1(b). As ν increases, the value of ξ0 is less than
one, thus, according to Theorem 1, asymptotically results into extinction of COVID-19 in
the population, i.e., It can go to zero with probability one. The phase line of the COVID-19
epidemic model (4) is given in Fig. 1(c) when ξ0 < 1 and ν = 0.01.

In Figs. 2 and 3, we fixed the parameters ν = 0.001, εj(y) = 0.004 for j = 1, 2, 3, and Y =
(0,∞),π (Y) = 1. Here, the value of the basic reproductive number ξ0 is 1.0286, and ξ =
0.9349. Having these values, the solution (St , It , Rt) of system (2) satisfies the property in
Theorem 3, i.e.,

lim
t→∞

ln It

t
≤ β

�

ν

(
1 –

1
ξ

)
= –0.0015 < 0 a.s.

This shows that It can vanish as t goes to infinity. This happens because of the Lévy noise
effect. When λ2 = 0.019 and ξ = 1.0093, the solution (St , It , Rt) of model (2) satisfies the
condition in Theorem 4. This scenario means that

lim
t→∞〈S〉t = 7.1025,

lim
t→∞〈I〉t = 0.0346,
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Figure 2 The numerical results of model (2). (a) The graph of the susceptible. (b) The graph of the infected
people.(c) The graph of the recovered people. Parameters S0 = 70, I0 = 50, R0 = 20, � = 0.0072, β = 0.002,
ν = 0.001, σ = 0.01, γ = 0.02, λj = 0.047, εj(y) = 0.004, j = 1, 2, 3,ξ = 0.9760 < 1.

and

lim
t→∞〈R〉t = 3.1460, a.s.

This numerical experiment shows that COVID-19 will prevail. Note that Fig. 2 and Fig. 3
only differ by the value of λ2. The relationship of the variables St , It , and Rt is plotted in
Fig. 4. When the reproductive number ξ0 is less than 1, the stochastic reproductive number
ξ is also less than 1. For this case, the sample paths of the stochastic COVID-19 model are
plotted in Figs. 4(b), 4(c), and 4(d).

The numerical solutions imply that reducing contact rate, washing hands, improving
treatment rate, and environmental sanitation are the most crucial activities to eradicate
the COVID-19 disease from the community.

6 Conclusion
The non-Gaussian noise plays a significant role in evolution of epidemic dynamical pro-
cesses like HIV, SARS, avian influenza, and so on. In this work, we have studied the
stochastic COVID-19 epidemic model driven by both Gaussian and non-Gaussian noises.
In Theorem 2, we proved that model (2) has a unique nonnegative solution. We also in-
vestigated some conditions for the extinction and persistence during the COVID-19 epi-
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Figure 3 The numerical simulation of model (2). (a) The graph of the susceptible. (b) The graph of the
infected people. (c) The graph of the recovered people from COVID-19. Parameters S0 = 70, I0 = 50, R0 = 20,
� = 0.0072, β = 0.002, ν = 0.001, σ = 0.01, γ = 0.02, λ1 = 0.047, λ2 = 0.019, λ3 = 0.047, εj(y) = 0.004, j = 1, 2, 3,
ξ = 1.02 > 1

demic. We have applied a matlab program to study the behavior of the solution of the
model. We have illustrated with numerical results the changing impact of the noise inten-
sities and the parameter ν on the number of infectious individuals. The results established
in the present study can be used to examine dynamical behaviors for COVID-19, HIV,
SARS, and so on.

By using the Euler–Maruyama (EM) method [36, 37], we gave some numerical solu-
tions to illustrate the extinction and persistence of the disease in the deterministic system
and stochastic counterparts for comparison. We also obtained and compared the basic
reproduction numbers for the deterministic model as well as the stochastic one. From the
comparison, we observed that the basic reproduction number of the stochastic COVID-
19 model is much smaller than that of the deterministic COVID-19 model; this shows that
the stochastic approach is more realistic than the deterministic one. In other words, the
jump noise and white noise can change the behavior of the model. The noises can force
COVID-19 (disease) to become extinct.

Furthermore, we showed that the disease can go to extinction if ξ < 1, while COVID-19
becomes persistent for ξ > 1; see Theorems 3 and 4.

From the findings, we concluded that if ξ < 1, it is possible that the spread of the disease
can be controlled, but for ξ > 1, COVID-19 can be persistent. β�

ν
≥ ϕ2 implies that the
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Figure 4 This figure shows the numerical simulation of the stochastic COVID-19 model (2) with S0 = 70,
I0 = 50, R0 = 20, � = 0.0072, β = 0.002, ν = 0.001, σ = 0.01, γ = 0.02, ξ = 0.9284 < 1, j = 1, 2, 3

Gaussian and non-Gaussian noises are small. From this result, we conclude that efforts
should be encouraged in order to achieve a disease-free population.

Acknowledgements
This research was supported by King Abdulaziz University Jeddah Saudi Arabia and partially supported by the NSFC
grants 12001213.

Funding
Supported by King Abdulaziz University Jeddah KSA.

Availability of data and materials
The authors confirm that the data supporting the findings of this study are available within the articles cited therein.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Authors have equally contributed in preparing this manuscript. All authors read and approved the final manuscript.

Author details
1School of Mathematics and Statistics & Center for Mathematical Sciences, Huazhong University of Science and
Technology, Wuhan, 430074, China. 2Department of Mathematics, Mekelle University, P.O. Box 231, Mekelle, Ethiopia.
3Department of Mathematics, King Abdulaziz University, Jeddah, 41206, Kingdom of Saudi Arabia. 4Department of
Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
5Department of Mathematical Sciences, Clemson University, Clemson, South Carolina 29634, USA.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Tesfay et al. Advances in Difference Equations        (2021) 2021:228 Page 18 of 19

Received: 22 December 2020 Accepted: 25 April 2021

References
1. Sohrabi, C., Alsafi, Z., O’Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., World, R.: Health organization declares

global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020)
2. WHO COVID-19 weekly epidemiological update.

https://www.who.int/publications/m/item/weekly-epidemiological-update10-november-2020 (2020)
3. Chen, T.M., Rui, J., Wang, Q.P., Zhao, Z.Y., Cui, J.A., Yin, L.: A mathematical model for simulating the phase-based

transmissibility of a novel coronavirus. Infect. Dis. Poverty 9, 24 (2020)
4. Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo, Y., Zhang, S., Jia, Q., Zhao, C., et al.: The effectiveness of

quarantine of Wuhan city against the corona virus disease 2019 (COVID-19): a well-mixed SEIR model analysis. J. Med.
Virol. 92(7), 841–848 (2020)

5. Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., et al.:
Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis. 20(5),
553–558 (2020)

6. Okuonghae, D., Omame, A.: Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria.
Chaos Solitons Fractals 139, 110032 (2020)

7. Sher, M., Shah, K., Khan, Z.A., Khan, H., Khan, A.: Computational and theoretical modeling of the transmission
dynamics of novel COVID-19 under Mittag-Leffler power law. Alex. Eng. J. (2020).
https://doi.org/10.1016/j.aej.2020.07.014

8. Yang, C., Wang, J.: A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng.
17(3), 2708–2724 (2020)

9. Chen, T.-M., Rui, J., Wang, Q.-P., Zhao, Z.-Y., Cui, J.-A., Yin, L.: A mathematical model for simulating the phase-based
transmissibility of a novel coronavirus. Infect. Dis. Poverty 9(1), 1–8 (2020)

10. Wang, H., Wang, Z., Dong, Y., Chang, R., Xu, C., Yu, X., Zhang, S., Tsamlag, L., Shang, M., Huang, J., et al.: Phase-adjusted
estimation of the number of coronavirus disease 2019 cases in Wuhan, China. Cell Discov. 6(1), 1–8 (2020)

11. Khalaf, A.D., Abouagwa, M., Almushaira, M., Wang, X.J.: Stochastic Volterra integral equations with jumps and the
strong superconvergence of Euler–Maruyama approximation. J. Comput. Appl. Math. 382, 113071 (2021)

12. Dalal, N., Greenhalgh, D., Mao, X.: A stochastic model for internal HIV dynamics. J. Math. Anal. Appl. 341(2), 1084–1101
(2008)

13. Abdon, A.: Blind in a commutative world: simple illustrations with functions and chaotic attractors. Chaos Solitons
Fractals 114, 347–363 (2018). https://doi.org/10.1016/j.chaos.2018.07.022

14. Abdon, A.: Fractional discretization: the African’s tortoise walk. Chaos Solitons Fractals 130, 109399 (2020).
https://doi.org/10.1016/j.chaos.2019.109399

15. Abdon, A.: Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to
predict complex system. Chaos Solitons Fractals 102, 396–406 (2017)

16. Ghanbari, B., Atangana, A.: Some new edge detecting techniques based on fractional derivatives with non-local and
non-singular kernels. Adv. Differ. Equ. 2020, Article ID 435 (2020)

17. Yildirim, A., Kocak, H., Kumar, S.: A fractional model of gas dynamics equation by using Laplace transform. Z.
Naturforsch. A 67a, 389–396 (2012)

18. Ghanbari, B., Kumar, S., Kumar, R.: A study of behaviour for immune and tumor cells in immunogenetic tumor model
with non-singular fractional derivative. Chaos Solitons Fractals 133, 109619 (2020)

19. Kumar, S., Kumar, R., Cttani, C., Samet, B.: Chaotic behaviour of fractional predator-prey dynamical system. Chaos
Solitons Fractals 135, 109811 (2020)

20. Kumar, S., Kumar, A., Samet, B., Gomez-Aguilar, J.F., Osman, M.S.: A chaos study of tumor and effector cells in fractional
tumor immune model for cancer treatment. Chaos Solitons Fractals 141, 110321 (2020)

21. Bao, J., Yuan, C.: Stochastic population dynamics driven by Lévy noise. J. Math. Anal. Appl. 391(2), 363–375 (2012)
22. Liu, Q., Jiang, D., Hayat, T., Ahmad, B.: Analysis of a delayed vaccinated SIR epidemic model with temporary immunity

and Lévy jumps. Nonlinear Anal. Hybrid Syst. 27, 29–43 (2018)
23. Zhang, X., Jiang, D., Hayat, T., Ahmad, B.: Dynamics of a stochastic SIS model with double epidemic diseases driven by

Lévy jumps. Phys. A, Stat. Mech. Appl. 471, 767–777 (2017)
24. Sun, F.: Dynamics of an imprecise stochastic Holling II one-predator two-prey system with jumps (2020).

arXiv:2006.14943
25. Sun, F.: Dynamics of an imprecise stochastic multimolecular biochemical reaction model with Lévy jumps (2020).

arXiv:2004.14163
26. Tesfay, D., Wei, P., Zheng, Y., Duan, J., Kurths, J.: Transitions between metastable states in a simplified model for the

thermohaline circulation under random fluctuations. Appl. Math. Comput. 369, 124868 (2020)
27. Tesfay, D., Serdukova, L., Zheng, Y., Wei, P., Duan, J., Kurths, J.: Influence of extreme events modeled by Lévy flight on

global thermohaline circulation stability. Nonlinear Process. Geophys. (2020). https://doi.org/10.5194/npg-2020-31
28. Zhang, Z., Zeb, A., Hussain, S., Alzahrani, E.: Dynamics of COVID-19 mathematical model with stochastic perturbation.

Adv. Differ. Equ. 2020, 451 (2020)
29. Tesfay, A., Tesfay, D., Brannan, J., Duan, J.: A logistic-harvest model with Allee effect under multiplicative noise. Stoch.

Dyn. (2021). https://doi.org/10.1142/S0219493721500441
30. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2009)
31. Berrhazi, B.-E., ElFatini, M., CaraballoGarrido, T., Pettersson, R.: A stochastic SIRI epidemic model with Lévy noise.

Discrete Contin. Dyn. Syst., Ser. B 23(9), 3645–3661 (2018)
32. Kiouach, D., Sabbar, Y.: The long-time behavior of a stochastic SIR epidemic model with distributed delay and

multidi-mensional Lévy jumps (2020). arXiv:2003.08219
33. Zhou, Y., Zhang, W.: Threshold of a stochastic SIR epidemic model with Lévy jumps. Phys. A, Stat. Mech. Appl. 446,

204–216 (2016)
34. Tesfay, A., Tesfay, D., Khalaf, A., Brannan, J.: Mean exit time and escape probability for the stochastic logistic growth

model with multiplicative α-stable Lévy noise. Stoch. Dyn. (2020). https://doi.org/10.1142/S0219493721500167

https://www.who.int/publications/m/item/weekly-epidemiological-update10-november-2020
https://doi.org/10.1016/j.aej.2020.07.014
https://doi.org/10.1016/j.chaos.2018.07.022
https://doi.org/10.1016/j.chaos.2019.109399
http://arxiv.org/abs/arXiv:2006.14943
http://arxiv.org/abs/arXiv:2004.14163
https://doi.org/10.5194/npg-2020-31
https://doi.org/10.1142/S0219493721500441
http://arxiv.org/abs/arXiv:2003.08219
https://doi.org/10.1142/S0219493721500167


Tesfay et al. Advances in Difference Equations        (2021) 2021:228 Page 19 of 19

35. Duan, J.: An Introduction to Stochastic Dynamics, vol. 51. Cambridge University Press, Cambridge (2015)
36. Higham, D.J.: An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev.

43(3), 525–546 (2001)
37. Kloeden, P.E., Platen, E.: Higher-order implicit strong numerical schemes for stochastic differential equations. J. Stat.

Phys. 66(1–2), 283–314 (1992)
38. Stability properties of stochastic differential equations driven by Lévy noise. PhD thesis, Sc. Math. Stat., University of

Sheffield (2009)
39. Khalaf, A.D., Tesfay, A., Wang, X.: Impulsive stochastic Volterra integral equations driven by Lévy noise. Bull. Iran. Math.

Soc. (2020). https://doi.org/10.1007/s41980-020-00465-8
40. Cai, Y., Kang, Y., Wang, W.: A stochastic SIRS epidemic model with nonlinear incidence rate. Appl. Math. Comput. 305,

221–240 (2017)
41. Zhu, L., Hu, H.: A stochastic SIR epidemic model with density dependent birth rate. Adv. Differ. Equ. 2015, Article ID 33

(2015)
42. Chen, H., Huang, F., Zhang, H., Li, G.: Epidemic extinction in a generalized susceptible-infected-susceptible model. J.

Stat. Mech. Theory Exp. 1, 013204 (2017)
43. Mao, X.: Stochastic Differential Equations and Applications. Elsevier, Amsterdam (2007)

https://doi.org/10.1007/s41980-020-00465-8

	Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Dynamical analysis of the deterministic COVID-19 model
	Dynamics of the stochastic COVID-19 system
	Existence and uniqueness of the solution
	Extinction and persistence of the disease
	Extinction of the disease
	Persistence of the disease


	Discussion and numerical experiments
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


