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Abstract
In this paper, we deal with the inverse problem of identifying the unknown source of
time-fractional diffusion equation on a columnar symmetric domain. This problem is
ill-posed. Firstly, we establish the conditional stability for this inverse problem. Then
the regularization solution is obtained by using the Tikhonov regularization method
and the error estimates are derived under the a priori and a posteriori choice rules of
the regularization parameter. Three numerical examples are presented to illustrate the
validity and effectiveness of our method.
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1 Introduction
Diffusion equations with fractional order derivatives have been playing more and more
important roles. For instance, they appear in mechanics, chemistry, electrical engineering
and medicine [1–11]. Time-fractional diffusion equations can be used to describe some
anomalous diffusion phenomena in many fields of science [12–15]. These fractional order
models are more adequate than the integer order models, because the fractional order
derivatives enable the description the properties of different substances [16].

In the past years, many regularization methods have been proposed to deal with the
inverse problem for time-fractional diffusion equation, such as the backward problems
[17–22], the inverse source problems [23–27], the Cauchy problem [28–31], the initial
value problem [32, 33]. In [34], the authors used the quasi-boundary value method to
identify the initial value of heat equation on a columnar symmetric domain. In [35], the
authors used a quasi-boundary regularization method to identify the initial value of time-
fractional diffusion equation on spherically symmetric domain. In this work, we will use
the Tikhonov regularization method to identify the space-dependent source for the time-
fractional diffusion equation on a columnar symmetric domain. We not only give the a
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priori choice of the regularization parameter, but also give the a posteriori choice of the
regularization parameter which only depends on the measurable date. To the best of our
knowledge, there are few papers for the time-fractional diffusion equation on a columnar
symmetric domain. In this work, we focus on an inverse problem for the following time-
fractional diffusion equation on a columnar symmetric domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t u(r, t) – 1

r ur(r, t) – urr(r, t) = f (r), 0 < r < r0, 0 < t < T , 0 < α < 1,

u(r, 0) = 0, 0 ≤ r ≤ r0,

u(r0, t) = 0, 0 ≤ t ≤ T ,

limr→0 u(r, t) is bounded, 0 ≤ t ≤ T ,

u(r, T) = g(r), 0 ≤ r ≤ r0,

(1.1)

where r0 is the radius of the cylinder, g(r) is given, f (r) is unknown source. Dα
t is the Caputo

fractional derivative of order 0 < α < 1 defined by

Dα
t u(r, t) =

⎧
⎨

⎩

1
Γ (1–α)

∫ t
0

uτ (r,τ )
(t–τ )α dτ , 0 < α < 1,

ut(r, t), α = 1.
(1.2)

We use the final time to identify the unknown source f (r). In applications, the input func-
tion g(r) can be measured, and we assume the function gδ(r) as the measurable data, which
satisfies

∥
∥g – gδ

∥
∥ ≤ δ, (1.3)

where δ is a noise level of input data.
The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries.

In Sect. 3, we analyze the ill-posedness of this problem and give the conditional stability.
In Sect. 4, the error estimates are obtained under the a priori and a posteriori parameter
choice rules. Three numerical examples are presented to demonstrate the effectiveness of
our proposed method in Sect. 5.

2 Preliminaries
In this section, we will give some preliminaries which are very useful for our main conclu-
sion.

Definition 2.1 ([6]) The Mittag-Leffler function is

Eα,β (z) =
∞∑

k=0

zk

Γ (αk + β)
, z ∈C, (2.1)

where α > 0 and β ∈R are arbitrary constants.

Lemma 2.1 ([36]) For the Mittag-Leffler function, we have

Eα,β (z) = zEα,α+β (z) +
1

Γ (β)
. (2.2)



Yang et al. Advances in Difference Equations        (2020) 2020:128 Page 3 of 16

Lemma 2.2 ([6]) For γ > 0, we have

∫ ∞

0
e–pttγ k+β–1E(k)

γ ,β
(±atγ

)
dt =

k!pγ –β

(pγ ∓ a)k+1 ,

Re(p) > |a| 1
γ ,

(2.3)

where E(k)
γ ,β(y) := dk

dyk Eγ ,β(y).

Lemma 2.3 ([37]) For 0 < α < 1, η ≥ 0, we have 0 ≤ Eα,1(–η) ≤ 1. Moreover, Eα,1(–η) is
completely monotonic, that is,

(–1)n dn

dηn Eα,1(–η) ≥ 0, η ≥ 0. (2.4)

Lemma 2.4 ([38]) For any μn satisfying μn ≥ μ1 > 0, there exists a positive constant C,
depending on α, T , μ1, r0 such that

C
μ2

nTα
≤ Eα,1+α

(

–
(

μn

r0

)2

Tα

)

≤ r2
0

μ2
nTα

, (2.5)

where C(α, T ,μ1, r0) = r2
0(1 – Eα,1(–( μ1

r0
)2Tα)).

Lemma 2.5 For any p > 0, ν > 0, s ≥ μ1 > 0, we have

F(s) =
νs4–p

C2 + νs4 ≤
⎧
⎨

⎩

C1(p, C)ν
p
4 , 0 < p < 4,

C2(p, C,μ1)ν, p ≥ 4,
(2.6)

where C1 = C1(p, C) > 0 and C2 = C2(p, C,μ1) > 0.

Proof If 0 < p < 4, then lims→0 F(s) = lims→+∞ F(s) = 0, we have

sup
s≥μ1

F(s) ≤ F
(
s∗),

where s∗ ∈ (0,∞) such that F ′(s∗) = 0, then s∗ = ( (4–p)C2

pν
) 1

4 .

F(s) ≤ F
(
s∗) =

ν( (4–p)C2

pν
)

4–p
4

C2 + ν(4–p)C2

pν

=
( (4–p)C2

p )
4–p

4

C2 + (4–p)C2

p

ν
p
4 := C1(p, C)ν

p
4 .

If p ≥ 4, we can obtain

F(s) =
ν

(C2 + νs4)sp–4 ≤ ν

C2μ
p–4
1

:= C2(p, C,μ1)ν.

Lemma 2.5 is proved. �
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Lemma 2.6 For any p > 0, ν > 0, s ≥ μ1 > 0, we have

M(s) =
νs2–p

C2 + νs4 ≤
⎧
⎨

⎩

C3(p, C)ν
p+2

4 , 0 < p < 2,

C4(p, C,μ1)ν, p ≥ 2,
(2.7)

where C3 = C3(p, C) > 0 and C4 = C4(p, C,μ1) > 0.

Proof If 0 < p < 2, then lims→0 M(s) = lims→+∞ M(s) = 0, we have

sup
s≥μ1

M(s) ≤ M
(
s∗),

where s∗ ∈ (0,∞) such that M′(s∗) = 0, then s∗ = ( (2–p)C2

(p+2)ν ) 1
4 .

M(s) ≤ M
(
s∗) =

ν( (2–p)C2

(p+2)ν )
2–p

4

C2 + ν(2–p)C2

(p+2)ν

=
( (2–p)C2

p+2 )
2–p

4

C2 + (2–p)C2

p+2

ν
p+2

4 := C3(p, C)ν
p+2

4 .

If p ≥ 2, we can obtain

M(s) =
ν

(C2 + νs4)sp–2 ≤ ν

C2μ
p–2
1

:= C4(p, C,μ1)ν.

Lemma 2.6 is proved. �

3 Ill-posedness and a conditional stability
We can obtain the solution of the problem (1.1) by the method of separation of variables,
as follows [39]:

u(r, t) =
∞∑

n=1

tαEα,1+α

(

–
(

μn

r0

)2

tα

)

fnωn(r), (3.1)

where fn = (f (r),ωn(r)), ωn(r) =
√

2
r0J1(μn) J0( μn

r0
), n = 1, 2, 3, . . . , and {ωn(r)}∞n=1 is an orthonor-

mal basis of L2[0, r0], J0(·) and J1(·) are the zeroth order Bessel function and the first order
Bessel function, respectively. μn is the infinite number real root of the equation

J0(r) = 0, (3.2)

and it satisfies

0 < μ1 < μ2 < μ3 < · · · < μn < · · · , lim
n→∞μn = ∞. (3.3)

Through this paper, L2[0, r0; r] denotes the Hilbert space of Lebesgue measurable func-
tions f with weight r on [0, r0]. (·, ·) and ‖ · ‖ denote the inner product and norm on
L2[0, r0; r], respectively, with the norm

‖f ‖ =
(∫ r0

0
r
∣
∣f (r)

∣
∣2 dr

) 1
2

. (3.4)
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We consider the condition u(r, T) = g(r), then we have

g(r) =
∞∑

n=1

TαEα,1+α

(

–
(

μn

r0

)2

Tα

)

fnωn(r) =
∞∑

n=1

gnωn(r), (3.5)

where gn = (g(r),ωn(r)). Defining the operator K : f → g , we get

g(r) = Kf (r) =
∞∑

n=1

TαEα,1+α

(

–
(

μn

r0

)2

Tα

)

fnωn(r). (3.6)

The operator K is a linear self-adjoint compact operator, its singular value is {σn}∞n=1 and

σn = TαEα,1+α

(

–
(

μn

r0

)2

Tα

)

, (3.7)

and we also have

gn = TαEα,1+α

(

–
(

μn

r0

)2

Tα

)

fn. (3.8)

Then we can obtain

fn =
gn

TαEα,1+α(–( μn
r0

)2Tα)
. (3.9)

So

f (r) =
∞∑

n=1

gn

TαEα,1+α(–( μn
r0

)2Tα)
ωn(r) =

∞∑

n=1

gn

σn
ωn(r). (3.10)

By using Lemma 2.4 and (3.7), we have

C
μ2

n
≤ σn ≤ r2

0
μ2

n
(3.11)

and

1
σn

=
1

TαEα,1+α(–( μn
r0

)2Tα)
≥ μ2

n
r2

0
,

we see that μn → ∞ when n → ∞, so 1
σn

→ ∞. So the exact data function g(r) must
satisfy the property that (g,ωn(r)) decays rapidly. But we cannot ensure the function g(r)
decreases, because the function g(r) concerns measurable data, a tiny disturbance of g(r)
will cause a great error. So problem (1.1) is ill-posed. Assume for the unknown source f (r)
there exists an a priori bound as follows:

∥
∥f (r)

∥
∥

Hp ≤ E, p > 0, (3.12)
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where E > 0 is a constant and ‖ · ‖Hp denotes the norm in Hilbert space which is defined
as follows [40]:

∥
∥f (r)

∥
∥

Hp :=

( ∞∑

n=1

u2p
n

∣
∣
(
f (r),ωn(r)

)∣
∣2

) 1
2

. (3.13)

The conditional stability of the inverse source problem can be obtained from Theorem 3.1.

Theorem 3.1 Let the a priori bound condition (3.12) hold, then we have

∥
∥f (r)

∥
∥ ≤ C– p

p+2 ‖g‖ p
p+2 E

2
p+2 . (3.14)

Proof Due to (3.10), (3.11), (3.12), and the Hölder inequality, we obtain

∥
∥f (r)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

gn

σn
ωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

1
σn

(
gnωn(r)

) 2
p+2

(
gnωn(r)

) p
p+2

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

(
(gnωn(r))

2
p+2

σn

) p+2
2

∥
∥
∥
∥
∥

2
p+2

∥
∥
∥
∥
∥

∞∑

n=1

((
gnωn(r)

) p
p+2

) p+2
p

∥
∥
∥
∥
∥

p
p+2

=

∥
∥
∥
∥
∥

∞∑

n=1

1

σ
p
2

n

gn

σn
ωn(r)

∥
∥
∥
∥
∥

2
p+2

∥
∥
∥
∥
∥

∞∑

n=1

gnωn(r)

∥
∥
∥
∥
∥

p
p+2

≤
∥
∥
∥
∥
∥

∞∑

n=1

(
μ2

n
C

) p
2
μ–p

n fnμ
p
nωn(r)

∥
∥
∥
∥
∥

2
p+2

‖g‖ p
p+2

≤ C– p
p+2 ‖g‖ p

p+2 E
2

p+2 .

This completes the proof of Theorem 3.1. �

4 Regularization method and convergence estimate
In this section, we will use the Tikhonov regularization method to obtain the regulariza-
tion solution for problem (1.1). From Sect. 3, we know that {ωn(r)}∞n=1 is an orthogonal
basis of L2[0, r0; r], {σn}∞n=1 is singular value of the linear self-adjoint compact operator K ,
and

σn = TαEα,1+α

(

–
(

μn

r0

)2

Tα

)

.

We adopt the Tikhonov regularization method to solve the ill-posed problem, which min-
imizes the following functional:

‖Kf – g‖2 + ν‖f ‖2, (4.1)
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where ν > 0 is the regularization parameter. From Theorem 2.12 of [41], we see that the
minimum fν(r) satisfies

(
K∗Kfν

)
(r) + νfν(r) =

(
K∗g

)
(r). (4.2)

By a singular value decomposition of the compact self-adjoint operator, we have [42]

fν(r) =
∞∑

n=1

σn

σ 2
n + ν

gnωn(r).

Then we give the regularization solution with measurable data as follows:

f δ
ν (r) =

∞∑

n=1

σn

σ 2
n + ν

gδ
nωn(r). (4.3)

4.1 An a priori parameter choice
In this subsection, we will give error estimates for under the suitable choice for the regu-
larization parameter.

Theorem 4.1 Let f (r) given by (3.10) be the exact solution of problem (1.1). Let gδ(r) satisfy
condition (1.3). Let the a priori condition (3.12) hold for p > 0. Let f δ

ν (r) given by (4.3) be the
Tikhonov regularization solution. If the regularization parameter ν satisfies

ν =

⎧
⎨

⎩

( δ
E )

4
p+2 , 0 < p < 4,

( δ
E ) 2

3 , p ≥ 4,

then the following error estimates hold:

∥
∥f (r) – f δ

ν (r)
∥
∥ ≤

⎧
⎨

⎩

( 1
2 + C1)E

2
p+2 δ

p
p+2 , 0 < p < 4,

( 1
2 + C2)E 1

3 δ
2
3 , p ≥ 4,

where C1, C2 are positive constants depending on p, C, μ1.

Proof By utilizing triangle inequality, we have

∥
∥f δ

ν (r) – f (r)
∥
∥ ≤ ∥

∥f δ
ν (r) – fν(r)

∥
∥ +

∥
∥fν(r) – f (r)

∥
∥.

Using (4.3) and (1.3), we obtain

∥
∥f δ

ν (r) – fν(r)
∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

σn

σ 2
n + ν

gδ
nωn(r) –

∞∑

n=1

σn

σ 2
n + ν

gnωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

σn

σ 2
n + ν

(
gδ

n – gn
)
ωn(r)

∥
∥
∥
∥
∥

≤ sup
n∈N

{
σn

σ 2
n + ν

}

δ ≤ δ

2
√

ν
. (4.4)
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Considering (3.10) and condition (3.12), we can obtain

∥
∥fν(r) – f (r)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

σn

σ 2
n + ν

gnωn(r) –
∞∑

n=1

1
σn

gnωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gn

σn
ωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

μ–p
n fnμ

p
nωn(r)

∥
∥
∥
∥
∥

≤ E sup
n∈N

A(n),

where

A(n) =
νμ

–p
n

σ 2
n + ν

.

Using (3.11) and Lemma 2.5, we get

A(n) ≤ νμ
–p
n

( C
μ2

n
)2 + ν

=
νμ

4–p
n

C2 + νμ4
n

≤
⎧
⎨

⎩

C1(p, C)ν
p
4 , 0 < p < 4,

C2(p, C,μ1)ν, p ≥ 4.

So

∥
∥f δ

ν (r) – f (r)
∥
∥ ≤ δ

2
√

ν
+ E

⎧
⎨

⎩

C1(p, C)ν
p
4 , 0 < p < 4,

C2(p, C,μ1)ν, p ≥ 4.

We choose the regularization parameter as follows:

ν =

⎧
⎨

⎩

( δ
E )

4
p+2 , 0 < p < 4,

( δ
E ) 2

3 , p ≥ 4,

then we have

∥
∥f (r) – f δ

ν (r)
∥
∥ ≤

⎧
⎨

⎩

( 1
2 + C1)E

2
p+2 δ

p
p+2 , 0 < p < 4,

( 1
2 + C2)E 1

3 δ
2
3 , p ≥ 4.

Theorem 4.1 is proved. �

4.2 An a posteriori selection rule
In this subsection, we will utilize Morozov’s discrepancy principle to give an a posteriori
regularization parameter choice. That is, we will choose the solution ν of the following
equation as an a posterior regularization parameter:

∥
∥Kf δ

ν – gδ
∥
∥ = τδ, (4.5)
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where τ > 1 is constant. We need Lemma 4.1 to obtain the existence and uniqueness of
(4.5).

Lemma 4.1 Let δ > 0, the function d(ν) := ‖Kf δ
ν –gδ‖. If ‖gδ‖ > τδ, we have some properties,

as follows:
(a) d(ν) is a continuous function;
(b) limν→0 d(ν) = 0;
(c) limν→∞ d(ν) = ‖gδ‖;
(d) d(ν) is a strictly increasing function, for any ν ∈ (0,∞).

The proof of Lemma 4.1 is skipped.

Lemma 4.2 Let ν be the solution of (4.5), we have the following inequality:

1
ν

≤
⎧
⎨

⎩

( r2
0C3
τ–1 )

4
p+2 ( E

δ
)

4
p+2 , 0 < p < 2,

r2
0C4
τ–1

E
δ

, p ≥ 2,

where C3, C4 are positive constants depending on p, C, μ1.

Proof Using (4.5), we have

τδ =

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gδ
nωn(r)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

(
gδ

n – gn
)
ωn(r)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gnωn(r)

∥
∥
∥
∥
∥

≤ δ +

∥
∥
∥
∥
∥

∞∑

n=1

νσn

σ 2
n + ν

μ–p
n fnμ

p
nωn(r)

∥
∥
∥
∥
∥

≤ δ + E sup
n∈N

B(n),

where

B(n) :=
νσn

σ 2
n + ν

μ–p
n .

Utilizing (3.11) and Lemma 2.6, we get

B(n) ≤
ν

r2
0

μ2
n

C2

μ4
n

+ ν
μ–p

n =
νr2

0μ
2–p
n

C2 + νμ4
n

≤
⎧
⎨

⎩

r2
0C3(p, C)ν

p+2
4 , 0 < p < 2,

r2
0C4(p, C,μ1)ν, p ≥ 2,

then

(τ – 1)δ ≤ E

⎧
⎨

⎩

r2
0C3(p, C)ν

p+2
4 , 0 < p < 2,

r2
0C4(p, C,μ1)ν, p ≥ 2.
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So we can obtain

1
ν

≤
⎧
⎨

⎩

( r2
0C3
τ–1 )

4
p+2 ( E

δ
)

4
p+2 , 0 < p < 2,

r2
0C4
τ–1

E
δ

, p ≥ 2. �

Next, we will give the error estimate for under the a posteriori choice rule.

Theorem 4.2 Let f (r) given by (3.10) be the exact solution of problem (1.1). Let f δ
ν given by

(4.3) be the Tikhonov regularization solution. Let the solution ν of Eq. (4.5) be regarded as
the regularization parameter, then the following error estimates hold:

∥
∥f δ

ν (r) – f (r)
∥
∥ ≤

⎧
⎨

⎩

( 1
2 ( r2

0C3
τ–1 )

2
p+2 + C– p

p+2 (τ + 1)
p

p+2 )E
2

p+2 δ
p

p+2 , 0 < p < 2,

( 1
2 ( r2

0C4
τ–1 ) 1

2 + C– 1
2 (m + mτ ) 1

2 )E 1
2 δ

1
2 , p ≥ 2.

Proof Utilizing the triangle inequality, we have

∥
∥f δ

ν (r) – f (r)
∥
∥ ≤ ∥

∥f δ
ν (r) – fν(r)

∥
∥ +

∥
∥fν(r) – f (r)

∥
∥. (4.6)

Using Lemma 4.1 and (4.4), we get

∥
∥f δ

ν (r) – fν(r)
∥
∥ ≤ δ

2
√

ν
≤

⎧
⎨

⎩

1
2 ( r2

0C3
τ–1 )

2
p+2 E

2
p+2 δ

p
p+2 , 0 < p < 2,

1
2 ( r2

0C4
τ–1 ) 1

2 E 1
2 δ

1
2 , p ≥ 2.

(4.7)

For the second part of the right side of (4.6), using (1.3) and (4.5), for 0 < p < 1, we obtain

∥
∥K

(
fν(r) – f (r)

)∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

σn

(
σn

σ 2
n + ν

–
1
σn

)

gnωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gnωn(r)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

(
gn – gδ

n
)
ωn(r)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gδ
nωn(r)

∥
∥
∥
∥
∥

≤ δ + τδ = (τ + 1)δ.

We have

∥
∥fν(r) – f (r)

∥
∥

Hp =

( ∞∑

n=1

(
ν

σ 2
n + ν

gn

σn
μp

n

)2
) 1

2

≤
( ∞∑

n=1

f 2
n μ2p

n

) 1
2

≤ E.

Using Theorem 3.1, we get

∥
∥fν(r) – f (r)

∥
∥ ≤ C– p

p+2 (τ + 1)
p

p+2 E
2

p+2 δ
p

p+2 . (4.8)
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For p ≥ 2, because Hp compacts into H2, then there exists a m ∈ N such that ‖f (r)‖H2 ≤
m‖f (r)‖Hp ≤ mE, we have

∥
∥fν(r) – f (r)

∥
∥ =

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gn

σn
ωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

νσn

σ 2
n + ν

fn

σn
ωn(r)

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

n=1

νσn

σ 2
n + ν

(
fn

σn
ωn(r)

) 1
2
(

fn

σn
ωn(r)

) 1
2
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∞∑

n=1

(
νσn

σ 2
n + ν

(
fn

σn
ωn(r)

) 1
2
)2

∥
∥
∥
∥
∥

1
2
∥
∥
∥
∥
∥

∞∑

n=1

((
fn

σn
ωn(r)

) 1
2
)2

∥
∥
∥
∥
∥

1
2

=

∥
∥
∥
∥
∥

∞∑

n=1

(
ν

σ 2
n + ν

)2

σnfnωn(r)

∥
∥
∥
∥
∥

1
2
∥
∥
∥
∥
∥

∞∑

n=1

fn

σn
ωn(r)

∥
∥
∥
∥
∥

1
2

≤
(∥

∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

(
gn – gδ

n
)
ωn(r)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

∞∑

n=1

ν

σ 2
n + ν

gδ
nωn(r)

∥
∥
∥
∥
∥

) 1
2

×
∥
∥
∥
∥
∥

∞∑

n=1

C–1μ2fnωn(r)

∥
∥
∥
∥
∥

1
2

≤ C– 1
2 (m + mτ )

1
2 δ

1
2 E

1
2 .

It is clear that

∥
∥f δ

ν (r) – f (r)
∥
∥ ≤

⎧
⎨

⎩

( 1
2 ( r2

0C3
τ–1 )

2
p+2 + C– p

p+2 (τ + 1)
p

p+2 )E
2

p+2 δ
p

p+2 , 0 < p < 2,

( 1
2 ( r2

0C4
τ–1 ) 1

2 + C– 1
2 (m + mτ ) 1

2 )E 1
2 δ

1
2 , p ≥ 2.

The proof of Theorem 4.2 is completed. �

5 Numerical experiments
In this section, we will use three different examples to illustrate the effectiveness and sta-
bility of the Tikhonov regularization method under two regularization parameter choice
rules. Firstly, we obtain g(r) by solving the direct problem, as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t u(r, t) – 1

r ur(r, t) – urr(r, t) = f (r), 0 < r < r0, 0 < t < T , 0 < α < 1,

u(r, 0) = 0, 0 ≤ r ≤ r0,

u(r0, t) = 0, 0 ≤ t ≤ T ,

limr→0 u(r, t) is bounded, 0 ≤ t ≤ T ,

u(r, T) = g(r), 0 ≤ r ≤ r0.

(5.1)

Let r0 = π , T = 1, we discretize the above equation by the finite difference method. Let

r = π

M , 
t = 1
N and ri = (i – 1)
r (i = 0, 1, 2, . . . , M), tn = (n – 1)
t (n = 0, 1, 2, . . . , N ). In

our numerical computations, we will take M1 = M2 = 50. The approximate values of each
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grid point u are denoted ui,j ≈ u(ri, tj). The discrete scheme of time-fractional derivative
is given as follows [43, 44]:

Dα
t u(xi, tn) ≈ (
t)–α

Γ (2 – α)

n–1∑

j=0

bj
(
un–j

i – un–j–1
i

)
, (5.2)

where i = 1, 2, . . . , M – 1; n = 1, 2, . . . , N and bj = (j + 1)1–α – j1–α .
Then we take gδ as noise by adding a random perturbation, i.e.,

gδ(ri) = g(ri) + εg(ri) · (2 rand(i) – 1
)
,

where ε reflects the relative error level.

Example 1 Take the source function f (r) = r sin(r).

Example 2 Consider the piecewise smooth function

f (r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, 0 ≤ r ≤ π
4 ,

4
π

(r – π
4 ), π

4 < r ≤ π
2 ,

– 4
π

(r – 3π
4 ), π

2 < r ≤ 3π
4 ,

0, 3π
4 < r ≤ π .

(5.3)

Example 3 Consider the discontinuous function

f (r) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ r ≤ π
3 ,

1, π
3 < r ≤ 2π

3 ,

0, 2π
3 < r ≤ π .

(5.4)

Figure 1 shows the comparisons between the exact solution and the regularization under
the a priori and a posteriori regularization parameters choice when α = 0.2 for ε = 0.001,
and ε = 0.0001 with Example 1. Figure 2 shows the comparisons between the exact solu-
tion and the regularization under the a priori and a posteriori regularization parameters

Figure 1 The comparison of numerical effects between the exact solution and regularization solution for
Example 1, α = 0.6: (a) ε = 0.001, (b) ε = 0.0001
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Figure 2 The comparison of numerical effects between the exact solution and regularization solution for
Example 1, α = 0.2: (a) ε = 0.001, (b) ε = 0.0001

Figure 3 The comparison of numerical effects between the exact solution and regularization solution for
Example 2, α = 0.6: (a) ε = 0.001, (b) ε = 0.0001

Figure 4 The comparison of numerical effects between the exact solution and regularization solution for
Example 2, α = 0.2: (a) ε = 0.001, (b) ε = 0.0001

choice when α = 0.6 for ε = 0.001, and ε = 0.0001 with Example 1. Figure 3 shows the
comparisons between the exact solution and the regularization under the priori and pos-
teriori regularization parameters choice when α = 0.2 for ε = 0.001, and ε = 0.0001 with
Example 2. Figure 4 shows the comparisons between the exact solution and the regular-
ization under the priori and posteriori regularization parameters choice when α = 0.6 for
ε = 0.001, and ε = 0.0001 with Example 2. Figure 5 shows the comparisons between the
exact solution and the regularization under the a priori and a posteriori regularization pa-
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Figure 5 The comparison of numerical effects between the exact solution and regularization solution for
Example 3, α = 0.6: (a) ε = 0.001, (b) ε = 0.0001

Figure 6 The comparison of numerical effects between the exact solution and regularization solution for
Example 3, α = 0.2: (a) ε = 0.001, (b) ε = 0.0001

rameters choice when α = 0.2 for ε = 0.001, and ε = 0.0001 with Example 3. Figure 6 shows
the comparisons between the exact solution and the regularization under the a priori and
a posteriori regularization parameters choice when α = 0.6 for ε = 0.001, and ε = 0.0001
with Example 3. From Figs. 1–6, we can find the smaller ε, the better the computed ap-
proximation is. Moreover, we can also find the smaller α, the results are also better. Fi-
nally, we find that the results of Example 1 are better than that of Examples 2, 3, because
in Examples 2, 3, the exact solutions are non-smooth and discontinuous functions, the
recover data near the non-smooth and discontinuity points are not accurate. This is the
well-known Gibbs phenomenon. But for the ill-posed problem, the results presented in
Figs. 3–6 are reasonable.

6 Conclusion
In this paper, we use the Tikhonov regularization method to identify the source of the
time-fractional diffusion equation on a columnar symmetric domain. Based on a condi-
tional stability result, the error estimates are obtained under the a priori and a posteriori
choice rules of regularization parameter. Meanwhile, the numerical examples verify the
efficiency and accuracy of this method. Our original contributions are that we first iden-
tify the source of the time-fractional diffusion equation on a columnar symmetric domain.
Moreover, we give the a posteriori regularization choice rule which only depends on the
measurable data. In future, we will consider the inverse problem of identifying the ini-
tial value of the time-fractional diffusion equation on a columnar symmetric domain and
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give the optimal error estimate analyze. In addition, in this paper, we consider the time-
fractional derivative is the Caputo fractional derivative of order 0 < α < 1, but in Ref. [45–
52], one mentioned the Caputo–Fabrizio fractional integro-differential equation, which
is very useful in practice. We will consider the inverse problem of Caputo–Fabrizio frac-
tional integro-differential equations, and use the Tikhonov regularization method to solve
this inverse problem.
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