
Xi and Luo Advances in Difference Equations         (2021) 2021:38 
https://doi.org/10.1186/s13662-020-03171-1

R E S E A R C H Open Access

Some extensions for the several
combinatorial identities
Gao-Wen Xi1 and Qiu-Ming Luo2*

Dedicated to Honor Professor Hari Mohan Srivastava on his 80th Birth Anniversary

*Correspondence:
luomath2007@163.com
2Department of Mathematics,
Chongqing Normal University,
Chongqing Higher Education Mega
Center, Huxi Campus, Chongqing
401331, People’s Republic of China
Full list of author information is
available at the end of the article

Abstract
In this paper, we give some extensions for Mortenson’s identities in series with the Bell
polynomial using the partial fraction decomposition. As applications, we obtain some
combinatorial identities involving the harmonic numbers.
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1 Introduction
The higher-order harmonic numbers are defined by

H (r)
0 = 1 and H (r)

n =
n∑

k=1

1
kr for n, r = 1, 2, . . . .

When n = 1, they reduce to the classical harmonic numbers Hn = H (1)
n .

We also define the generalized higher-order harmonic numbers H (r)
n (z) as

H (r)
0 (z) = 1 and H (r)

n (z) =
n∑

k=1
k �=–z

1
(k + z)r . (1)

When z = 0, they reduce to the higher-order harmonic numbers H (r)
n (0) = H (r)

n .
The standard Bell polynomials are presented in Comtet’s book [5]. The modified Bell

polynomials Ln(x1, x2, . . .) are defined by

exp

( ∞∑

k=1

xk
zk

k

)
= 1 +

∞∑

n=1

Ln(x1, x2, . . .)zn. (2)
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This expansion gives

Ln(x1, x2, . . .) =
∑

m1+2m2+3m3+···=n

1
m1!m2!m3! · · ·

(
x1

1

)m1(x2

2

)m2(x3

3

)m3

· · · . (3)

Mortenson [9, p. 990, Lemma 3.1] gave the following identities:

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
r

r + k
=

(1 – r)n

(1 + r)n
, n, r ∈N, (4)

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(Hm+k – Hk) = 0, 1 ≤ m ≤ n, (5)

which are called Mortenson’s identities, where (z)n are the Pochhammer symbols defined
by (z)0 = 1, (z)n = z(z + 1) · · · (z + n – 1).

H.M. Srivastava, J. Choi, G. Dattoli, and A. Sofo et al. investigated some infinite combi-
natorial series identities involving the harmonic numbers and generalized harmonic num-
bers by applying the hypergeometric series, Vandermonde convolutions, and Riemann
zeta and polygamma functions; for details, see [1, 6–8, 10–13]. W. Chu studied some finite
combinatorial identities involving the harmonic numbers by applying the partial fraction
decomposition [2–4].

In this paper, we give some extensions of Mortenson’s identities using the partial frac-
tion decomposition. We obtain some new or old combinatorial identities involving the
harmonic numbers and generalized harmonic numbers and propose two open problems.

2 Extensions of Mortenson’s identities
First, we give an extension of Mortenson’s identity (4).

Theorem 1 For n ∈N, r ∈N0, and x > 0, we have

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)(
x

x + k

)r

=

( n∏

k=1

k – x
k + x

)
∑

m1+2m2+3m3+···=r–1

xr–1

m1!m2!m3! · · ·
(

U1

1

)m1(U2

2

)m2(U3

3

)m3

· · · , (6)

where Uk = (–1)k–1H (k)
n (–x) + H (k)

n+1(x – 1).

Proof By means of the standard partial fraction decomposition we easily obtain

(z + 1)n

z(z – 1) · · · (z – n)

(
x

z + x

)r

=
n∑

k=0

(–1)n–k

(
n
k

)(
n + k

k

)(
x

x + k

)r 1
z – k

+
λ

(z + x)r + · · · +
μ

z + x
. (7)

Multiplying both sides of (7) by z and then letting z → ∞, we obtain

n∑

k=0

(–1)n–k

(
n
k

)(
n + k

k

)(
x

x + k

)r

+ μ = 0.
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By (2), (3), and (7) we get

μ =
[
(z + x)–1] (z + 1) · · · (z + n)

z(z – 1) · · · (z – n)

(
x

z + x

)r

= (–1)n+1

( n∏

k=1

1
x + k

)( n∏

k=1

(k – x)

)
xr–1[zr–1] exp

(∑

k≥1

Uk
zk

k

)

= (–1)n+1

( n∏

k=1

1
x + k

)( n∏

k=1

(k – x)

)
xr–1

×
∑

m1+2m2+3m3+···=r–1

1
m1!m2!m3! · · ·

(
U1

1

)m1(U2

2

)m2(U3

3

)m3

· · · .

This completes the proof. �

We next give an extension of Mortenson’s identity (5) by Theorem 1.

Theorem 2 For n, r, M ∈N and x ≥ –j, j = 1, 2, . . . , M, we have

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(
H (r)

M+k(x + 1) – H (r)
k (x + 1)

)

=
M∑

j=1

(n+1∏

k=1

1
x + k + j

)(n–1∏

k=0

(k – j – x)

)

×
∑

m1+2m2+3m3+···=r–1

1
m1!m2!m3! · · ·

(
U1

1

)m1(U2

2

)m2(U3

3

)m3

· · · , (8)

where Uk = (–1)k–1H (k)
n (–x – j – 1) + H (k)

n+1(x + j).

Proof Letting x �−→ x + 1 in (6) and then letting x �−→ x + j + 1, we obtain

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(
H (r)

M+k(x + 1) – H (r)
k (x + 1)

)

=
M∑

j=1

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
1

(x + k + j + 1)r

=
M∑

j=1

(n+1∏

k=1

1
x + k + j

)(n–1∏

k=0

(k – j – x)

)

×
∑

m1+2m2+3m3+···=r–1

1
m1!m2!m3! · · ·

(
U1

1

)m1(U2

2

)m2(U3

3

)m3

· · · .

The proof is complete. �

Taking x = –1 in (8), we easily obtain the following corollary.
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Corollary 3 Let n, r, M ∈ N.
When 1 ≤ M ≤ n, we have

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(
H (r)

M+k – H (r)
k

)
= 0, (9)

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(
H (r)

n+k + H (r)
M+k – 2H (r)

k
)

= 0. (10)

When M > n, we have

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(
H (r)

M+k – H (r)
k

)

=
M∑

j=n+1

(n+1∏

k=1

1
k + j – 1

)(n–1∏

k=0

(k – j + 1)

)

×
∑

m1+2m2+3m3+···=r–1

1
m1!m2!m3! · · ·

(
V1

1

)m1(V2

2

)m2(V3

3

)m3

· · · , (11)

where Vk = (–1)k–1H (k)
n (–j) + H (k)

n+1(j – 1).

3 Some applications and two open problems
In this section, we deduce several combinatorial identities involving the harmonic num-
bers from Theorems 1 and 2. We also suggest two open problems on Mortenson’s identi-
ties.

Setting r = 0, 1 in (6), we obtain the familiar formulas

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
= (–1)n,

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
x

x + k
=

n∏

k=1

k – x
k + x

,

respectively. Setting r = 1 in Corollary 3, we obtain the following combinatorial identities
involving the harmonic numbers:

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(HM+k – Hk) = 0, 1 ≤ M ≤ n,

n∑

k=0

(–1)k

(
n
k

)(
n + k

k

)
(Hn+k + HM+k – 2Hk) = 0, 1 ≤ M ≤ n,

n∑

k=0

(–1)n–k

(
n
k

)(
n + k

k

)
(HM+k – Hk) =

M∑

j=n+1

(j–1
n

)

j
(n+j

j
) , M > n.

Finally, we propose the following two open problems.
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Open Problem 1 For m > n, how do we calculate the combinatorial sums

n∑

k=0

(–1)k

(
n
k

)(
m + k

k

)
and

n∑

k=0

(–1)k

(
n
k

)(
m + k

k

)
x

x + k
?

Open Problem 2 For n ∈N, m, r, M ∈N0, x > 0, what are the combinatorial sums

n∑

k=0

(–1)k

(
n
k

)(
m + k

k

)(
x

x + k

)r

and
n∑

k=0

(–1)k

(
n
k

)(
m + k

k

)
(
H (r)

M+k – H (r)
k

)
?
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