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Abstract
In this paper, we consider two classes of boundary value problems for nonlinear
implicit differential equations with nonlinear integral conditions involving
Atangana–Baleanu–Caputo fractional derivatives of orders 0 < ϑ ≤ 1 and 1 < ϑ ≤ 2.
We structure the equivalent fractional integral equations of the proposed problems.
Further, the existence and uniqueness theorems are proved with the aid of fixed point
theorems of Krasnoselskii and Banach. Lastly, the paper includes pertinent examples
to justify the validity of the results.
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1 Introduction
Fractional calculus [1–3] has continued to attract the attention of many authors in the past
three decades. Recently, new fractional derivatives (FDs) which interpolate the Riemann–
Liouville, Caputo, Hilfer, Hadamard, and generalized FDs have appeared, see [4–9]. Some
investigators have recognized that innovation for novel FDs with various nonsingular or
singular kernels is necessary to address the need to model more realistic problems in var-
ious areas of engineering and science. Caputo and Fabrizio [10] introduced a new kind of
FDs where the kernel is based on the exponential function. Losada and Nieto [11] stud-
ied some properties of this new operator. In [12, 13], the authors presented new inter-
esting FDs where the kernel relies on Mittag-Leffler function, the so-called Atangana–
Baleanu–Caputo (AB–Caputo) which is basically a generalization of the Caputo FD. Then
in [14, 15], the authors deliberated the discrete versions of those new operators. For mod-
eling in the framework of nonsingular kernels and fractal-fractional derivatives, we refer
to [16–18]. There are many works pertinent to ABC problem in medical science and en-
gineering. Hence we highlight medical, as well as engineering, applications by referring to
[19–21].
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On the other hand, the fixed point theory is a collection of results saying that a mapping
T will have at least one fixed point (i.e., T(x) = x), under some conditions on T . Results
of this kind are of paramount importance in many areas of mathematics, other sciences,
and engineering. So, some recent articles which are pertinent to the fixed point theory can
found in [22–29]. The existence and uniqueness of solutions for different classes of frac-
tional differential equations (FDEs) with initial or boundary conditions have been studied
by several researchers; see [30–38] and the references therein. Some recent contributions
on FDEs involving ABC-FDs can be found in the following articles series: [39–49]. For in-
stance, AB–Caputo fractional IVP is one of the studied problems by Jarad et al. [39], and
has the form

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r)), r ∈ [a, T], 0 < ϑ ≤ 1,

ς (a) = ςa.

The BVP of AB-Caputo FD, presented by Abdeljawad in [40], is also one of the recent
problems through which the higher fractional orders are addressed:

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) + q(r)ς (r) = 0, r ∈ [a, T], 1 < ϑ ≤ 2,

ς (a) = ς (T) = 0.

Motivated by the above arguments, the intent of this work is to investigate two AB–
Caputo-type implicit FDEs with nonlinear integral conditions described by

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r), ABC

D
ϑ
a+ς (r)), r ∈ [a, T], 0 < ϑ ≤ 1,

ς (a) – ς ′(a) =
∫ T

a g(s,ς (s)) ds
(1.1)

and
⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r), ABC

D
ϑ
a+ς (r)), r ∈ [a, T], 1 < ϑ ≤ 2,

ς (a) = 0, ς (T) =
∫ T

a g(s,ς (s)) ds
(1.2)

where ABC
D

ϑ
a+ is the AB–Caputo FD of order ϑ , while f : [a, T] × R × R → R and g :

[a, T] ×R →R are continuous functions.
Some fixed point theorems (FPTs) are applied to establish the existence and uniqueness

theorems for the problems (1.1) and (1.2). The proposed problems are more general, and
the results generalize those obtained in recent studies; we also provide an extension of the
development of FDEs involving this new operator. Moreover, the analysis of the results
was limited to the minimum assumptions.

Many other recent works have investigated similar topics using the same concepts; one
can see [50–55].

The rest of the paper is structured as follows. In Sect. 2, we give some useful preliminar-
ies related to main consequences. Section 3 is devoted to obtaining formulas of solution to
the proposed problems. Moreover, the existence and uniqueness theorems for the prob-
lems at hand are proved by means of various techniques for FPTs. Ultimately, illustrative
examples are offered in Sect. 4.



Abdo et al. Advances in Difference Equations         (2021) 2021:37 Page 3 of 21

2 Background materials and preliminaries
Here we recollect some requisite definitions and preliminary concepts related to our work.

Let Z = [a, T] ⊂ R, C(Z,R) be the space of continuous functions ς : Z → R with the
norm

‖ς‖ = max
{∣
∣ς (r)

∣
∣ : r ∈ Z

}
,

Clearly, C(Z,R) is a Banach space with the norm ‖ς‖.

Definition 2.1 ([12, 13]) Let ϑ ∈ (0, 1] and p ∈ H1(Z). Then the AB–Caputo and AB–
Riemann–Liouville FDs of order ϑ for a function p are described by

ABCDϑ
a+p(r) =

N(ϑ)
1 – ϑ

∫ r

a
Eϑ

(
–ϑ

ϑ – 1
(r – s)ϑ

)

p
′(s) ds, r > a,

and

ABRDϑ
a+p(r) =

N(ϑ)
1 – ϑ

d
dr

∫ r

a
Eϑ

(
–ϑ

ϑ – 1
(r – s)ϑ

)

p(s) ds, r > a,

respectively, where Eϑ is called the Mittag-Leffler function and described by

Eϑ (p) =
∞∑

k=0

pk

�(Zϑ + 1)
, Re(ϑ) > 0, p ∈C.

The associated AB fractional integral is specified by

ABIϑ
a+p(r) =

1 – ϑ

N(ϑ)
p(r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1

p(s) ds, r > a,

where N(ϑ) > 0 is a normalization function satisfying N(0) = N(1) = 1.

Definition 2.2 ([13]) In particular, if a = 0, the Laplace transform of AB–Caputo FD of
p(r) is specified by

L
[ABCDϑ

0+p(r)
]

=
N(ϑ)

sϑ (1 – ϑ) + ϑ

[
s
ϑL

[
p(r)

]
– s

ϑ–1
p(0)

]
.

Lemma 2.1 ([14]) Let ϑ ∈ (0, 1] and p ∈ H1(Z), if AB–Caputo FD exists, then we have

ABRDϑ
a+

ABIϑ
a+p(r) = p(r)

and

ABIϑ
a+

ABCDϑ
a+p(r) = p(r) – p(a).

Definition 2.3 ([40]) Let ϑ ∈ (n, n + 1] and p be such that pn ∈ H1(Z). Set v = ϑ – n where
v ∈ (0, 1]. Then the AB–Caputo and AB–Riemann–Liouville FDs of order ϑ for a function
p are described by

ABC
D

ϑ
a+p(r) = ABCDv

a+p
(n)(r)
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and

ABR
D

ϑ
a+p(r) = ABRDv

a+p
(n)(r),

respectively. The associated AB fractional integral is specified by

AB
I
ϑ
a+p(r) = In

a+
ABIva+p(r).

Remark 2.1 If ϑ ∈ (0, 1], we have ϑ = v. Hence

AB
I
ϑ
a+p(r) = ABIϑ

a+p(r),
ABC

D
ϑ
a+p(r) = ABCDϑ

a+p(r),
ABR

D
ϑ
a+p(r) = ABRDϑ

a+p(r).

Definition 2.4 ([40]) The relation between the AB–Riemann–Liouville and AB–Caputo
FDs is

ABC
D

ϑ
a+p(r) = ABR

D
ϑ
a+p(r) –

N(ϑ)
1 – ϑ

p(a)Eϑ

(
–ϑ

ϑ – 1
(r – a)ϑ

)

. (2.1)

Lemma 2.2 ([40]) For n – 1 < ϑ ≤ n, n ∈N0, and p(r) defined on Z, we have:
(i) ABR

D
ϑ
a+

AB
I
ϑ
a+p(r) = p(r);

(ii) AB
I
ϑ
a+

ABC
D

ϑ
a+p(r) = p(r) –

∑n
k=0

p(k)(a)
k! (r – a)k ;

(iii) AB
I
ϑ
a+

ABR
D

ϑ
a+p(r) = p(r) –

∑n–1
k=0

p(k)(a)
k! (r – a)k .

Remark 2.2 With the help of (2.1), for any ϑ , it can be shown that

ABC
D

ϑ
a+

AB
I
ϑ
a+p(r) = p(r) – p(a). (2.2)

Hence, under the condition that p(a) = 0, we get the identity

ABC
D

ϑ
a+

AB
I
ϑ
a+p(r) = p(r). (2.3)

Lemma 2.3 ([40]) Let n < ϑ ≤ n + 1. Then ABC
D

ϑ
a+p(r) = 0, if p(r) is constant function.

Lemma 2.4 ([13]) Let ϑ > 0. Then AB
I
ϑ
a+ is bounded from C(Z,R) into C(Z,R).

Lemma 2.5 Let n < ϑ ≤ n + 1. Then ABC
D

ϑ
a+ (r – a)k = 0, for k = 0, 1, . . . , n.

Proof Let p(r) = (r – a)k . By Definition 2.3, we have

ABC
D

ϑ
a+p(r) = ABCDv

a+p
(n)(r)

= ABCDv
a+

[
(r – a)k](n)

= ABCDv
a+

(
d
dr

)n

(r – a)k .



Abdo et al. Advances in Difference Equations         (2021) 2021:37 Page 5 of 21

Since k < n ∈ N, we have ( d
dr )n(r – a)k = 0. It follows from Lemma 2.3 that

ABC
D

ϑ
a+p(r) = 0. �

Lemma 2.6 ([39]) Let ϑ ∈ (0, 1] and � ∈ C(Z,R) with � (a) = 0. Then the solution of the
following problem

ABCDϑ
a+p(r) = � (r), r ∈ Z,

p(a) = c

is given by

p(r) = c +
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds.

Lemma 2.7 ([40]) Let ϑ ∈ (1, 2] and � ∈ C(Z,R) with � (a) = 0. Then the solution of the
following problem

⎧
⎨

⎩

ABC
D

ϑ
a+p(r) = � (r), r ∈ Z,

p(a) = c1, p′(a) = c2

is given by

p(r) = c1 + c2(r – a) +
2 – ϑ

N(ϑ – 1)

∫ r

a
� (s) ds +

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds.

Definition 2.5 ([56]) Let J be a Banach space. The operator B : J → J is a contraction
if

‖Bx1 – Bx2‖ ≤ p‖x1 – x2‖, for all x1, x2 ∈D, 0 < p < 1.

Theorem 2.1 (Banach FPT, [56]) Let J be a Banach space, and K be a nonempty closed
subset of J . If B : K −→ K is a contraction, then there exists a unique fixed point of B.

Theorem 2.2 (Krasnoselskii FPT, [56]) Let K be a nonempty, closed, convex subset of a
Banach space J . Let B1, B2 be two operators such that (i) B1u + B2v ∈ K, ∀u, v ∈ K; (ii)
B1 is compact and continuous; (iii) B2 is a contraction mapping. Then, there exists w ∈ K

such that B1w + B2w = w.

3 Main results
This section is devoted to obtaining formulas of solutions to linear problems correspond-
ing to (1.1) and (1.2). Moreover, we prove the existence and uniqueness theorems to sug-
gested problems by applying Theorems 2.1 and 2.2.

3.1 Solution formulas
Theorem 3.1 Let 0 < ϑ ≤ 1, and let � , g ∈ C(Z,R) with � (a) = � ′(a) = 0. A function
ς ∈ C(Z,R) is a solution of the fractional integral equation (FIE)

ς (r) =
∫ T

a
g(s) ds +

1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds, r ∈ Z, (3.1)
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if and only if ς is a solution of the ABC-problem

ABC
D

ϑ
a+ς (r) = � (r), r ∈ Z,

ς (a) – ς ′(a) =
∫ T

a
g(s) ds.

(3.2)

Proof Assume ς satisfies the first equation of (3.2). From Lemma 2.6, we have

ς (r) = ς (a) +
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds, (3.3)

Also,

ς ′(r) =
1 – ϑ

N(ϑ)
� ′(r) +

ϑ

N(ϑ)
1

�(ϑ – 1)

∫ r

a
(r – s)ϑ–2� (s) ds. (3.4)

Taking r → a on both sides of (3.4), we have

ς ′(a) =
1 – ϑ

N(ϑ)
� ′(a).

Using the integral condition, we obtain

ς (a) = ς ′(a) +
∫ T

a
g(s) ds =

1 – ϑ

N(ϑ)
� ′(a) +

∫ T

a
g(s) ds. (3.5)

From (3.3) and (3.5), and from fact that � ′(a) = 0, we get

ς (r) =
∫ T

a
g(s) ds +

1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds, r ∈ Z.

Thus (3.1) is satisfied.
Conversely, suppose that ς satisfies equation (3.1). Applying ABC

D
ϑ
a+ on both sides of

(3.1), then using Remark 2.2 and Lemma 2.3, we find that

ABC
D

ϑ
a+ς (r) = ABC

D
ϑ
a+

∫ T

a
g(s) ds + ABC

D
ϑ
a+

AB
I
ϑ
a+� (r)

= � (r).

Thus, we can simply infer that

ς (a) – ς ′(a) =
∫ T

a
g(s) ds. �

Theorem 3.2 Let 1 < ϑ ≤ 2, and let � , g ∈ C(Z,R) with � (a) = 0. A function ς ∈ C(Z,R)
is a solution of the FIE

ς (r) =
(r – a)
(T – a)

∫ T

a
g(s) ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

∫ T

a
� (s) ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1� (s) ds
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+
2 – ϑ

N(ϑ – 1)

∫ r

a
� (s) ds +

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds (3.6)

if and only if ς is a solution of the ABC-problem

ABCDϑ
a+ς (r) = � (r), r ∈ Z,

ς (a) = 0, ς (T) =
∫ T

a
g(s) ds.

(3.7)

Proof Assume ς satisfies the first equation of (3.7). From Lemma 2.7, we have

ς (r) = c1 +c2(r–a)+
2 – ϑ

N(ϑ – 1)

∫ r

a
� (s) ds+

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r

a
(r–s)ϑ–1� (s) ds, (3.8)

for some c1, c2 ∈R. Since ς (a) = 0, we get c1 = 0. Hence

ς (T) = c2(T – a) +
2 – ϑ

N(ϑ – 1)

∫ T

a
� (s) ds+

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ T

a
(T – s)ϑ–1� (s) ds. (3.9)

Using the integral condition ς (T) =
∫ T

a g(s) ds, we get

c2 =
1

(T – a)

∫ T

a
g(s) ds –

2 – ϑ

N(ϑ – 1)
1

(T – a)

∫ T

a
� (s) ds

–
ϑ – 1

N(ϑ – 1)�(ϑ)
1

(T – a)

∫ T

a
(T – s)ϑ–1� (s) ds. (3.10)

Substituting the values of c1 and c2 into (3.8), we obtain

ς (r) =
(r – a)
(T – a)

∫ T

a
g(s) ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

∫ T

a
� (s) ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1� (s) ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a
� (s) ds +

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds.

Thus (3.6) is satisfied.
Conversely, assume that ς satisfies (3.6). Applying ABC

D
ϑ
a+ on both sides of (3.6), then

using Lemmas 2.2, 2.3, and 2.5, we find that

ABC
D

ϑ
a+ς (r) =

1
(T – a)

∫ T

a
g(s) dsABC

D
ϑ
a+ (r – a)

+
ϑ – 2

N(ϑ – 1)
1

(T – a)

∫ T

a
� (s) dsABC

D
ϑ
a+ (r – a)

+
1 – ϑ

N(ϑ – 1)�(ϑ)
1

(T – a)

∫ T

a
(T – s)ϑ–1� (s) dsABC

D
ϑ
a+ (r – a)

+ ABC
D

ϑ
a+

AB
I
ϑ
a+� (r)

= � (r).
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Clearly, ς (a) = 0. Thus, we can simply infer that

ς (T) =
∫ T

a
g(s) ds +

ϑ – 2
N(ϑ – 1)

∫ T

a
� (s) ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)

∫ T

a
(T – s)ϑ–1� (s) ds

+
2 – ϑ

N(ϑ – 1)

∫ T

a
� (s) ds +

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ T

a
(T – s)ϑ–1� (s) ds

=
∫ T

a
g(s) ds. �

Before proceeding with the main findings, we are obligated to provide the following
assumptions:

(A1) f : Z×R×R →R is continuous and there exist Lf > 0 and 0 < Kf < 1 such that

∣
∣f (r, u, u) – f (r, v, v)

∣
∣ ≤ Lf |u – v| + Kf |u – v|, r ∈ Z and u, v, u, v ∈R;

(A2) g : Z×R →R is continuous and there exist constant Lf > 0 such that

∣
∣g(r, u) – g(r, v)

∣
∣ ≤ Lg |u – v|, r ∈ Z and u, v ∈R;

(A3) [

Lg(T – a) +
(

1 – ϑ

N(ϑ)
+

(T – a)ϑ

N(ϑ)�(ϑ)

)
Lf

1 – Kf

]

< 1.

3.2 Existence and uniqueness theorems for (1.1)
As a result of Theorem 3.1, we have the following theorem:

Theorem 3.3 Let 0 < ϑ ≤ 1, and let f : Z×R×R → R and g : Z×R → R be continuous
with f (a,ς (a), ABC

D
ϑ
a+ς (a)) = f ′(a,ς (a), ABC

D
ϑ
a+ς (a)) = 0. If ς ∈ C(Z,R) then ς satisfies (1.1)

if and only if ς fulfills

ς (r) =
∫ T

a
g
(
s,ς (s)

)
ds +

1 – ϑ

N(ϑ)
f
(
r,ς (r), ABC

D
ϑ
a+ς (r)

)

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds.

Theorem 3.4 Let (A1) and (A3) be fulfilled. Then the ABC-problem (1.1) has a unique
solution.

Proof Set

D =
{
ς ∈ C(Z,R) : ABC

D
ϑ
a+ς ∈ C(Z,R)

}
.

By Theorem 3.3, we define the operator T : D → D by

(Tς )(r) =
∫ T

a
g
(
s,ς (s)

)
ds +

1 – ϑ

N(ϑ)
f
(
r,ς (r), ABC

D
ϑ
a+ς (r)

)

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds.
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ThisT is well defined, that is,T(D) ⊆D. Indeed, for any ς ∈ C(Z,R), f (·,ς (·), ABC
D

ϑ
a+ς (·))

is continuous. Besides, by Lemma 2.4, Tς ∈ C(Z,R). Also, by Lemma 2.1 and Remark 2.1,
we end up with

ABC
D

ϑ
a+ (Tς )(r) =

∫ T

a
g
(
s,ς (s)

)
dsABC

D
ϑ
a+ (1) + ABC

D
ϑ
a+

ABC
I
ϑ
a+ f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)

= ABC
D

ϑ
a+

ABC
I
ϑ
a+ f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)

= f
(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
.

Since f (r, ·, ·) is continuous on [a, T], one has ABC
D

ϑ
a+ (Tς )(r) ∈ C(Z,R).

Now, we need to prove that T is a contraction. Let ς ,ς ∈D and r ∈ Z. Then

∣
∣(Tς )(r) – (Tς )(r)

∣
∣

≤
∫ T

a

∣
∣g

(
s,ς (s)

)
– g

(
s,ς (s)

)∣
∣ds

+
1 – ϑ

N(ϑ)
∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1∣∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds.

Using (A1) and the fact that ABC
D

ϑ
a+ς (r) = f (r,ς (r), ABC

D
ϑ
a+ς (r)), we obtain

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣

≤ Lf
∣
∣ς (r) – ς (r)

∣
∣ + Kf

∣
∣ABC

D
ϑ
a+ς (r) – ABC

D
ϑ
a+ς (r)

∣
∣

= Lf
∣
∣ς (r) – ς (r)

∣
∣ + Kf

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣,

which implies

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣ ≤ Lf

1 – Kf

∣
∣ς (r) – ς (r)

∣
∣. (3.11)

By (A2) and (3.11), for r ∈ Z,

∣
∣(Tς )(r) – (Tς )(r)

∣
∣ ≤ Lg

∫ T

a

∣
∣ς (s) – ς (s)

∣
∣ds

+
1 – ϑ

N(ϑ)
Lf

1 – Kf

∣
∣ς (r) – ς (r)

∣
∣

+
ϑ

N(ϑ)
Lf

1 – Kf

1
�(ϑ)

∫ r

a
(r – s)ϑ–1∣∣ς (s) – ς (s)

∣
∣ds

≤
[

Lg(T – a) +
(

1 – ϑ

N(ϑ)
+

(T – a)ϑ

N(ϑ)�(ϑ)

)
Lf

1 – Kf

]

‖ς – ς‖.

Condition (A3) shows that T is a contraction. Hence, by Theorem 2.1, T has a unique
fixed point. �
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Theorem 3.5 Suppose (A1) and (A3) are fulfilled. Then there exists at least one solution of
the problem (1.1).

Proof Choose (Tς )(r) = (T1ς )(r) + (T2ς )(r), where

(T1ς )(r) =
∫ T

a
g
(
s,ς (s)

)
ds +

1 – ϑ

N(ϑ)
f
(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
(3.12)

and

(T2ς )(r) =
ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds. (3.13)

Set μf := max{|f (r, 0, 0)|; r ∈ Z} < ∞ and μg := max{|g(r, 0)|; r ∈ Z} < ∞. Let

Bξ =
{
ς ∈ D : ‖ς‖ ≤ ξ

}
(3.14)

with the radius

ξ ≥
μg(T – a) + ( 1–ϑ

N(ϑ) + (T–a)ϑ
N(ϑ)�(ϑ) ) μf

1–Kf

1 – (Lg(T – a) + ( 1–ϑ
N(ϑ) + (T–a)ϑ

N(ϑ)�(ϑ) ) Lf
1–Kf

)
. (3.15)

We will complete the proof in several steps.
Step 1. We show that T1ς + T2υ ∈ Bξ , for all ς ,υ ∈ Bξ .
By (3.12),

∣
∣(T1ς )(r)

∣
∣ ≤

∫ T

a

∣
∣g

(
s,ς (s)

)∣
∣ds +

1 – ϑ

N(ϑ)
∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣. (3.16)

From (A1) and (A2), we have

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣ ≤ ∣

∣f
(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f (r, 0, 0)

∣
∣ +

∣
∣f (r, 0, 0)

∣
∣

≤ Lf
∣
∣ς (r)

∣
∣ + Kf

∣
∣ABC

D
ϑ
a+ς (r)

∣
∣ + μf

= Lf
∣
∣ς (r)

∣
∣ + Kf

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣ + μf ,

which gives

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)∣
∣ ≤ Lf |ς (r)| + μf

1 – Kf
(3.17)

and

∣
∣g

(
r,ς (r)

)∣
∣ =

∣
∣g

(
r,ς (r)

)
– g(r, 0)

∣
∣ +

∣
∣g(r, 0)

∣
∣

≤ Lg
∣
∣ς (r)

∣
∣ + μg . (3.18)

By substituting (3.17) and (3.18) into (3.16), we have for ς ∈ Bξ ,

∣
∣(T1ς )(r)

∣
∣ ≤

∫ T

a

(
Lg‖ς‖ + μg

)
ds +

1 – ϑ

N(ϑ)
Lf ‖ς‖ + μf

1 – Kf
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≤ (Lgξ + μg)(T – a) +
1 – ϑ

N(ϑ)
Lf ξ + μf

1 – Kf

=
(

Lg(T – a) +
1 – ϑ

N(ϑ)
Lf

1 – Kf

)

ξ + μg(T – a) +
1 – ϑ

N(ϑ)
μf

1 – Kf
. (3.19)

Also, by (3.13),

∣
∣(T2υ)(r)

∣
∣ =

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1∣∣f

(
s,υ(s), ABC

D
ϑ
a+υ(s)

)∣
∣ds.

From (3.17), then for υ ∈ Bξ ,

∣
∣(T2υ)(r)

∣
∣ ≤ ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1 Lf ‖υ‖ + μf

1 – Kf
ds

≤ (T – a)ϑ

N(ϑ)�(ϑ)
Lf ξ + μf

1 – Kf

=
(T – a)ϑ

N(ϑ)�(ϑ)
μf

1 – Kf
+

(T – a)ϑ

N(ϑ)�(ϑ)
Lf

1 – Kf
ξ . (3.20)

Inequalities (3.19) and (3.20) give

∣
∣(T1ς )(r) + (T2υ)(r)

∣
∣ ≤ ∣

∣(T1ς )(r)
∣
∣ +

∣
∣(T2υ)(r)

∣
∣

≤
(

Lg(T – a) +
1 – ϑ

N(ϑ)
Lf

1 – Kf

)

ξ + μg(T – a) +
1 – ϑ

N(ϑ)
μf

1 – Kf
.

+
(T – a)ϑ

N(ϑ)�(ϑ)
μf

1 – Kf
+

(T – a)ϑ

N(ϑ)�(ϑ)
Lf

1 – Kf
ξ

=
(

Lg(T – a) +
(

1 – ϑ

N(ϑ)
+

(T – a)ϑ

N(ϑ)�(ϑ)

)
Lf

1 – Kf

)

ξ

+ μg(T – a) +
(

1 – ϑ

N(ϑ)
+

(T – a)ϑ

N(ϑ)�(ϑ)

)
μf

1 – Kf
.

Using (A3) and (3.15), for r ∈ Z and ς ,υ ∈ Bξ ,

‖T1ς + T2υ‖ ≤ ξ .

Thus, T1ς + T2υ ∈ Bξ , for all ς ,υ ∈ Bξ .
Step 2. We prove that T1 is a contraction.
From (A1), we have

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς∗(r), ABC

D
ϑ
a+ς∗(r)

)∣
∣ ≤ Lf

1 – Kf

∣
∣ς (r) – ς∗(r)

∣
∣. (3.21)

From (A2) and (3.21), for ς ,ς∗ ∈ Bξ ,

∣
∣(T1ς )(r) –

(
T1ς

∗)(r)
∣
∣ ≤

∫ T

a

∣
∣g

(
s,ς (s)

)
– g

(
s,ς∗(s)

)∣
∣ds

+
1 – ϑ

N(ϑ)
∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
r,ς∗(r), ABC

D
ϑ
a+ς∗(r)

)∣
∣
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≤ Lg

∫ T

a

∣
∣ς (s) – ς∗(s))

∣
∣ds +

1 – ϑ

N(ϑ)
Lf

1 – Kf

∣
∣ς (r) – ς∗(r)

∣
∣

≤ Lg(T – a)
∥
∥ς – ς∗∥∥ +

1 – ϑ

N(ϑ)
Lf

1 – Kf

∥
∥ς – ς∗∥∥

≤
(

Lg(T – a) +
1 – ϑ

N(ϑ)
Lf

1 – Kf

)
∥
∥ς – ς∗∥∥.

Since (A3) holds, (Lg(T – a) + 1–ϑ
N(ϑ)

Lf
1–Kf

) < 1. Hence, T1 is a contraction.
Step 3. T2 is compact and continuous.
The map T2 : Bξ → Bξ is continuous due to the continuity of f . Next, T2 is uniformly

bounded on Bξ by (3.20), because for any ς ∈ Bξ and r ∈ Z, we have

∣
∣(T2ς )(r)

∣
∣ ≤ (T – a)ϑ

N(ϑ)�(ϑ)(1 – Kf )
(μf + Lf ξ ).

This leads to a conclusion that T2 is uniformly bounded on Bξ .
Now, we show that T2(Bξ ) is equicontinuous. In order to establish that, let ς ∈ Bξ and

a ≤ r1 < r2 ≤ T . Then

∣
∣(T2ς )(r2) – (T2ς )(r1)

∣
∣

=
∣
∣
∣
∣

ϑ

N(ϑ)
1

�(ϑ)

∫ r2

a
(r2 – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

–
ϑ

N(ϑ)
1

�(ϑ)

∫ r1

a
(r1 – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

∣
∣
∣
∣

≤ ϑ

N(ϑ)
1

�(ϑ)

∫ r2

r1

(r2 – s)ϑ–1∣∣f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r1

a

∣
∣(r2 – s)ϑ–1 – (r1 – s)ϑ–1∣∣

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds.

Using (3.17), for ς ∈ Bξ ,

∣
∣(T2ς )(r2) – (T2ς )(r1)

∣
∣

≤ ϑ

N(ϑ)
1

�(ϑ)

∫ r2

r1

(r2 – s)ϑ–1
(

Lf |ς (r)| + μf

1 – Kf

)

ds

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r1

a

∣
∣(r2 – s)ϑ–1 – (r1 – s)ϑ–1∣∣

(
Lf ξ + μf

1 – Kf

)

ds

=
1

N(ϑ)�(ϑ)
Lf ξ + μf

1 – Kf

[
2(r2 – r1)ϑ + (r1 – a)ϑ – (r2 – a)ϑ )

]

≤ 2(Lf ξ + μf )
N(ϑ)�(ϑ)(1 – Kf )

(r2 – r1)ϑ .

Observe that |(T2ς )(r2) – (T2ς )(r1)| → 0 as t2 → t1. In light of the former steps, together
with Arzela–Ascoli theorem, we derive that (T2Bξ ) is relatively compact, and hence T2 is
completely continuous. So, Theorem 2.2 shows that (1.1) has at least one solution. �
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3.3 Existence and uniqueness theorems for (1.2)
As a result of Theorem 3.2, we have the following theorem:

Theorem 3.6 Let 1 < ϑ ≤ 2, and let f : Z×R×R → R and g : Z×R → R be continuous
with f (a,ς (a), ABC

D
ϑ
a+ς (a)) = 0. If ς ∈ C(Z,R), then ς satisfies (1.2) if and only if ς fulfills

ς (r) =
(r – a)
(T – a)

∫ T

a
g
(
s,ς (s)

)
ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

∫ T

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
ϑ – 1

N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds.

Theorem 3.7 Suppose (A1) and (A2) are satisfied. If

Lg(T – a) < 1, (3.22)

then the problem (1.2) has a unique solution.

Proof In view of Theorem 3.6, we consider T∗ : D →D defined by

(
T

∗ς
)
(r) =

(r – a)
(T – a)

∫ T

a
g
(
s,ς (s)

)
ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

∫ T

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
ϑ – 1

N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds,

From the continuity of g and f , T∗ is well defined, that is, T∗(D) ⊆ D.
Now, let ς ,ς ∈D and r ∈ Z. Then

∣
∣
(
T

∗ς
)
(r) –

(
T

∗ς
)
(r)

∣
∣

≤ (r – a)
(T – a)

∫ T

a

∣
∣g

(
s,ς (s)

)
– g

(
s,ς (s)

)∣
∣ds

+
ϑ – 2

N(ϑ – 1)
(r – a)
(T – a)

∫ T

a

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

×
∫ T

a
(T – s)ϑ–1∣∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds
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+
ϑ – 1

N(ϑ – 1)�(ϑ)

×
∫ r

a
(r – s)ϑ–1∣∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds.

Using (A1) and same arguments used to get (3.11), we obtain

∣
∣f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)
– f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ ≤ Lf

1 – Kf

∣
∣ς (r) – ς (r)

∣
∣. (3.23)

By (A2) and (3.23), for r ∈ Z,

∣
∣
(
T

∗ς
)
(r) –

(
T

∗ς
)
(r)

∣
∣

≤ (r – a)
(T – a)

Lg

∫ T

a

∣
∣ς (s) – ς (s)

∣
∣ds

+
ϑ – 2

N(ϑ – 1)
(r – a)
(T – a)

Lf

1 – Kf

∫ T

a

∣
∣ς (s) – ς (s)

∣
∣ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

Lf

1 – Kf

∫ T

a
(T – s)ϑ–1∣∣ς (s) – ς (s)

∣
∣ds

+
2 – ϑ

N(ϑ – 1)
Lf

1 – Kf

∫ r

a

∣
∣ς (s) – ς (s)

∣
∣ds

+
ϑ – 1

N(ϑ – 1)�(ϑ)
Lf

1 – Kf

∫ r

a
(r – s)ϑ–1∣∣ς (s) – ς (s)

∣
∣ds

≤ Lg(T – a)‖ς – ς‖ +
ϑ – 2

N(ϑ – 1)
Lf (T – a)

1 – Kf
‖ς – ς‖

+
1 – ϑ

N(ϑ – 1)�(ϑ + 1)
Lf (T – a)ϑ

1 – Kf
‖ς – ς‖ +

2 – ϑ

N(ϑ – 1)
Lf (T – a)

1 – Kf
‖ς – ς‖

+
ϑ – 1

N(ϑ – 1)�(ϑ + 1)
Lf (T – a)ϑ

1 – Kf
‖ς – ς‖

= Lg(T – a)‖ς – ς‖.

Condition (3.22) shows that T∗ is a contraction. Hence, by Theorem 2.1, T∗ has a unique
fixed point. �

Theorem 3.8 Suppose that (A1) and (A2) are satisfied. If

(

Lg(T – a) +
(

(ϑ – 2)(T – a)
N(ϑ – 1)

+
(1 – ϑ)(T – a)ϑ

N(ϑ – 1)�(ϑ + 1)

)
Lf

1 – Kf

)

< 1, (3.24)

then there exists at least one solution of the problem (1.2).

Proof Choose (T∗ς )(r) = (T∗
1ς )(r) + (T∗

2ς )(r) where

(
T

∗
1ς

)
(r) =

(r – a)
(T – a)

∫ T

a
g
(
s,ς (s)

)
ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

∫ T

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds (3.25)
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and

(
T

∗
2ς

)
(r) =

ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds. (3.26)

Let Bξ be defined by (3.14) with the radius

ξ ≥ μg(T – a)
1 – Lg(T – a)

, (3.27)

where μg is as in Theorem 3.5. The proof will be complete in several steps:
Claim 1. T∗

1ς + T
∗
2υ ∈ Bξ , for all ς ,υ ∈ Bξ .

By (3.25),

∣
∣
(
T

∗
1ς

)
(r)

∣
∣ ≤ (r – a)

(T – a)

∫ T

a

∣
∣g

(
s,ς (s)

)∣
∣ds

+
ϑ – 2

N(ϑ – 1)
(r – a)
(T – a)

∫ T

a

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

∫ T

a
(T – s)ϑ–1∣∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds.

From (A1), (A2), and for ς ∈ Bξ , we get |f (r,ς (r), ABC
D

ϑ
a+ς (r))| ≤ Lf ξ+μf

1–Kf
(where μf is as in

Theorem 3.5) and |g(s,ς (s))| ≤ (Lgξ + μg). Hence,

∣
∣
(
T

∗
1ς

)
(r)

∣
∣ ≤ (r – a)(Lgξ + μg) +

(ϑ – 2)(r – a)
N(ϑ – 1)

(Lf ξ + μf )
1 – Kf

+
(1 – ϑ)(r – a)

N(ϑ – 1)�(ϑ + 1)
(T – a)ϑ–1(Lf ξ + μf )

1 – Kf

≤
(

Lg(r – a) +
(

(ϑ – 2)
N(ϑ – 1)

+
(1 – ϑ)

N(ϑ – 1)�(ϑ + 1)

)
Lf (r – a)

1 – Kf

)

ξ

+ μg(r – a) +
(

(ϑ – 2)
N(ϑ – 1)

+
(1 – ϑ)

N(ϑ – 1)�(ϑ + 1)

)
μf (r – a)

1 – Kf
. (3.28)

Also, by (3.26),

∣
∣
(
T

∗
2υ

)
(r)

∣
∣ ≤ ϑ – 1

N(ϑ – 1)�(ϑ)

∫ r

a
(r – s)ϑ–1∣∣f

(
r,υ(s), ABC

D
ϑ
a+υ(s)

)∣
∣ds

+
2 – ϑ

N(ϑ – 1)

∫ r

a

∣
∣f

(
r,υ(s), ABC

D
ϑ
a+υ(s)

)∣
∣ds.

For υ ∈ Bξ ,

∣
∣
(
T

∗
2υ

)
(r)

∣
∣ ≤ ϑ – 1

N(ϑ – 1)�(ϑ)
Lf ξ + μf

1 – Kf

∫ r

a
(r – s)ϑ–1 ds

+
2 – ϑ

N(ϑ – 1)
Lf ξ + μf

1 – Kf

∫ r

a
ds
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=
(ϑ – 1)(r – a)ϑ

N(ϑ – 1)�(ϑ + 1)
Lf ξ + μf

1 – Kf
+

(2 – ϑ)(r – a)
N(ϑ – 1)

Lf ξ + μf

1 – Kf

=
(

(ϑ – 1)(r – a)ϑ

N(ϑ – 1)�(ϑ + 1)
+

(2 – ϑ)(r – a)
N(ϑ – 1)

)
μf

1 – Kf

+
(

(ϑ – 1)(r – a)ϑ

N(ϑ – 1)�(ϑ + 1)
+

(2 – ϑ)(r – a)
N(ϑ – 1)

)
Lf

1 – Kf
ξ . (3.29)

From (3.28), (3.29), and for r ∈ Z, we get

∥
∥T∗

1ς + T
∗
2υ

∥
∥ ≤ ∥

∥T∗
1ς

∥
∥ +

∥
∥T∗

2υ
∥
∥

= max
r∈Z

∣
∣
(
T

∗
1ς

)
(r)

∣
∣ + max

r∈Z
∣
∣
(
T

∗
2υ

)
(r)

∣
∣

≤
(

Lg(T – a) +
(

(ϑ – 2)(T – a)
N(ϑ – 1)

+
(1 – ϑ)(T – a)

N(ϑ – 1)�(ϑ + 1)

)
Lf

1 – Kf

)

ξ

+ μg(T – a) +
(

(ϑ – 2)(T – a)
N(ϑ – 1)

+
(1 – ϑ)(T – a)

N(ϑ – 1)�(ϑ + 1)

)
μf

1 – Kf

+
(

(ϑ – 1)(T – a)ϑ

N(ϑ – 1)�(ϑ + 1)
+

(2 – ϑ)(T – a)
N(ϑ – 1)

)
μf

1 – Kf

+
(

(ϑ – 1)(T – a)ϑ

N(ϑ – 1)�(ϑ + 1)
+

(2 – ϑ)(T – a)
N(ϑ – 1)

)
Lf

1 – Kf
ξ

< Lg(T – a)ξ + μg(T – a).

Here we used fact that (T – a) < (T – a)ϑ for all 1 < ϑ ≤ 2. By (3.24), we conclude that
Lg(T – a) < 1, it follows from (3.27) that

∥
∥T∗

1ς + T
∗
2υ

∥
∥ ≤ ξ .

Thus, T∗
1ς + T

∗
2υ ∈ Bξ , for all ς ,υ ∈ Bξ .

Claim 2. T∗
1 is a contraction.

From (A1) and (A2). Then for each ς ,ς∗ ∈ Bξ and r ∈ Z,

∣
∣
(
T

∗
1ς

)
(r) –

(
T

∗
1ς

∗)(r)
∣
∣

≤ (r – a)
(T – a)

∫ T

a

∣
∣g

(
s,ς (s)

)
– g

(
s,ς∗(s)

)∣
∣ds

+
ϑ – 2

N(ϑ – 1)
(r – a)
(T – a)

∫ T

a

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς∗(s), ABC

D
ϑ
a+ς∗(s)

)∣
∣ds

+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

×
∫ T

a
(T – s)ϑ–1∣∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
– f

(
s,ς∗(s), ABC

D
ϑ
a+ς∗(s)

)∣
∣ds

≤ Lg(r – a)
(T – a)

∫ T

a

∣
∣ς (s) – ς∗(s))

∣
∣ds +

ϑ – 2
N(ϑ – 1)

(r – a)
(T – a)

Lf

1 – Kf

∫ T

a

∣
∣ς (s) – ς∗(s)

∣
∣ds
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+
1 – ϑ

N(ϑ – 1)�(ϑ)
(r – a)
(T – a)

Lf

1 – Kf

∫ T

a
(T – s)ϑ–1∣∣ς (s) – ς∗(s)

∣
∣ds

≤
(

Lg(T – a) +
(

(ϑ – 2)(T – a)
N(ϑ – 1)

+
(1 – ϑ)(T – a)ϑ

N(ϑ – 1)�(ϑ + 1)

)
Lf

1 – Kf

)
∥
∥ς – ς∗∥∥.

Condition (3.24) shows that T∗
1 is a contraction.

Claim 3. T∗
2 is compact and continuous.

The map T
∗
2 : Bξ → Bξ is continuous due to the continuity of f . Next, let ς ∈ Bξ and

r ∈ Z. Then by using (3.29), we have

∥
∥T∗

2ς
∥
∥ ≤ (μf + Lf ξ )

1 – Kf

(
(ϑ – 1)(T – a)ϑ

N(ϑ – 1)�(ϑ + 1)
+

(2 – ϑ)(T – a)
N(ϑ – 1)

)

.

This leads to the conclusion that T∗
2 is uniformly bounded on Bξ .

Now, we show that T∗
2(Bξ ) is equicontinuous. Let ς ∈ Bξ and a ≤ r1 < r2 ≤ T . Then

∣
∣
(
T

∗
2ς

)
(r2) –

(
T

∗
2ς

)
(r1)

∣
∣

≤
∣
∣
∣
∣

ϑ – 1
N(ϑ – 1)�(ϑ)

[∫ r2

a
(r2 – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

–
∫ r1

a
(r1 – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

]∣
∣
∣
∣

+
∣
∣
∣
∣

2 – ϑ

N(ϑ – 1)

[∫ r2

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds –

∫ r1

a
f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds

]∣
∣
∣
∣

≤ ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r2

r1

(r2 – s)ϑ–1∣∣f
(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
ϑ – 1

N(ϑ – 1)�(ϑ)

∫ r1

a

∣
∣(r2 – s)ϑ–1 – (r1 – s)ϑ–1∣∣

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds

+
2 – ϑ

N(ϑ – 1)

∫ r2

r1

∣
∣f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)∣
∣ds.

Since |f (s,ς (s), ABC
D

ϑ
a+ς (s))| ≤ Lf ξ+μf

1–Kf
, for ς ∈ Bξ , we have

∣
∣
(
T

∗
2ς

)
(r2) –

(
T

∗
2ς

)
(r1)

∣
∣

≤ ϑ – 1
N(ϑ – 1)�(ϑ)

∫ r2

r1

(r2 – s)ϑ–1
(

Lf ξ + μf

1 – Kf

)

ds

+
ϑ – 1

N(ϑ – 1)�(ϑ)

∫ r1

a

∣
∣(r2 – s)ϑ–1 – (r1 – s)ϑ–1∣∣

(
Lf ξ + μf

1 – Kf

)

ds

+
2 – ϑ

N(ϑ – 1)

∫ r2

r1

(
Lf ξ + μf

1 – Kf

)

ds

=
ϑ – 1

N(ϑ – 1)�(ϑ + 1)
Lf ξ + μf

1 – Kf

[
2(r2 – r1)ϑ + (r1 – a)ϑ – (r2 – a)ϑ )

]

+
2 – ϑ

N(ϑ – 1)

(
Lf ξ + μf

1 – Kf

)

(r2 – r1)

≤
(

2(ϑ – 1)
N(ϑ – 1)�(ϑ + 1)

(r2 – r1)ϑ +
2 – ϑ

N(ϑ – 1)
(r2 – r1)

)
Lf ξ + μf

1 – Kf
.
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Observe that |(T∗
2ς )(r2) – (T∗

2ς )(r1)| → 0 as t2 → t1. In view of the preceding claims,
together with Arzela–Ascoli theorem, we infer that (T∗

2Bξ ) is relatively compact. Hence,
Claim 3 holds. So, Theorem 2.2 shows that (1.2) has at least one solution. �

4 Examples
Example 4.1 In this example, we justify the validity of Theorem 3.4. For ϑ ∈ (0, 1], we
consider the following ABC fractional problem:

⎧
⎨

⎩

ABC
D

ϑ
0+ς (r) = r2

9er–1 ( |ς (r)|
1+|ς (r)| + |ABC

D
ϑ
0+ ς (r)|

1+|ABCD
ϑ
0+ ς (r)| ), r ∈ [0, 1],

ς (0) – ς ′(0) =
∫ T

0
|ς (s)|

10+|ς (s)| ds.
(4.1)

Set f (r,ς (r),ς (r)) = r2

9er–1 ( ς (r)
1+ς (r) + ς (r)

1+ς(r) ) and g(r,ς (r)) = ς (r)
10+ς (r) , for r ∈ [0, 1], ς ,ς ∈R.

Clearly, f (0,ς (0),ς (0)) = f ′(0,ς (0),ς (0)) = 0. Let r ∈ [0, 1] and ς ,ς ,υ,υ ∈R. Then

∣
∣f (r,ς ,ς ) – f (r,υ,υ)

∣
∣ ≤ r2

9er–1

(∣
∣
∣
∣

ς

1 + ς
–

ς

1 + ς

∣
∣
∣
∣ +

∣
∣
∣
∣

υ

1 + υ
–

υ

1 + υ

∣
∣
∣
∣

)

≤ 1
9
|ς – ς | +

1
9
|υ – υ|

and

∣
∣g(r,ς ) – g(r,υ)

∣
∣ =

∣
∣
∣
∣

ς

10 + ς
–

υ

10 + υ

∣
∣
∣
∣ ≤ 10|ς – υ|

(10 + ς )(10 + υ)
≤ 1

10
|ς – υ|.

Therefore, the hypotheses (A1) and (A2) hold with Lf = Kf = 1
9 and Lg = 1

10 . We shall ex-
amine that the condition (A3) holds too, with ϑ = 1

2 and N(ϑ) = 1. Indeed,

[

Lg(T – a) +
(

1 – ϑ

N(ϑ)
+

(T – a)ϑ

N(ϑ)�(ϑ)

)
Lf

1 – Kf

]

≈ 0.23 < 1.

Thus by Theorem 3.4, the problem (4.1) has a unique solution on [0, 1].

Example 4.2 The following example validates Theorem 3.7. For ϑ ∈ (1, 2], we consider the
following ABC fractional problem:

⎧
⎨

⎩

ABC
D

ϑ
1+ς (r) = r–1

9+er–1 ( |ς (r)|
1+|ς (r)| + |ABC

D
ϑ
0+ ς (r)|

1+|ABCD
ϑ
0+ ς (r)| ), r ∈ [1, 2],

ς (1) – ς (2) =
∫ 2

1
|ς (s)|

100+|ς (s)| ds.
(4.2)

Set f (r,ς (r),ς (r)) = r–1
9+er–1 ( ς (r)

1+ς (r) + ς (r)
1+ς(r) ) and g(r,ς (r)) = ς (r)

100+ς (r) , for r ∈ [1, 2], ς ,ς ∈R.

Clearly, f (1,ς (1),ς (1)) = 0. Let r ∈ [1, 2] and ς ,ς ,υ,υ ∈ R. Then

∣
∣f (r,ς ,ς ) – f (r,υ,υ)

∣
∣ ≤ 1

9
|ς – ς | +

1
9
|υ – υ|

and

∣
∣g(r,ς ) – g(r,υ)

∣
∣ ≤ 1

100
|ς – υ|.
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Therefore, the hypotheses (A1) and (A2) hold with Lf = Kf = 1
9 and Lg = 1

100 . Also, for
1 < ϑ ≤ 2, a = 1, T = 2, and N(ϑ) = 1, the condition (A3) holds, that is, Lg(T – a) = 1

100 < 1.
Thus by Theorem 3.7, the problem (4.2) has a unique solution on [1, 2].

Remark 4.1 In Theorems 3.3, 3.4, and 3.5, if f ′(a,ς (a), ABC
D

ϑ
a+ς (a)) �= 0, then the formula

of solution of the problem (1.1) becomes

ς (r) =
∫ T

a
g
(
s,ς (s)

)
ds +

1 – ϑ

N(ϑ)
[
f ′(a,ς (a), ABC

D
ϑ
a+ς (a)

)
+ f

(
r,ς (r), ABC

D
ϑ
a+ς (r)

)]

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1f

(
s,ς (s), ABC

D
ϑ
a+ς (s)

)
ds,

for r ∈ Z. Accordingly, the analysis of the results remains valid with the addition of the
Lipschitz-type condition on f ′, that is,

(A4) f ′ : Z×R×R→R is continuous and there exist L∗ > 0 and 0 < K∗ < 1 such that

∣
∣f ′(r, u, u) – f ′(r, v, v)

∣
∣ ≤ L∗|u – v| + K∗|u – v|, r ∈ Z and u, v, u, v ∈R.

5 Conclusions
The theory of fractional operators containing nonsingular kernels is novel and of con-
siderable recent interest, thus there is a need to study the qualitative properties of
differential equations involving such operators. In this work, we have considered two
classes of boundary value problems for fractional implicit differential equations with non-
linear integral conditions in the framework of Atangana–Baleanu–Caputo derivatives.
Krasnoselskii and Banach fixed point theorems were applied to establish the existence
and uniqueness theorems for the problems (1.1) and (1.2). For problem (1.1), we real-
ized that one must always have the necessary conditions f (a,ς (a), ABC

D
ϑ
a+ς (a)) = 0 and

f ′(a,ς (a), ABC
D

ϑ
a+ς (a)) = 0 to guarantee a unique solution, whereas for problem (1.2) we

needed f (a,ς (a), ABC
D

ϑ
a+ς (a)) = 0 to confirm the initial data for the solution. To avoid the

condition f ′(a,ς (a), ABC
D

ϑ
a+ς (a)) = 0 in Theorem 3.3, one can use condition (A4) men-

tioned in Remark 4.1 to obtain the same results. The proposed problems are more gen-
eral, also the results obtained generalize the recent studies and offer an extension of the
development of FDEs that involve this new operator. Moreover, the analysis of the results
was limited to the minimum assumptions. The problems scrutinized include some special
cases, in other words, they could be reduced to the corresponding problems that contain
Caputo–Fabrizio operator. We are certain that the communicated results here are rather
interesting, and will have a positive effect on the development of more applications in
engineering and sciences.
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