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Abstract
The stochastic resonance (SR) of a second-order harmonic oscillator subject to mass
fluctuation and periodic modulated noise in viscous media is studied. The mass
fluctuation noise is modeled as dichotomous noise and the memory of viscous media
is characterized by fractional power kernel function. By using the Shapiro–Loginov
formula and Laplace transform, we got the analytical expression of the first moment
of the steady-state response and studied the relationship between the system
response and the system parameters in the long-time limit. The simulation results
show the non-monotonic dependence between the response amplitude and the
input signal frequency, noise parameters of the system, etc, which indicates that the
bona fide resonance and the generalized SR phenomena appear. Furthermore, the
mass fluctuation noise, modulation noise, and the fractional order work together,
producing more complex dynamic phenomena than the integral-order system. For
example, there is a transition from bimodal resonance to unimodal resonance
between the amplitude and the driving frequency under different fractional orders.

Keywords: Fractional Langevin equation; Stochastic resonance; Mass fluctuation;
Signal modulated noise

1 Introduction
As the research frontier of the statistical physics and the stochastic dynamical system,
the stochastic resonance (SR) driven by fluctuation and periodic signal recently become a
popular research direction [1–4]. The term of SR was proposed by Benzi [5, 6] and Nico-
lis [7] to explain the climatic mechanics of periodic glaciers in the 1980s. Contrary to the
common knowledge that noise is harmful, the SR phenomenon shows that random dis-
turbance (noise) can produce a cooperative effect under certain conditions, it can realize
the transfer of noise energy to signal energy, and it thus may strengthen the system output.
Since then, more and more scholars have paid attention to the theoretical and experimen-
tal researches on SR, which makes it gradually become a hot topic in the field of stochastic
dynamics.

To avoid ambiguity, the SR mentioned in this paper is the generalized SR without a spe-
cial explanation. That is, the non-monotonic transformation phenomenon of some func-
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tions of system response (such as moment, power spectrum, autocorrelation function,
signal to noise ratio, etc.) with some characteristic parameters of the system (such as fre-
quency, excitation amplitude or noise intensity, correlation rate) [8].

In the past 30 years, a large part of the research on the SR phenomena has been car-
ried out around different dynamical systems and noise forms, and corresponding physical
models have been established, respectively. From the perspective of the model, fluctua-
tions enter the model equation in the form of multiplication, so the study of the SR phe-
nomenon of the harmonic oscillator system essentially belongs to the study of the dynamic
behavior of the resonant subsystem under multiplicative external noise [9–11]. However,
we found that in most previous work, it is generally considered that the external noise of
harmonic oscillator caused by the disturbance of system damping or natural frequency
[3, 11, 12], while the external noise caused by the perturbation of the oscillator mass is
seldom mentioned.

In recent years, the SR phenomenon of harmonic oscillator systems with mass fluctu-
ation has attracted considerable attention from many scholars. Here, the so-called mass
fluctuation refers to that in many chemical and biological systems, some molecules in the
medium have certain adsorption capacity and will randomly absorb and desorb on Brow-
nian particles, so that the mass of the system is no longer a constant, but a random value.
A growing number of studies show that in some practical biological, physical and engi-
neering fields, studying the dynamic behaviors of a system with mass fluctuation can bet-
ter depict the real physical scene, and thus obtain a possibly richer physical explanation.
Łuczka [13] studied stochastic growth quality cluster diffusion phenomenon and points
out that the cluster center of mass of the azimuth shift of anomalous behavior is a function
of cluster size. Gitterman [14] considered the random resonance phenomenon of a simple
harmonic oscillator with random mass, and the model actually corresponds to a new type
of Brownian motion.

At the same time, some scholars start to consider the SR phenomenon of a linear system
driven by the periodic signal modulation noise which is common in physical engineering
systems [15]. In the process of signal measurement, the stronger the intensity of the mea-
sured signal, the stronger the measurement noise is accompanied by it. Therefore, the
measurement noise and the signal are not completely independent. In many practical sys-
tems, such as extenders in optics and radio astronomy, input signals and external noise
act on the system multiplicatively, that is, the noise is modulated by periodic signals [16].
Therefore, one of the main works of this paper will be to consider the SR phenomenon of
harmonic oscillator with mass fluctuation under the effect of periodic modulation noise.
Such a model has not been reported in the existing literature.

On the other hand, as a natural generalization of integral-order stochastic dynamical
system, the research of SR based on fractional-order stochastic dynamical system grad-
ually attracted great interest [17–19]. In fact, the friction term in the classical Langevin
equation is only dependent on the current speed, which is modeled as –γ ˙x(t). For most
of the real systems, such as viscoelastic processes, however, the damping term no longer
depends only on the current speed but also the historical speed, i.e., one has to take into
account the memory effects. Meanwhile, the fractional derivative, naturally has a good
ability to describe such memory property [20–27]. Therefore, we proposed a power-law
kernel function to model such processes which are associated with the Caputo fractional
derivative.
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Accordingly, the classical Langevin equation are generalized to the fractional Langevin
equation (FLE) [28, 29]. Typical examples of such systems include viscoelastic media, dis-
ordered semiconductors, dense polymer solutions, and colloidal glasses. In recent years,
the research of the SR phenomenon in FLE has drawn great attention due to the intensive
development of the theory of fractional calculus and the application of FLE in modeling
many physical phenomena. The literature indicates that the FLE has much richer dynamic
behaviors than the classical harmonic oscillator and is more beneficial to the description
of real environments. Some scholars have also made attempts and explorations in this re-
spect, and studies have shown that fractional dynamical systems based on fractional-order
differential equations tend to have more abundant dynamic phenomena than integer-
order stochastic dynamical systems under similar conditions [30–34].

The structure of the paper is as follows. In Sects. 2, 3 and 4, we introduce the model
of the fractional Langevin equations and then determine the related explicit results. In
Sect. 5, we analyze the collective behavior of the fractional Langevin equations with the
explicit results. In Sect. 6, some discussions conclude this paper.

2 Fractional Langevin equation
2.1 Generalized Langevin equation
We address the second-order Langevin equation in a classic thermal fluctuation environ-
ment:

mẍ + γ ẋ = F(x, t) + η(t), (1)

where F(x, t) is the external driving force, η(t) is the internal noise, γ ẋ is the damping
force. The model depicts the motion of Brown particles in an ideal liquid, however, in an
inhomogeneous solution, the damping force on the particles will change with time, which
is usually expressed by the following generalized Langevin equation:

mẍ + γ

∫ t

0
β(t – s)ẋ(s) ds = F(x, t) + η(t), (2)

here, γ is the damping coefficient, β(t) is the damping kernel function, which is used to
characterize the time-dependent damping changes of heterogeneous media.

2.2 Fractional Langevin equation
In many physical, biological and chemical systems, the movement of Brown particles in
viscous media is often a rather complex problem. In such viscous media, the damping
force of particles often shows the memory of historical velocity, Mankin and Soika, etc.
modeled the damping kernel function by a power law as follows:

β(t) =
|t|–α

Γ (1 – α)
. (3)

Substituting the above equation into the generalized Langevin equation (2), we get the
fractional Langevin equation:

mẍ + γ

∫ t

0

|t – s|–α

Γ (1 – α)
ẋ(s) ds = mẍ + Dαx = F(x, t) + ηα(t), (4)
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here Dα represent the Caputo fractional calculus operator [20], α is the fractional or-
der. ηα(t) is the fractional noise, which satisfied the fluctuation–dissipation theorem with
damping kernel function β(t).

3 System model and its solution
A fractional harmonic oscillator model with mass fluctuation driven by periodic modula-
tion noise, can be described by the fractional Langevin equation as follows:

(
m + ξ (t)

)d2x(t)
dt2 + γ Dαx(t) = –mω2x(t) + A0 cos(Ωt)ξ (t) + ηα(t), (5)

where m is the mass of the particle, γ is the damping coefficient, ω is the inherent fre-
quency, A0, Ω are the amplitude and the frequency of the external driving signal, respec-
tively, ηα(t) is the additive internal noise related with the system order α, ξ (t) is the mul-
tiplicative external noise, here we build it in a dichotomous way, ξ (t) = σ1 or –σ1, (σ1 > 0),
the external noise satisfied the following properties:

〈
ξ (t)

〉
= 0, (6)

〈
ξ (t)ξ (s)

〉
=

〈
ξ (s)ξ (t)

〉
= σ1

2 exp
[
–λ1|t – s|]. (7)

Since the mass cannot be negative, which means (m ± σ1) > 0, we let the mass fluctuation
noise intensity always satisfy the condition:

σ1 < m. (8)

ηα(t) is the fractional Gaussian noise, which is the generalized derivative of the fractional
Brown motion Bα(t), and they satisfy

〈
ηα(t)

〉
= 0. (9)

ηα(t) is the random fluctuation caused by thermal motion of environmental molecules, its
autocorrelation function satisfies Kubo’s second fluctuation–dissipation theorem [35]:

〈
ηα(t)ηα(s)

〉
= kBTγ (t – s) = kBTγ

|t – s|–α

Γ (1 – α)
. (10)

In this paper, we assume that dependence between the external noise and internal noise
due to its different origins:

〈
ξ (t)ηα(s)

〉
=

〈
ηα(t)ξ (s)

〉
= 0. (11)

4 The first moment and response amplitude
4.1 Fractional Shapiro–Loginov formula
In many practical physics and engineering system models, noise is one of the inevitable
factors to be considered. When the noise is modeled as a steady-state stochastic process,
how to deal with the correlation between random variables is the key to solve the stochastic
differential equation (SDE) of the system. Shapiro–Loginov formula is an effective tool for
solving such SDEs with exponential correlation random terms:
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Theorem 4.1 ([36], Shapiro–Loginov formula) If a stationary random process ξ (t) satis-
fies the following statistical properties:

〈
ξ (t)

〉
= 0;

〈
ξ (t1)ξ (t2)

〉
= σ 2 exp

[
–ν|t1 – t2|

]
. (12)

Meanwhile if φ(t) is the function of ξ (t), then we have

d
dt

〈
ξ (t)φ(t)

〉
=

〈
ξ (t)

d
dt

φ(t)
〉

– ν
〈
ξ (t)φ(t)

〉
. (13)

The Shapiro–Loginov formula gives a very simple method to deal with the correlation
between random variables. The unity of equation variables can be realized by using the
Shapiro–Loginov formula, so as to solve the equation.

In the fractional-order stochastic differential equation (FSDE), the classical Shapiro–
Loginov formula needs to be generalized:

Theorem 4.2 ([32], Fractional Shapiro–Loginov formula) Assume that the following as-
sumptions hold:

1. 〈ξ (t)〉 = 0, 〈ξ (t1)ξ (t2)〉 = σ 2 exp[–ν|t1 – t2|].
2. φ(t) is a function of ξ (t).

Then we have the following fractional Shapiro–Loginov formula:

〈
ξ (t)Dαφ(t)

〉
= e–νtDα

(〈
ξ (t)φ(t)

〉
eνt). (14)

Here Dα is the Caputo fractional calculus operator, 0 < α ≤ 1.

It is easy to verify that when the fractional order α = 1, the fractional Shapiro–Loginov
formula degenerates into the classical integer-order Shapiro–Loginov formula.

4.2 Steady-state response of the first moment and output amplitude
Averaging the fractional Langevin equation (5) yields

m
d2〈x(t)〉

dt2 +
〈
ξ (t)

d2〈x(t)〉
dt2

〉
+ γ Dα

〈
x(t)

〉
= –mω2〈x(t)

〉
. (15)

Combining with the Shapiro–Loginov formula,

〈
ξ (t)

dnx
dtn

〉
=

(
d
dt

+ λ1

)n〈
ξ (t)x

〉
. (16)

Substituting (16) into (15) yields

m
d2〈x(t)〉

dt2 +
(

d
dt

+ λ1

)2〈
ξ (t)x(t)

〉
+ γ Dα

〈
x(t)

〉
= –mω2〈x(t)

〉
. (17)

Multiplying (5) by ξ (t), and averaging the obtained equation, we have:

σ 2
1

d2〈x(t)〉
dt2 + m

(
d
dt

+ λ1

)2〈
ξ (t)x(t)

〉
+ γ

〈
ξ (t)Dαx(t)

〉

= –mω2〈ξ (t)x(t)
〉
+ A0 cos(Ωt)σ 2

1 . (18)
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Considering the fractional Shapiro–Loginov formula:

〈
ξ (t)Dαx(t)

〉
= e–λ1tDα

(〈
ξ (t)x(t)eλ1t〉). (19)

Substituting (19) into (18) yields

σ 2
1

d2〈x(t)〉
dt2 + m

(
d
dt

+ λ1

)2〈
ξ (t)x(t)

〉
+ γ e–λ1tDα

(〈
ξ (t)x(t)eλ1t〉),

= –mω2〈ξ (t)x(t)
〉
+ A0 cos(Ωt)σ 2

1 . (20)

Let 〈x(t)〉 = x1, 〈ξ (t)x(t)〉 = x2, close equations with two variables are found:

⎧⎪⎪⎨
⎪⎪⎩

(m d2

dt2 + γ Dα + mω2)x1(t) + ( d
dt + λ1)2x2(t) = 0,

σ 2
1

d2

dt2 x1(t) + (m( d
dt + λ1)2 + mω2)x2(t) + γ e–λ1tDα(〈ξ (t)x(t)eλ1t〉)

= A0 cos(Ωt)σ 2
1 .

(21)

By using the Laplace transform on (21), we have
⎧⎨
⎩

d11X1(s) + d12X2(s) = d13,

d21X1(s) + d22X2(s) = A0
s

s2+Ω2 + d23,
(22)

where
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d11 = ms2 + γ sα + mω2,

d12 = (s + λ1)2,

d13 = (ms + γ sα–1)x1(0) + mẋ1(0) + (s + 2λ1)x2(0) + ẋ2(0),

d21 = σ 2
1 s2,

d22 = m(s + λ1)2 + γ (s + λ1)α + mω2,

d23 = σ 2
1 sx1(0) + σ1

2ẋ1(0) + (ms + 2mλ1 + γ (s + λ1)α–1)x2(0) + mẋ2(0).

(23)

Combining (22)and (23), we get
⎧⎨
⎩

X1(s) = – d12
d11d22–d12d21

A0
s

s2+Ω2 + d13d22–d12d23
d11d22–d12d21

,

X2(s) = d11
d11d22–d12d21

A0
s

s2+Ω2 + d11d23–d21d13
d11d22–d12d21

.
(24)

On the other hand, from the aspect of signal processing, the system response can be
regarded as the output of the linear time-invariant system in which the input signal
A0 cos(Ωt) passes through the transfer function H10, here

H10 = –
d12

d11d22 – d12d21
. (25)

Here we consider the long-time limit situation, then the effect of the initial conditions is
almost negligible,

〈
x(t)

〉
as =

〈
x(t)

〉
t→∞ ≡ A0

∫ t

0
hi0

(
t – t′) cos

(
Ωt′)dt′. (26)
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According to the properties of the linear time-invariant system, the steady-state response
of the system has the following form:

〈
x(t)

〉
as = A cos(Ωt + φ). (27)

From the system transfer function H10, the expressions of the steady-state response am-
plitude and phase shift of the system can be obtained:

⎧⎪⎨
⎪⎩

A = A0|H10(jΩ)| = A0

√
f12+f22

f32+f42 ,

φ = arg(H10(jΩ)) = arctan( f2f3–f1f4
f1f3+f2f4

),
(28)

where

f1 = Ω2 – λ2
1,

f2 = –2λ1Ω ,

p1 = mω2 – mΩ2 + γΩα cos(απ/2),

p2 = mω2 + γ rα cos(αθ ),

f3 = –
(
mp1 + σ 2

1 Ω2)f1 + mγΩα sin(απ/2)f2

+ p1p2 – γ 2(rΩ)α sin(απ/2) sin(αθ ),

f4 = –mγΩα sin(απ/2)f1 + –
(
mp1 + σ 2

1 Ω2)f2

+ γ rα sin(αθ )p1 + p2γΩα sin(απ/2),

r =
√

Ω2 + λ1
2, θ = arg tan(Ω/λ1).

5 Simulation results and analysis
In the last section, the analytical expression of the steady-state response of the system was
obtained. Next, we will discuss the stochastic resonance phenomena between the steady-
state response amplitude and random noise intensity σ1, noise correlation rate λ, fractional
order α, damping coefficient γ and oscillator mass m in combination with the simulation
results.

5.1 The effect of multiplicative external noise on the bona fide SR
Figures 1 and 2 respectively depict the curves of system steady-state response amplitude
A as a function of external driven frequency Ω with different noise intensity σ1 and cor-
relation rate λ. As the frequency of the periodic input signal increases, A appears as a
non-monotonic variation, which indicates the bona fide SR appears in the system. As the
noise intensity increases, the amplitude curve changes from unimodal resonance to bi-
modal resonance, and the maximum value gradually decreases, and the resonance peak
gradually shifts to the right. In Fig. 2, with the increase of noise correlation rate σ1, the
amplitude curve changes from bimodal resonance to unimodal resonance. This is because
the correlation rate of two-state noise is the inverse of the conversion rate, the smaller the
correlation rate, the higher the conversion rate, thus causing the system to exhibit a novel
double-peak resonance phenomenon.
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Figure 1 A as a function of Ω ,m = 1, γ = 0.2, ω = 1,
α = 0.6, λ = 0.4

Figure 2 A as a function of Ω ,m = 1, γ = 0.2, ω = 1,
α = 0.6, λ = 0.4, σ1 = 0.6

The above results show that in the case of a fractional-order system, the synergistic effect
of dichotomous noise and periodic modulation noise makes the noise energy transfer to
signal energy, thus enhancing the output of the system, making the system show rich real
resonance phenomena such as single-peak resonance and double-peak resonance.

5.2 The influence of damping characteristics on the bona fide SR
Figures 3 and 4, respectively, depict the curves of system steady-state response amplitude
A as a function of external driving frequency Ω with different fractional order α and damp-
ing coefficient γ When α = 0.1, the steady-state response amplitude A shows a bimodal
SR behavior, and the second resonance-peak value is larger than the first one, with the
increase of α, the bimodal SR gradually turns into unimodal SR, and the maximum value
decreases, and the peak position gradually shifts to the left. In Fig. 4, with the increase of γ ,
the resonance peak of the amplitude curve gradually flattens out, and the resonance max-
imum value gradually decreases. This shows that the increase of the damping coefficient
weakens the SR phenomenon of the steady-state response of the system.

The above results show that the damping characteristics of the harmonic oscillator can
cause the system steady-state response amplitude produced abundant bona fide SR under
certain conditions, and the form of this SR is closely related to the damping coefficient. In
particular, when the fractional-order system and damping coefficient are small, the sys-
tem will show the double-peak SR phenomenon which the traditional harmonic oscillator
model does not have.
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Figure 3 A as a function of Ω , The other parameters
arem = 1, ω = 1, σ = 0.6, λ = 0.4, γ = 0.6

Figure 4 A as a function of Ω , The parameters are
m = 1, ω = 1, σ = 0.6, λ = 0.4, α = 0.6

Figure 5 A as a function of σ1, The parameters are
m = 1, γ = 0.2, ω = 1, Ω = 1.6, λ = 0.4

5.3 The influence of other parameters on SR
Figures 5 and 6, respectively, mapped the system steady-state response amplitude A as a
function of the noise strength σ1. From the curves of different fractional order α and noise
correlation rate λ, it can be seen that in both cases, A shows a non-monotonic dependence
on noise intensity, that is, the SR phenomenon appears. With the increase of α and λ, the
SR maximum value decreases and the formant position gradually shifts to the right.

The above results show that the fractional-order number and the noise correlation rate
are significant to the phenomenon of stochastic resonance of the system. Different α and
λ will increase or decrease the maximum value of the resonance peak, and the peak po-
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Figure 6 A as a function of σ1, The parameters are
m = 1, γ = 0.2, ω = 1, Ω = 1.6, α = 0.6

Figure 7 A as a function ofm, The parameters are
γ = 0.2, ω = 1, σ = 0.6, Ω = 1.6, λ = 0.4

sition will appear earlier or later. Therefore, the SR phenomenon of such systems can be
effectively controlled by adjusting the memorization and the correlation rate of noise.

Finally, we draw the curve of system steady-state response amplitude A as a function of
oscillator mass m. From the curves of different fractional order α and noise correlation rate
λ, it can be seen that in Fig. 7, A appears parametric induced resonance with the change
of m. With the increase of fractional order, the resonant-peak value decreases and the
position of the resonant peak moves to the left gradually. This indicates that the memory
characteristics of the system play an important role in the SR phenomenon: the smaller
the α is, the stronger the system memory is, and the longer the contribution of history to
the present moment is, thus enhancing the SR phenomenon of the system’s steady-state
response. In Fig. 8, with the increase of λ, the resonance-peak value first decreases and
then increases, and the position of the resonance peak gradually shifts to the left.

The above results show that the steady-state response amplitude A and the mass of the
oscillator m has obvious parametric induced SR phenomenon. In addition, the memo-
rization of the system can promote the occurrence of SR of the system to a certain extent,
while the increase of noise correlation rate λ first inhibits and then enhances the stochastic
resonance of the system.

6 Conclusion
The mass fluctuation noise and periodic modulation noise exist widely in various complex
physical and engineering systems. In this paper, the fractional-order mass fluctuation har-
monic oscillator model driven by periodic modulation noise is proposed and established
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Figure 8 A as a function ofm, The parameters are
γ = 0.2, ω = 1, σ = 0.6, Ω = 1.6, α = 0.6

for the first time. On this basis, the influences of external noise parameters, system damp-
ing parameters and other model parameters on SR of the system are deeply studied. We
found that due to external noise, memory characteristics and system synergy, the stable
response of the system appears as a diversified SR phenomenon. By adjusting some pa-
rameters of the model, we can effectively control the SR phenomenon of the second-order
linear systems within a certain range, which provides another new perspective for the ap-
plication of stochastic resonance theory in practical physics and engineering.
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