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Abstract
In this research, we discuss the influence of an infectious disease in the evolution of
ecological species. A computational predator-prey model of fractional order is
considered. Also, we assume that there is a non-fatal infectious disease developed in
the prey population. Indeed, it is considered that the predators have a cooperative
hunting. This situation occurs when a pair or group of animals coordinate their
activities as part of their hunting behavior in order to improve their chances of
making a kill and feeding. In this model, we then shift the role of standard derivatives
to fractional-order derivatives to take advantage of the valuable benefits of this class
of derivatives. Moreover, the stability of equilibrium points is studied. The influence of
this infection measured by the transmission rate on the evolution of predator-prey
interaction is determined. Many scenarios are obtained, which implies the richness of
the suggested model and the importance of this study. The graphical representation
of the mathematical results is provided through a precise numerical scheme. This
technique enables us to approximate other related models including
fractional-derivative operators with high accuracy and efficiency.

Keywords: Predator-prey model; Infected prey; Hunting cooperation; Fractional
calculus

1 Highlights
• A fractional-order predator-prey system with prey infection is investigated.
• The equilibrium points of the system are determined and the necessary conditions for

their existence and stability are analyzed.
• An efficient numerical method is employed to determine system behaviors.
• Several graphical representations are presented for the explanation of the

mathematical results.

2 Introduction
Infectious diseases arise when contaminated foreign bodies enter the human body. These
foreign bodies are germs, viruses, fungi, or parasites. These bodies are transmitted
through infection from another human being, animals, contaminated food, or from expo-
sure to any of the environmental factors that are contaminated with any of these bodies.
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These infections have many symptoms on the body, including high body temperature and
pain, in addition to other symptoms that differ according to the site of infection, type, and
severity of the infection. It is possible to have an infection that causes mild symptoms, and
therefore it does not need to be treated. On the other hand, there are serious cases that
may cause death. In some cases, they may affect the population balance of many species
in the environment. In a worse scenario, some species may even become extinct due to
some deadly diseases developed in some highly sensible populations. Mathematical mod-
els for predicting the evolution of species have been used in an increasing way in the last
few decades. It started from Lotka and Volterra models [27, 37], where their usefulness in
avoiding many worst scenarios for numerous species as extinction was proved. Nowadays
scientists use this tool for revealing the outcome of a certain strategy taken by some gov-
ernments in dealing with some species, which can be considered as an important tool for
conserving all the species existing nowadays.

The ecological species are most sensitive to any infection that appears, which can in-
fluence the evolution of some species, as an epitome. We consider a predator-prey in-
teraction. This infection can affect the strength of some predators and the efficiency of
hunting, which puts some predators in danger of extinction. In the literature, many works
have investigated the predator-prey interaction in the presence of infectious diseases. For
instance, please refer to the papers [9, 25, 26, 41]. On the other hand, there are many strate-
gies that the predators can consider for achieving a successful hunt. One of the most effec-
tive strategies is the predator hunting cooperation, where many predators gather to hunt
a single prey. This method is very useful in reducing the hunting fail rate. Many hunters
behave in this way. For example, lions, hyenas, and wild dogs are known for the high-
efficiency rate in hunting. The mathematical modeling of this specific behavior of predator
was modeled for the first time in [22], where a simple model was used for describing such
a cooperation. Until now, there have been a few works that study such a behavior in the
predator-prey interaction, we mention as an example the works of [8, 10, 29–33, 38, 39].
Hence, it is worth investigating the influence of an infectious disease in the predator-prey
interaction in the presence of predator hunting cooperation, which is going to be the prin-
cipal subject of this research. We consider a three-species model that considers an infec-
tion developed in a prey population (which means that the prey population is divided into
two species: the susceptible prey and the infected prey), and because of the opportunism
of the predator, we can consider that the predator hunts the two types of prey. Based on
the obtained results in [40], it is obtained that the time-fractional derivative has extensive
applications in describing many real-life situations, which is known by memory effect of a
dynamical system; memory rate is called for the order of the derivative, and the memory
function for the kernel of the factional derivative. The time-fractional derivative is used
for modeling many real-world phenomena, we mention as an example [20, 23, 24]. So its
role is indispensable in the mathematical modeling of some ecological-epidemiological be-
haviors. To get more models of prey and hunter-modeled under the influence of a disease,
we encourage interested readers to refer to the relevant literature in [7, 9, 10, 13–21, 23–
25, 29, 31, 34–36, 39, 41]. Some other general problems can be found in [1–6, 28].
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Following the above-mentioned trends, we consider the following eco-epidemiological
model:

⎧
⎪⎪⎨

⎪⎪⎩

DαS(t) = r(S + I) – (λ + aP)PS – δSI – μS,

DαI(t) = δSI – (λ + aP)PI – μI,

DαP(t) = e(λ + aP)P(S + I) – mP,

(1)

where Dα is the Caputo derivative with respect to time given by

Dαω(t) =
1

�(n – ν)

∫ t

0
(t – θ )m–ν–1ω(k)(θ ) dθ , n – 1 < α ≤ n, n ∈N,

where S(t), I(t), P(t) are the densities of susceptible prey, infected prey, and predator pop-
ulations, respectively. In this model, r is the reproduction number of the prey popula-
tion, and it is assumed that this infection cannot be transmitted vertically, in other words,
mother–child, and the predator cannot be infected by this infection after a direct contact
(predation) with infected prey. We use e to denote the conversion rate of prey biomass
(infected or susceptible) into predator biomass. Moreover, μ is the death rate of the prey
population, and m denotes the natural mortality of the predator population. The transmis-
sion rate of the prey population (infection rate) is described by δ. The functional (λ+aP)PS
(resp. (λ + aP)PI) is the hunting cooperation functional [22]. Our main motivation in this
article is to study the influence of infection on the evolution of ecological species. Further,
we study the influence of δ on the evolution of species. Moreover, the influence of the hunt-
ing cooperation functional on the spread of this infectious disease is studied. Accordingly,
the general structure of this article is as follows. In the next section, we establish some use-
ful tools for dealing with the fractional-order derivative operator. The equilibrium points
of the system are calculated in Sect. 3. Section 4 is devoted to studying the stability of
these equilibrium points. A numerical scheme is used in the fifth section for plotting the
solution of model (1), where some graphical representations are used for verifying the
expected mathematical results. Finally, the concluding section ends the paper.

3 Equilibria of the model
In this section, the equilibrium points of system (1) along with their epidemiological rel-
evancies are investigated. The equilibria of system (1) are the solution to the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

0 = r(S + I) – (λ + aP)PS – δSI – μS,

0 = δSI – (λ + aP)PI – μI,

0 = e(λ + aP)P(S + I) – mP.

(2)

Obviously, (S, I, P) = (0, 0, 0) is an equilibrium point of model (1) which models the extinc-
tion of the three species. Now we consider other particular cases.

Case 1 We seek equilibriums that have a zero density of predators (predator-free equi-
libriums), which are written as E1 = (S1, I1, 0), which represents the extinction of the
predator population. By replacing this result in the second equation of (2), we obtain
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S1 = μ

δ
. By replacing these results in the first equation of (2), we get

rS1 + rI1 – δS1I1 – μS1 = 0.

Hence,

I1 =
δS1 – r

S1(r – μ)
,

which exists if the following assumption holds:

(H1) (δS1 – r > 0 and r > μ) or (δS1 – r < 0 and r < μ).

Case 2 We look for equilibrium without infection (infection-free equilibrium), which is
elaborated by the presence of the susceptible prey and predator population only. This
equilibrium is expressed as E2 = (S2, 0, P2). Using the fact that I2 = 0, system (2) be-
comes

⎧
⎨

⎩

0 = rS – (λ + aP)PS – μS,

0 = e(λ + aP)PS – mP.
(3)

Multiplying the first equation of (3) by e and adding it to the second equation, we
obtain

e(r – μ)S2 – mP2 = 0,

hence,

P2 =
e
m

S2(r – μ) (4)

with r > μ. Replacing (4) in the second equation of system (3), we get

ae2

m
S2

2(r – μ) + eλS2 – m = 0. (5)

Obviously, Eq. (5) has a unique positive solution

S2 =
–emλ + m

√
e2λ2 + 4ae2(r – μ)
2ae2 .

The infection-free equilibrium exists if and only if the following condition holds:

(H2) r > μ.

Case 3 In this case, we look for the positive equilibrium which models the existence of
the three species. This equilibrium is indicated by E∗ = (S∗, I∗, P∗). Multiplying the
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first and second equations of system (2) by e, then adding them to the third equation,
we obtain

r(S∗ + I∗) – μS∗ – μI∗ – mP∗ = 0.

So, it gives

P∗ =
r – μ

m
(S∗ + I∗), (6)

where r > μ. Replacing (6) in the third equation of system (2), we obtain the following
equation:

e(r – μ)
m

(

λ +
a(r – μ)

m
(S∗ + I∗)

)

– m = 0.

By some straightforward calculations, we obtain

S∗ + I∗ =
m(m2 – λ(er – μ))

ea(r – μ)2 . (7)

Replacing (7) in (6), one gets

P∗ =
m2 – λ(er – μ)

ea(r – μ)
. (8)

Replacing P∗ in the second equation of system (2), one achieves

S∗ =
1
δ

(λ + aP∗)P∗ + μ. (9)

Using the explicit expression of S∗ obtained in (9) along with (7) leads to

I∗ =
m

ea(r – μ)2

(
m2 – λ(er – μ)

)
– S∗. (10)

For the epidemiological relevance of this equilibrium, we must have S∗, I∗, P∗ > 0.
By taking a look at (8) and (9), we can guarantee that r > μ and m2 + λμ > erλ are
necessary and sufficient conditions for having S∗, P∗ > 0. Now, we need an additional
condition for guaranteeing the positivity of I∗.

In fact, using (6) we have

mP∗ = (r – μ)(S∗ + I∗),

hence

I∗ =
mP∗
r – μ

–
P∗
δ

(λ + aP∗) + μ,

then I∗ > 0 if and only if

δ > δ∗ =
mP∗ + μ(r – μ)

(r – μ)(λ + aP∗)P∗
.
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Then we can summarize all the necessary existing conditions of the equilibrium point
as follows:

(H3) r > μ, m2 + λμ > erλ and δ > δ∗.

4 The asymptotic behavior of equilibria
Our main interest in this section is to determine the local stability of the equilibria calcu-
lated in the previous section. For that purpose we calculate the Jacobian matrix of system
(1) given by

J(S,I,P) =

⎛

⎜
⎝

r – (λ + aP)P – δI – μ r – δS –(λ + 2aP)S
δI δS – (λ + aP)P – μ –(λ + 2aP)I

e(λ + aP)P e(λ + aP)P e(λ + 2aP)(S + I) – m

⎞

⎟
⎠ . (11)

At the origin E0 = (0, 0, 0), the Jacobian matrix (11) becomes

J(0,0,0) =

⎛

⎜
⎝

r – μ r 0
0 –μ 0
0 0 –m

⎞

⎟
⎠ . (12)

Obviously, the Jacobian matrix (12) has the following eigenvalues: ϑ1 = r – μ < 0, ϑ2 = –μ,
ϑ3 = –m. Note that ϑ2, ϑ3 verify the condition | arg(ϑi)| > απ

2 . Hence the eigenvalue ϑ1

dominates the stability of the extinction equilibrium E0, hence we deduce the following
results.

Lemma 1 If r < μ, then the equilibrium E0 is locally stable and unstable if r > μ.

On the other hand, for the equilibrium point E1 = (S1, I1, 0), the Jacobian matrix (11) is
calculated as

J(S1,I1,0) =

⎛

⎜
⎝

r – δI1 – μ r – δS1 –λS1

δI1 0 –λI1

0 0 eλ(S1 + I1) – m

⎞

⎟
⎠ . (13)

It is easy to see that ϑ3 = eλ(S1 + I1) – m is an eigenvalue of the Jacobian matrix (13), hence
the positivity of this quantity is expressed as

ϑ3 =

⎧
⎨

⎩

> if λ > λ2 = m
e(S1+I1) ,

< if λ < λ2.

Note that under the condition λ > λ2 we have the instability of the equilibrium E1. Now,
we presume that λ < λ2, which means that ϑ3 < 0. This condition means that the other two
eigenvalues of the Jacobian matrix (13) determine the stability (resp. instability) of the
equilibrium E1. The remaining eigenvalues are the eigenvalues of the following matrix:

J1 =

(
r – δI1 – μ –λS1

δI1 0

)

. (14)
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Obviously, the trace and the determinant of matrix (14) are

Tr1 = r – μ – δI1,

Det1 = –δI1(r – μ) < 0.

Using the fact that Det1 < 1, we can deduce that one of the eigenvalues of matrix (14)
verifies | arg(ϑ)| < απ

2 . Hence, the equilibrium E2 = (S2, I2, 0) is always unstable. We resume
the obtained results in the following lemma.

Lemma 2 The equilibrium E2 = (S2, I2, 0) is unstable whenever it exists.

Now, we focus on the stability of the infection-free equilibrium (S2, 0, P2). At this equi-
librium, the Jacobian matrix (11) becomes

J(S2,0,P2) =

⎛

⎜
⎝

r – (λ + aP2)P2 – μ r – δS2 –(λ + 2aP2)S2

0 δS2 – (λ + aP2)P2 – μ 0
e(λ + aP2)P2 e(λ + aP2)P2 e(λ + 2aP2)S2 – m

⎞

⎟
⎠ . (15)

We remark that ϑ2 = δS2 – (λ + aP2)P2 – μ, the positivity of ϑ2 is given by

⎧
⎨

⎩

ϑ > 0 if and only if δ > δ2 = (λ+aP2)P2+μ

S2
,

ϑ ≤ 0 if and only if δ ≤ δ2.

The other two eigenvalues are the eigenvalues of the following matrix:

J2 =

(
0 –(λ + 2aP2)S2

e(λ + aP2)P2 eaP2S2 – m

)

. (16)

The trace and the determinant of matrix (16) are

Tr2 = eaP2S2 > 0,

Det2 = e(λ + aP2)P2S2(λ + 2aP2) > 0.

Note that in the case of the integer differential equation we deduce that this equilibrium
is always unstable. But in the context of fractional differential calculus, this equilibrium
point can be stable. In this regards, we presume that the eigenvalues of matrix (16) are
written in the form ϑ = P + iQ, which verifies

tan2[arg(ϑ)
]

=
Q2

P2 =
4(λ + aP2)(λ + 2aP2)

eaP2S2
– 1.

Hence we can deduce that the eigenvalue ϑ verifies the condition | arg(ϑ)| < απ
2 if the fol-

lowing condition holds:

4(λ + aP2)(λ + 2aP2) > eaP2S2

(

1 + tan2
(

απ

2

))

.

Now we can resume the stability conditions of the equilibrium E2 in the following lemma.
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Lemma 3 Assume that r > μ, then the disease-free equilibrium E2 is locally stable if

δ ≤ δ2 and 4(λ + aP2)(λ + 2aP2) > eaP2S2

(

1 + tan2
(

απ

2

))

,

else it is unstable.

Now, let us study the stability of the interior equilibrium point. At this point, the Jacobin
matrix is calculated as follows:

J(S∗ ,I∗ ,P∗) =

⎛

⎜
⎝

– rI∗
S∗ r – δS∗ –(λ + 2aP∗)S∗

δI∗ 0 –(λ + 2aP∗)I∗
e(λ + aP∗)P∗ e(λ + aP∗)P∗ 0

⎞

⎟
⎠ . (17)

By solving the following equation, the eigenvalues of the Jacobi matrix (17) can be deter-
mined as follows:

� = ϑ3 + �2ϑ
2 + �1ϑ + �0,

where

�2 =
rI∗
S∗

,

�1 = eP∗(δS∗ – μ)(λ + aP∗) + δI∗(δS∗ – μ) + eS∗P∗(λ + aP∗)(λ + 2aP∗),

�0 = eP∗I∗(λ + aP∗)
[

rI∗
S∗

(δS∗ – μ) – (δS∗ – r)2 + δS∗I∗(λ + 2aP∗)
]

,

we let

G = 18�2�1�0 + (�2�1)2 – 4�0�
3
2 – 4�3

1 – 27�3
0 .

Using the Routh–Hurwitz for fractional calculus, we arrive at the stability conditions of
the positive equilibrium, which is resumed in the following theorem.

Theorem 1 We guarantee the stability of the positive equilibrium if one of the following
assumptions holds:

(i) G > 0, �2 > 0, �0 > 0, �2�1 > �0.
(ii) G < 0, �2 ≥ 0, �1 ≥ 0, �0 ≥ 0, and α < 2

3 .

5 A numerical scheme for system (1)
We consider the following fractional model:

DαW (t) = H
(
t, W (t)

)
. (18)

Applying the fundamental theorem of fractional calculus on (1), we arrive at

W (t) – W (0) =
1

�(α)

∫ t

0
H

(
ω, W (ω)

)
(t – ω)α–1 dω. (19)
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Putting t = tn = n� in (19), yields

W (tn) = W (0) +
1

�(α)

n–1∑

i=0

∫ ti+1

ti

H
(
ω, W (ω)

)
(tn – ω)α–1 dω. (20)

Now, approximate H(t, V (t)) by

H
(
t, W (t)

) ≈ H(ti+1, Wi+1) +
t – ti+1

�

(
H(ti+1, Wi+1)

)
– H(ti, Wi)), t ∈ [ti, ti+1], (21)

where Wi = W (ti).
Substituting (21) into (20) and following the procedure used in [11, 12], we get

Wn = W0 + �
α

(


nH(t0, W0) +
n∑

i=1

ϒn–iH(ti, Wi)

)

, (22)

where


n =
(n – 1)α+1 – nα(n – α – 1)

�(α + 2)
,

ϒn =

⎧
⎨

⎩

1
�(α+2) , n = 0,
(n–1)α–2nα+(1+n)α

�(α+2) , n = 1, 2, . . . .

(23)

If we try to use the numerical method presented in formula (22) to solve problem (1), we
obtain the following iterative schemes:

Sn = S0 + �
α

(


nH1(S0, I0, P0) +
n∑

i=1

ϒn–iH1(Si, Ii, Pi)

)

,

In = I0 + �
α

(


nH2(S0, I0, P0) +
n∑

i=1

ϒn–iH2(Si, Ii, Pi)

)

,

Pn = P0 + �
α

(


nH3(S0, I0, P0) +
n∑

i=1

ϒn–iH3(Si, Ii, Pi)

)

,

(24)

where

H1(S, I, P) = r(S + I) – (λ + aP)PS – δSI – μS,

H2(S, I, P) = δSI – (λ + aP)PI – μI,

H3(S, I, P) = e(λ + aP)P(S + I) – mP.

(25)

6 Graphical representations
In this section, we verify the obtained mathematical results using several graphical repre-
sentations. The plots are offered in the following manner.

Fig. 1 The stability of the infection-free equilibrium E2 = (1, 0, 1) is clear in this figure. In
fact, the used values verify the existence condition of this equilibrium (r > μ). The
following values are considered for the values r = 1.5, λ = 0.5, a = 0.5, δ = 0.5, μ = 0.5,
e = 0.5, m = 0.5, α = 0.9 and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6).
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Figure 1 The local stability of infection-free equilibrium

Figure 2 The instability of infection-free equilibrium

Fig. 2 In this figure we got the instability of the infection-free equilibrium. In fact, the
used values verify the existence condition of this equilibrium (r > μ). The following
values r = 1.5, λ = 0.5, a = 3.5, δ = 0.5, μ = 0.5, e = 0.5, m = 1.5, α = 0.9 and the initial
conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are considered.

Fig. 3 In this figure we got the stability of the positive equilibrium. In fact, the used values
verify the existence condition of this equilibrium (r > μ). The following values r = 3.5,
λ = 3.05, a = 0.8, δ = 2.5, μ = 0.15, e = 0.05, m = 0.3, α = 0.9 and the initial conditions
(S0, I0, P0) = (0.2, 0.7, 0.6) are considered.

Fig. 4 This figure shows the existence of oscillations generated by the instability of the
positive equilibrium. The following values r = 0.55, λ = 0.5, a = 3.5, δ = 0.5, μ = 0.5,
e = 0.5, m = 1.5, α = 0.9 and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are con-
sidered.

Fig. 5 This figure also shows the existence of oscillations generated by the instability of
the positive equilibrium. The following values r = 0.75, λ = 0.5, a = 3.5, δ = 0.5, μ =
0.5, e = 0.5, m = 1.5, α = 0.9 and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are
considered.
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Figure 3 The instability of positive equilibrium

Figure 4 Diagram of the unstable behavior of the system equilibrium point

Figure 5 Diagram of the unstable behavior of the system equilibrium point

Fig. 6 This figure shows the existence of oscillations for the values r = 0.95, λ = 0.5, a =
3.5, δ = 0.5, μ = 0.5, e = 0.5, m = 1.5, α = 0.9, and the initial conditions (S0, I0, P0) =
(0.2, 0.7, 0.6) are considered.
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Figure 6 Diagram of the unstable behavior of the system equilibrium point

Figure 7 Influence of the infection rate δ on the evolution of the three species

Fig. 7 The influence of the infection rate on the evolution of the three species for the
values r = 1.2, λ = 0.5, a = 3.5, μ = 0.5, e = 0.5, m = 1.5, α = 0.9 and multi-values of
δ, and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are considered.

Fig. 8 The influence of the memory rate α on the evolution of the three species for the
values r = 3.5, λ = 1.5, a = 3.5, δ = 0.05, μ = 0.5, e = 0.5, m = 1.5 and multi-values of
α, and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are considered.

Fig. 9 The influence of the memory rate α on the evolution of the three species for the
values r = 0.95, λ = 0.5, a = 3.5, δ = 0.5, μ = 0.5, e = 0.5, m = 1.5 and multi-values of
α, and the initial conditions (S0, I0, P0) = (0.2, 0.7, 0.6) are considered.
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Figure 8 Influence of fractional-order derivative α on the evolution of the three species

7 Conclusion
In this paper, we dealt with the influence of infectious disease on the evolution of an eco-
logical species using a fractional-order model. The fractional-order derivative stands for
the memory which is responsible for the ecological fluctuation generated by the environ-
ment. It is assumed that this infection is fatal neither for the prey (after the infection) nor
for the predator (after consuming an infected prey). Also, it is considered that the preda-
tor has a social behavior deduced by the cooperation in hunting the two prey (healthy and
infected ones). Indeed, we obtained that system (1) can undergo many scenarios, as the
extinction of the three populations which is deduced by the existence of the equilibrium
E0, the extinction of the predator population only without the infection. In this case, we
have the persistence of the infection without the predator, which is deduced by the ex-
istence of the equilibrium E1. This scenario cannot exist because of the instability of the
equilibrium E1, which is deducted from Lemma 3.2. Further, the extinction of the infection
without predation is the most desired result, which represents the recovering of the eco-
logical system from this infection. The stability of the infection-free equilibrium E2 is the
main result. We mention that in the case of the first-order derivative the equilibrium E2 is
always unstable because the eigenvalues of the Jacobian matrix verify Tr2 > 0 and Det2 > 0,
but because of the expansion of the stability region generated by the time-fractional order
derivative, we can have the stability of this equilibrium, which highlights the big influence
of the memory on the ecological fluctuation. This result is supported numerically using
graphical simulations plotted in Figs. 1 and 2. The existence of the three species is also
possible where the stability of the equilibrium E∗ is possible. Figures 3, 4, 5, 6 confirm this
result.
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Figure 9 Influence of fractional-order derivative α on the evolution of the three species

Furthermore, this infection affects the final size of the prey (infected and susceptible)
and has no influence on the predator temporal behavior. This feature can be clearly seen
in Fig. 7. Also, the fractional-time derivative has a direct influence on the temporal be-
havior of the solution, as it is shown in Figs. 8 and 9. In these graphs, it is evident that the
fractional derivative has a significant effect on the evolution of the existing species. This
result signifies that under the same conditions the ecological species may not behave the
same, and these figures (Fig. 8 and 9) confirm this presumption.
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