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Abstract
This paper investigates a periodic Nicholson’s blowflies equation with multiple
time-varying delays. By using differential inequality techniques and the fluctuation
lemma, we establish a criterion to ensure the global exponential stability on the
positive solutions of the addressed equation, which improves and complements
some existing ones. The effectiveness of the obtained result is illustrated by some
numerical simulations.
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1 Introduction
Recently, the global exponential stability of positive periodic solutions and almost-
periodic solutions for the famous Nicholson’s blowflies equation with multiple time-
varying delays:

x′(t) = –β(t)x(t) +
m∑

j=1

αj(t)x
(
t – σj(t)

)
e–γj(t)x(t–σj(t)), t ≥ t0, (1.1)

has been intensively studied in [1–3]. Here, β(t),αj(t),σj(t), and γj(t) are all continuous and
nonnegative functions, β(t) and γj(t) are bounded below by positive constants, β(t)x(t)
is the death rate of the population which depends on time t and the current population
level x(t), αj(t)x(t – σj(t))e–γj(t)x(t–σj(t)) is the time-dependent birth function which involves
maturation delay σj(t), and reproduces at its maximum rate 1

γj(t) , and j ∈ Π := {1, 2, . . . , m}.
It should be mentioned that, by restricting the existence of the periodic and almost-

periodic solutions for (1.1) in a small interval [κ , κ̃] ≈ [0.7215355, 1.342276], all results in
[1–3] were obtained under the crucial assumption:

γj(t) ≥ 1, for all t ∈R, j ∈ Π , (1.2)
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where κ ∈ (0, 1) and κ̃ ∈ (1, +∞) satisfy

1 – κ

eκ
=

1
e2 , sup

x≥κ

∣∣∣∣
1 – x

ex

∣∣∣∣ =
1
e2 , κe–κ = κ̃e–κ̃ . (1.3)

Most recently, the authors in [4–6] pointed out that it is interesting that when the max-
imum reproduction rate is not limited (i.e., 1

γj(t) maybe sufficiently large), the stability of a
class of delayed nonlinear density-dependent mortality Nicholson’s blowflies models with-
out the assumption (1.2) can be established. However, there are no research works on the
global exponential stability of periodic solutions for Nicholson’s blowflies equation (1.1)
without assumption (1.2) and [κ , κ̃] as the existence interval for the periodic solutions.

Based on the above discussions, in this paper, avoiding assumption (1.2) and without
adopting [κ , κ̃] as the existence interval of periodic solutions, we establish the global ex-
ponential stability of periodic solutions for system (1.1). The proposed criterion improves
and complements some existing results in the recent publications [1–3], and its effective-
ness is demonstrated by a numerical example.

From now on, we suppose that β ,γj : [t0, +∞) → (0, +∞) and σj,αj : [t0, +∞) → [0, +∞)
are continuous T-periodic functions with T > 0 and j ∈ Π . Let

1 ≥ γ + = max
j∈Π

{
sup

t∈[t0,+∞)
γj(t)

}
, γ – = min

j∈Π

{
inf

t∈[t0,+∞)
γj(t)

}
,

and

σ = max
j∈Π

{
sup

t∈[t0,+∞)
σj(t)

}
, C+ = C

(
[–σ , 0], [0, +∞)

)
.

Furthermore, consider the following initial value conditions:

x(t0 + θ ) = ϕ(θ ), θ ∈ [–σ , 0],ϕ ∈ C+ and ϕ(0) > 0. (1.4)

We let x(t; t0,ϕ) denote a solution of the initial value problem (1.1) and (1.4), and the max-
imal right-interval of existence of x(t; t0,ϕ) is marked by [t0,η(ϕ)). Then, the existence and
uniqueness of x(t; t0,ϕ) is straightforwardly established in [1].

2 Preliminary results
In this section, we give three lemmas which will play important roles in the next section.

Lemma 2.1 Let A and δ be constants such that A > 1, e < 1
δ

≤ e2, and δ = Ae–A. Then,
δA > 1

e .

Proof Evidently,

δA = A2e–A and e <
eA

A
≤ e2. (2.1)

Define f (u) = eu

u for u ∈ (0, +∞) and f (x0) = e2 with x0 > 1. Then, f ′(u) = eu(u–1)
u2 > 0(u > 1),

and f (u) is monotonously increasing on (1, +∞). Clearly, f (1) = e, f (e) = ee–1 < e2, which,
together with (2.1), suggests that A ∈ (1, x0], and x0 > e.
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Now, letting G(u) = u2e–u on (0, +∞), it suffices to show that G(A) > 1
e . In fact, G′(u) =

e–uu(2 – u), G(u) increases on (1, 2) and decreases on (2, x0), G(1) = e–1 = 1
e , as well as

G(x0) = x2
0e–x0 =

x0

f (x0)
>

e
e2 =

1
e

.

Consequently, G(A) > min{G(1), G(x0)} = 1
e . The proof is complete. �

Lemma 2.2 x(t; t0,ϕ) is positive and bounded on [t0,η(ϕ)), and η(ϕ) = +∞.

Proof First, it follows from Theorem 5.2.1 in [7], p. 81, that xt(t0,ϕ) ∈ C+ for all t ∈
[t0,η(ϕ)). Let x(t) = x(t; t0,ϕ). Noting that x(t0) = ϕ(0) > 0, we gain

x(t) = e–
∫ t

t0
β(v) dvx(t0)

+
∫ t

t0

e–
∫ t

s β(v) dv
m∑

j=1

αj(s)x
(
s – σj(s)

)
e–γj(s)x(s–σj(s)) ds

> 0, for all t ∈ [t0,η(ϕ)).

Second, due to the positivity and periodicity of coefficient functions, we can choose a
positive constant M such that

m∑

j=1

αj(t)
β(t)γj(t)

≤ M for all t ∈ [t0, +∞).

Therefore, in view of the fact that supu≥0 ue–u = 1
e , we obtain

x(t) = e–
∫ t

t0
β(v) dvx(t0)

+
∫ t

t0

e–
∫ t

s β(v) dv
m∑

j=1

αj(s)
γj(s)

γj(s)x
(
s – σj(s)

)
e–γj(s)x(s–σj(s)) ds

≤ e–
∫ t

t0
β(v) dvx(t0) +

∫ t

t0

e–
∫ t

s β(v) dv
m∑

j=1

αj(s)
γj(s)

1
e

ds

≤ e–
∫ t

t0
β(v) dvx(t0) +

M
e

∫ t

t0

e–
∫ t

s β(v) dvβ(s) ds

= e–
∫ t

t0
β(v) dvx(t0) +

M
e

[
1 – e–

∫ t
t0

β(v) dv]

:= Λ(t), for all t ∈ [t0,η(ϕ)).

Finally, we have from Theorem 2.3.1 in [8] and the boundedness of Λ(t) that η(ϕ) = +∞,
and x(t) is positive and bounded on [t0, +∞). �

Lemma 2.3 Let
⎧
⎨

⎩
inft∈[t0,+∞)(

∑m
j=1 αj(t)
β(t) ) > 1,

e < inft∈[t0,+∞)
∑m

j=1
αj(t)

β(t)γj(t) ≤ supt∈[t0,+∞)
∑m

j=1
αj(t)

β(t)γj(t) < e2
(2.2)
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and

inf
t∈[t0,+∞)

ln

(∑m
j=1 αj(t)
β(t)

)
>

κ

γ – ,
inft∈[t0,+∞)

∑m
j=1

αj(t)
β(t)

supt∈[t0,+∞)
∑m

j=1
αj(t)

β(t)γj(t)

>
κ

γ – . (2.3)

Then,

κ

γ – < l := lim inf
t→+∞ x(t; t0,ϕ) ≤ L := lim sup

t→+∞
x(t; t0,ϕ) < A, (2.4)

where

δ =
1

supt∈[t0,+∞)
∑m

j=1
αj(t)

β(t)γj(t)

, A > 1 and δ = Ae–A. (2.5)

Proof From (2.2), (2.5) and Lemma 2.1, one can see that

sup
t∈[t0,+∞)

m∑

j=1

αj(t)
β(t)γj(t)

1
e

< A. (2.6)

We claim that lim inft→+∞ x(t) = l > 0. Otherwise, l = 0. For any t ≥ t0, we set

ν(t) = max
{
� ∈ [t0, t]|x(�) = min

t0≤s≤t
x(s)

}
.

We conclude from l = 0 that ν(t) → +∞ as t → +∞ and limt→+∞ x(ν(t)) = 0. On the other
hand, x(ν(t)) = mint0≤s≤t x(s), and x′(ν(t)) ≤ 0 for all ν(t) > t0. Then, (1.1) leads to

0 ≥ x′(ν(t)
)

= –β
(
ν(t)

)
x
(
ν(t)

)

+
m∑

j=1

αj
(
ν(t)

)
x
(
ν(t) – σj

(
ν(t)

))
e–γj(ν(t))x(ν(t)–σj(ν(t))) (2.7)

and

β
(
ν(t)

)
x
(
ν(t)

) ≥ αj
(
ν(t)

)
x
(
ν(t) – σj

(
ν(t)

))
e–γj(ν(t))x(ν(t)–σj(ν(t))),

where ν(t) > t0, j ∈ Π , which, together with the fact that limt→+∞ x(ν(t)) = 0, suggests that

lim
t→+∞ x

(
ν(t) – σj

(
ν(t)

))
= 0, j ∈ Π . (2.8)

From (2.2), (2.7), (2.8) and the fact that

1 ≥ 1
β(ν(t))

m∑

j=1

αj
(
ν(t)

)x(ν(t) – σj(ν(t)))
x(ν(t))

e–γj(ν(t))x(ν(t)–σj(ν(t)))

≥ 1
β(ν(t))

m∑

j=1

αj
(
ν(t)

)
e–γj(ν(t))x(ν(t)–σj(ν(t))),
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letting t → +∞ results in

1 ≥ lim sup
t→+∞

(∑m
j=1 αj(ν(t))
β(ν(t))

)
≥ inf

t∈[t0,+∞)

(∑m
j=1 αj(t)
β(t)

)
> 1,

which is a contradiction. Hence, l > 0.
Now, by the fluctuation lemma [9], Lemma A.1., there are two sequences {q∗

k}+∞
k=1 and

{q∗∗
k }+∞

k=1 obeying

lim
k→+∞

q∗
k → +∞, lim

k→+∞
x
(
q∗

k
)

= L and lim
k→+∞

x′(q∗
k
)

= 0, (2.9)

and

lim
k→+∞

q∗∗
k → +∞, lim

k→+∞
x
(
q∗∗

k
)

= l and lim
k→+∞

x′(q∗∗
k

)
= 0, (2.10)

respectively. Without loss of generality, regarding the periodicity of delays and coeffi-
cients, we can assume that limk→+∞ β(q∗

k), limk→+∞ αj(q∗
k), limk→+∞ γj(q∗

k), limk→+∞ x(q∗
k –

σj(q∗
k)), limk→+∞ β(q∗∗

k ), limk→+∞ αj(q∗∗
k ), limk→+∞ γj(q∗∗

k ) and limk→+∞ x(q∗∗
k – σj(q∗∗

k )) ex-
ist for all j ∈ Π .

Likewise, (1.1), (2.6) and (2.9) yield

0 = lim
k→+∞

x′(q∗
k
)

= – lim
k→+∞

β
(
q∗

k
)

lim
k→+∞

x
(
q∗

k
)

+
m∑

j=1

lim
k→+∞

αj(q∗
k)

γj(q∗
k)

lim
k→+∞

[
γj

(
q∗

k
)
x
(
q∗

k – σj
(
q∗

k
))

e–γj(q∗
k )x(q∗

k –σj(q∗
k ))]

≤ – lim
k→+∞

β
(
q∗

k
)
L +

m∑

j=1

lim
k→+∞

αj(q∗
k)

γj(q∗
k)

1
e

,

and

L ≤ lim
k→+∞

[ m∑

j=1

αj(q∗
k)

β(q∗
k)γj(q∗

k)

]
1
e

< A. (2.11)

Consequently, let j0 ∈ Π such that

lim
k→+∞

x
(
q∗∗

k – σj0
(
q∗∗

k
))

= l0 ∈ [l, L],

and

lim
k→+∞

[
x
(
q∗∗

k – σj0
(
q∗∗

k
))

e–x(q∗∗
k –σj0 (q∗∗

k ))]

= l0e–l0 = min
j∈Π

lim
k→+∞

[
x
(
q∗∗

k – σj
(
q∗∗

k
))

e–x(q∗∗
k –σj(q∗∗

k ))].
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It follows from (1.1), (2.10) and the fact that min[a,b]⊆[0,+∞) ue–u = min{ae–a, be–b} that

0 = lim
k→+∞

x′(q∗∗
k

)

= – lim
k→+∞

β
(
q∗∗

k
)
l +

m∑

j=1

lim
k→+∞

αj
(
q∗∗

k
)

lim
k→+∞

[
x
(
q∗∗

k – σj
(
q∗∗

k
))

× e–γj(q∗∗
k )x(q∗∗

k –σj(q∗∗
k ))]

≥ – lim
k→+∞

β
(
q∗∗

k
)
l +

m∑

j=1

lim
k→+∞

αj
(
q∗∗

k
)

lim
k→+∞

[
x
(
q∗∗

k – σj
(
q∗∗

k
))

× e–x(q∗∗
k –σj(q∗∗

k ))]

≥ – lim
k→+∞

β
(
q∗∗

k
)
l + l0e–l0

m∑

j=1

lim
k→+∞

αj
(
q∗∗

k
)

≥ – lim
k→+∞

β
(
q∗∗

k
)
l + min

{
le–l, Le–L}

m∑

j=1

lim
k→+∞

αj
(
q∗∗

k
)
. (2.12)

If le–l = min{le–l, Le–L}, (2.3) and (2.12) yield

l ≥ ln

(
lim

k→+∞

∑m
j=1 αj(q∗∗

k )
β(q∗∗

k )

)
≥ inf

t∈R
ln

(∑m
j=1 αj(t)
β(t)

)
>

κ

γ – . (2.13)

If Le–L = min{le–l, Le–L} < le–l , then (2.11) implies

1 < L ≤ A, Le–L ≥ Ae–A,

which, together with (2.3) and (2.12), entails that

l ≥ Ae–A

limk→+∞
β(q∗∗

k )∑m
j=1 αj(q∗∗

k )

≥ inft∈[t0,+∞)
∑m

j=1
αj(t)
β(t)

supt∈[t0,+∞)
∑m

j=1
αj(t)

β(t)γj(t)

>
κ

γ – , (2.14)

which, together with (2.11) and (2.13), establishes (2.4). This finishes the proof of
Lemma 2.3. �

3 Main results
The main results in this paper will now be presented as the subsequent proposition and
theorem.

Proposition 3.1 Suppose that all assumptions in Lemma 2.3 are satisfied. Then, for ϕ,ψ ∈
C+ with ϕ(0) > 0 and ψ(0) > 0, there exist constants Qϕ,ψ > t0, Kϕ,ψ > 0 and λ > 0 such that

∣∣x(t; t0,ϕ) – x(t; t0,ψ)
∣∣ < Kϕ,ψe–λt for all t > Qϕ,ψ > t0. (3.1)

Proof Denote xϕ(t) = x(t; t0,ϕ) and xψ (t) = x(t; t0,ψ). By Lemma 2.3 and the fact that γ + ≤
1, there exists Qϕ,ψ > t0 such that

κ

γ – < xϕ(t), xψ (t) < A, κ < γj(t)xϕ
(
t – σj(t)

)
,γj(t)xψ

(
t – σj(t)

)
(3.2)
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for all t ∈ [Qϕ,ψ – σ , +∞) and j ∈ Π . According to (2.2), we can take λ > 0 such that

max
t∈[0,T]

{
–
[
β(t) – λ

]
+

m∑

j=1

αj(t)
γj(t)

1
e2 eλσ

}
< 0. (3.3)

Define z(t) = xϕ(t) – xψ (t) and M(t) = |z(t)|eλt for all t ∈ [t0 – σ , +∞). Consequently,

z′(t) = –β(t)z(t) +
m∑

j=1

αj(t)
[
xϕ

(
t – σj(t)

)
e–γj(t)xϕ (t–σj(t))

– xψ
(
t – σj(t)

)
e–γj(t)xψ (t–σj(t))]

and

D–(
M(t)

) ≤ –β(t)
∣∣z(t)

∣∣eλt

+
m∑

j=1

αj(t)
∣∣xϕ

(
t – σj(t)

)
e–γj(t)xϕ (t–σj(t)) – xψ

(
t – σj(t)

)

× e–γj(t)xψ (t–σj(t))∣∣eλt + λ
∣∣z(t)

∣∣eλt , for all t > Qϕ,ψ . (3.4)

Now, we show that

M(t) < eλQϕ,ψ
(

max
t∈[t0–σ ,Qϕ,ψ ]

∣∣xϕ(t) – xψ (t)
∣∣ + 1

)

:= Kϕ,ψ for all t > Qϕ,ψ . (3.5)

Suppose on the contrary and pick Q∗ > Qϕ,ψ such that

M(Q∗) = Kϕ,ψ and M(t) < Kϕ,ψ for all t ∈ [t0 – σ , Q∗). (3.6)

From the definition of κ , we have

∣∣ae–a – be–b∣∣ ≤ 1
e2 |a – b| for all a, b ∈ [κ , +∞), (3.7)

which, together with (3.2), (3.3), (3.4), (3.6), and (3.7), results in

0 ≤ D–(
M(Q∗)

)

≤ –β(Q∗)
∣∣z(Q∗)

∣∣eλQ∗ +
m∑

j=1

αj(Q∗)
γj(Q∗)

∣∣γj(Q∗)xϕ
(
Q∗ – σj(Q∗)

)

× e–γj(Q∗)xϕ (Q∗–σj(Q∗))

– γj(Q∗)xψ
(
Q∗ – σj(Q∗)

)
e–γj(Q∗)xψ (Q∗–σj(Q∗))∣∣eλQ∗ + λ

∣∣z(Q∗)
∣∣eλQ∗

≤ –
[
β(Q∗) – λ

]∣∣z(Q∗)
∣∣eλQ∗

+
m∑

j=1

αj(Q∗)
γj(Q∗)

1
e2

∣∣z
(
Q∗ – σj(Q∗)

)∣∣eλ(Q∗–σj(Q∗))eλσj(Q∗)
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≤
{

–
[
β(Q∗) – λ

]
+

m∑

j=1

αj(Q∗)
γj(Q∗)

1
e2 eλσ

}
Kϕ,ψ

and

0 ≤ –
[
β(Q∗) – λ

]
+

m∑

j=1

αj(Q∗)
γj(Q∗)

1
e2 eλσ < 0,

which is a contradiction, validating (3.5). This implies that (3.1) holds, and the proof of the
Proposition 3.1 is now finished. �

Theorem 3.1 Under the assumptions of Proposition 3.1, system (1.1) has exactly one glob-
ally exponentially stable positive T-periodic solution x∗(t) ∈ [ κ

γ – , A].

Proof According to Proposition 3.1 and Lemma 2.3, one can follow the argument of The-
orem 3.1 in [1] to demonstrate that x(t + qT) = x(t + qT ; t0,ϕ) is not only convergent on
every compact interval as q → +∞, but also converges uniformly to a continuous function
x∗(t), where x∗ is a T-periodic solution of (1.1), and such that

0 <
κ

γ – ≤ x∗(t) ≤ A, for all t ∈R.

Furthermore, by applying a similar argument as in Lemma 2.3, we can validate the global
exponential stability of x∗(t). This completes the proof of Theorem 3.1. �

By applying Theorem 3.1, we can obtain the following result.

Corollary 3.1 Assume that β ∈ (0, +∞) and σj,αj ∈ [0, +∞) are constants, and

e <
m∑

j=1

αj

β
< e2. (3.8)

Then, the classical autonomous Nicholson’s blowflies equation,

x′(t) = –βx(t) +
m∑

j=1

αjx
(
t – σj(t)

)
e–x(t–σj(t)),

has a globally exponentially stable positive equilibrium point x∗ ∈ [κ , A], where

δ =
1

∑m
j=1

αj
β

, A > 1, and δ = Ae–A. (3.9)

Remark 3.1 Under the conditions (3.8), the stability of the classical autonomous Nichol-
son’s blowflies equation in the main results of [10, 11] can be concluded from the above
Corollary 3.1. In addition, in [10, 11], the exponential stability and existence range of a
positive equilibrium point have not been considered for the classical autonomous Nichol-
son’s blowflies equation with the conditions (3.8), which implies that the obtained results
of this present paper improve and complement some existing ones.
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Figure 1 Numerical solutions on the state trajectories of state variables x of system (4.1) for differential initial
values: ϕ(s) = 0.9, 1, 1.2, s ∈ [–100, 0]

4 Example
In this section, we present a numerical example to verify the theoretical results derived in
the previous section.

Example 4.1 Consider the delayed Nicholson’s blowflies equations described by

x′(t) = –
(
10 sin2 t + 2

)
x(t)

+ 2
(
10 sin2 t + 2

)
(1.1 + 0.01 cos t)x

(
t – 100 sin2 t

)

× e–(0.9+0.01 sin t)x(t–100 sin2 t)

+
(
10 sin2 t + 2

)
(1.1 + 0.01 cos 20t)x

(
t – 100 cos2 t

)

× e–(0.9+0.01 cos t)x(t–100 cos2 t). (4.1)

Obviously, it is observed that (4.1) satisfies (2.2) and (2.3). Therefore, from Theorem 3.1,
one can see that (4.1) has exactly one globally exponentially stable positive 2π-periodic
solution. This fact is also supported by the numerical simulations in Fig. 1 (numerical
solutions of (4.1) for different initial values).

Remark 4.1 It should be pointed out that in (4.1),

γ1(t) = 0.9 + 0.01 sin t < 1 and γ2(t) = 0.9 + 0.01 cos t < 1

do not satisfy assumption (1.2) mentioned in Sect. 1. In addition, the results concerning
on population dynamics in [12–16] give no clue about the problem of periodic solutions
of Nicholson’s blowflies model without assumption (1.2). This implies that all the results
in [1–6, 10–57] cannot be used to show the global exponential stability on the positive
periodic solution of system (4.1).
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5 Conclusions
In this paper, we combine the Lyapunov function method with the differential inequality
method to establish some new criteria ensuring the existence and exponential stability of
positive periodic solutions for a class of Nicholson’s blowflies equation with multiple time-
varying delays. Avoiding the assumption that the maximum reproduction rate is less than
1, these criteria are obtained without assuming that [κ , κ̃] ≈ [0.7215355, 1.342276] is the
existence region of periodic solutions, and the analogous results in the recently published
literature are summarized and refined. The approach presented in this article can be used
as a possible way to study other population models involving multiple time-varying delays,
for example, neoclassical growth model, Mackey–Glass model, epidemical system or age-
structured population model, and so on.
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