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Abstract
In this paper, we present some inequalities for Csiszár f -divergence between two
probability measures on time scale. These results extend some known results in the
literature and offer new results in h-discrete calculus and quantum calculus. We also
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1 Introduction
In many applications of probability theory the essential problem is determining an ap-
propriate measure of distance (or divergence) among two probability distributions. Con-
sequently, many different divergence measures were introduced and extensively studied
by various authors, for instance, the Csiszár f -divergence (Kullback–Leibler divergence,
Hellinger distance, and total-variation distance), Rényi divergence, and Jensen–Shannon
divergence; see [9, 13, 18, 20].

Csiszár [6] introduced the following:

Definition 1 Let f : R+ → R
+ be a convex function. Let r̃ = (r1, r2, . . . , rn) and s̃ =

(s1, s2, . . . , sn) be such that
∑n

ν=1 rν = 1 and
∑n

ν=1 sν = 1. Then the f -divergence functional
is defined as

If (r̃, s̃) :=
n∑

ν=1

sν f
(

rν

sν

)

,

where f satisfies the following conditions:

f (0) := lim
θ→0+

f (θ ); 0f
(

0
0

)

:= 0; 0f
(

a
0

)

:= lim
θ→0+

θ f
(

a
0

)

, a > 0.

Dragomir [7, 8] has done a plenty of work giving different types of bounds on the dis-
tance and divergence measures. Jensen’s inequality plays a vital role to get inequalities
for divergences between probability distributions. Horvath et al. [11] introduced a new
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functional based on the f -divergence functional and obtained some estimates for the new
functional, the f -divergence and Rényi divergence by utilizing cyclic refinement of Jensen’s
inequality. Recently, Adil et al. [12] obtained some inequalities for convex functions and
their applications to Csiszár divergence.

The main objective behind the theory of time scales is unifying continuous and discrete
analysis introduced by Stefan Hilger in 1988 and established in the comprehensive books
[4, 5]. Various dynamic derivatives on time scales not just give a helpful route in useful
applications, but also demonstrate their extraordinary appearance in approximations. It
may be beneficial to examine if such useful features can be kept up or even improved
in a specific way while different dynamic derivatives are utilized in the same application
simultaneously.

Guseinov [10] examined the process of Riemann and Lebesgue integration on time
scales. Many authors established time scale version of linear and nonlinear integral in-
equalities [1, 17, 19]. The time scale integral inequalities have been used to study the
boundedness, uniqueness, and so on of the solutions of different dynamic equations
[14, 16]. Ansari et al. [2] introduced the differential entropy of a continuous random vari-
able on time scales and established some Shannon-type inequalities on arbitrary time
scales. It was shown that the obtained inequalities are used to estimate the bounds of dif-
ferential entropy for some particular distributions. Some classical inequalities and their
converses for multiple integration on time scales were investigated in [3].

The setup of this paper is as follows. Section 2 is confined to the basic definitions and
preliminary results of time scales calculus. Our aim in Sect. 3 is deriving some new in-
equalities for Csiszár f -divergence on arbitrary time scales and finding some inequalities
for Csiszár divergence in h-discrete calculus and quantum calculus. To the best of the
author’s knowledge, no contribution is available in the literature for Csiszár divergence
inequalities in quantum calculus. Section 4 is concerned to the study of some divergence
measures on time scales including the bounds of the Kullback–Leibler distance, trian-
gular discrimination, Hellinger discrimination, Jeffreys distance, Bhattacharyya distance,
and harmonic distance in terms of some special means such as identric, logarithmic, arith-
metic, and geometric means. The upper bounds of these divergence results in quantum
calculus are also part of discussion.

2 Preliminaries
In this paper, we assume that a time scale T is an arbitrary nonempty closed subset of the
real line. The following definitions and results are extracted from [4].

Definition 2 Consider a time scale T that is a closed and bounded subset of real numbers
and ω ∈ T. Then the mappings σ : T→ T and ρ : T → T satisfying

σ (ω) = inf{λ ∈ T : λ > ω} and ρ(ω) = sup{λ ∈ T : λ < ω}

are known as forward and backward jump operators on T, respectively.

A function z : T → R is right-dense continuous or rd-continuous if it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The
set of all rd-continuous functions is denoted by Crd.
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Here we define T
k as follows:

T
k =

⎧
⎨

⎩

T\(ρ(supT), supT] if supT < ∞,

T if supT = ∞.

Definition 3 Let z : T → R and ω ∈ T
k . Then we define the delta derivative z�(ω) as the

number (provided it exists) such that for each ε > 0, there exists a neighborhood U of ω

such that

∣
∣z

(
σ (ω)

)
– z(λ) – z�(ω)

(
σ (ω) – λ

)∣
∣ ≤ ε

∣
∣σ (ω) – λ

∣
∣

for all λ ∈ U . We say that z is delta differentiable at ω.

If T = R, then z� is the the usual derivative z′, whereas z� becomes the forward differ-
ence operator �z(ω) = z(ω + 1) – z(ω) for T = Z. If T = qZ = {qn : n ∈ Z} ∪ {0} with q > 1,
then z� is the so-called q-difference operator

z�(ω) =
z(qω) – z(ω)

(q – 1)ω
, z�(0) = lim

λ→0

z(λ) – z(0)
λ

.

Theorem 1 (Existence of antiderivatives) Every rd-continuous function has an antideriva-
tive. In particular if x0 ∈ T, then F is defined by

F(x) :=
∫ x

x0

f (ω)�ω for x ∈ T
k

which is an antiderivative of f .

For T = R, we get
∫ b

a z(ω)�ω =
∫ b

a z(ω) dω, and if T = N, then
∫ b

a z(ω)�ω =
∑b–1

ω=a z(ω),
where a, b ∈ T with a ≤ b.

3 Main results
Let T be a time scale and consider the set of all probability density functions on T,


 :=
{

r̃ ∈ Crd
(
[a, b]T, [0,∞)

)
, r̃(x) ≥ 0,

∫ b

a
r̃(x)�x = 1

}

.

In this paper, we assume that r̃, s̃ ∈ 
.

Definition 4 The Csiszár f -divergence on time scales is defined as

Df (s̃, r̃) :=
∫ b

a
r̃(x)f

(
s̃(x)
r̃(x)

)

�x,

where f is convex on (0,∞).

By suitable substitutions to f in Definition 4 we can obtain several divergences on time
scales. For instance, if we choose f (x) = x2 – 1, then we find the Pearson χ2-divergence on
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time scales denoted by Dχ2 and defined as

Dχ2 (s̃, r̃) :=
∫ b

a
r̃(x)

[(
s̃(x)
r̃(x)

)2

– 1
]

�x.

We begin with the following result.

Theorem 2 Let ψ : [0,∞) → R be a mapping convex on the interval [ζ1, ζ2] ⊂ [0,∞),
where ζ1 ≤ 1 ≤ ζ2. If

ζ1 ≤ r̃(y)
s̃(y)

≤ ζ2 for all y ∈ T,

then

Iψ (r̃, s̃) =
∫ b

a
s̃(y)ψ

(
r̃(y)
s̃(y)

)

�y ≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2). (1)

Proof As ψ is convex on [ζ1, ζ2], we can write

ψ
(
tζ1 + (1 – t)ζ2

) ≤ tψ(ζ1) + (1 – t)ψ(ζ2) for all t ∈ [0, 1]. (2)

Choose t = ζ2–x
ζ2–ζ1

, x ∈ [ζ1, ζ2]. Then 1 – t = x–ζ1
ζ2–ζ1

, and from (2) we get

ψ(x) ≤ ζ2 – x
ζ2 – ζ1

ψ(ζ1) +
x – ζ1

ζ2 – ζ1
ψ(ζ2) for all x ∈ [ζ1, ζ2]. (3)

Using x = r̃(y)
s̃(y) , y ∈ T, in (3), we get

ψ

(
r̃(y)
s̃(y)

)

≤
ζ2 – r̃(y)

s̃(y)

ζ2 – ζ1
ψ(ζ1) +

r̃(y)
s̃(y) – ζ1

ζ2 – ζ1
ψ(ζ2) for all y ∈ T. (4)

Multiplying (4) by s̃(y) > 0, integrating over T, and using the equalities
∫ b

a r̃(y)�y =
∫ b

a s̃(y)�y = 1, we obtain

Iψ (r̃, s̃) =
∫ b

a
s̃(y)ψ

(
r̃(y)
s̃(y)

)

�y ≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2),

which is the stated result. �

Example 1 For T = R, Theorem 2 becomes [7, Theorem 1 on p. 2].

Example 2 Choosing T = hZ, h > 0, in Theorem 2, we get

b
h –1
∑

k= a
h

s̃(kh)hψ

(
r̃(kh)
s̃(kh)

)

≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2). (5)

Remark 1 Inequality (5) in h-discrete calculus is an extension of specific upper bound for
the Csiszár divergence obtained by Lovričević et al. [15, Corollary 4.1].
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Example 3 Choosing T = qN0 (q > 1) in Theorem 2, we have

logq(b)–1
∑

k=logq(a)

qk(q – 1)s̃
(
qk)ψ

(
r̃(qk)
s̃(qk)

)

≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2). (6)

Remark 2 Equation (6) represents the Csiszár divergence in quantum calculus, which is
new up to the knowledge of the authors.

Theorem 3 Consider a differentiable convex function ψ : [0,∞) → R on the interval
[ζ1, ζ2] and Iψ defined in Theorem 2. Then we have

0 ≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2) – Iψ (r̃, s̃) (7)

≤ ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
(8)

≤ 1
4

(ζ2 – ζ1)
[
ψ ′(ζ2) – ψ ′(ζ1)

]
, (9)

where Dχ2 (r̃, s̃) :=
∫ b

a s̃(y)[( r̃(y)
s̃(y) )2 – 1]�y.

Proof Since ψ is a differentiable convex function, we have

ψ(u1) – ψ(u2) ≥ ψ ′(u2)(u1 – u2) for all u1, u2 ∈ (ζ1, ζ2). (10)

Now assume that a1, a2 ∈ [ζ1, ζ2] and consider α1,α2 ≥ 0 such that α1 + α2 > 0. Then using
u1 = α1a1+α2a2

α1+α2
and u2 = a1 in (10), we get

ψ

(
α1a1 + α2a2

α1 + α2

)

– ψ(a1) ≥ ψ ′(a1)
(

α1a1 + α2a2

α1 + α2
– a1

)

=
α2

α1 + α2
ψ ′(a1)(a2 – a1). (11)

Rewrite (11) with u2 = a2:

ψ

(
α1a1 + α2a2

α1 + α2

)

– ψ(a2) ≥ ψ ′(a2)
(

α1a1 + α2a2

α1 + α2
– a2

)

= –
α1

α1 + α2
ψ ′(a2)(a2 – a1). (12)

Multiplying (11) by α1 and (12) by α2 and then adding the resultant inequalities, we get

(α1 + α2)ψ
(

α1a1 + α2a2

α1 + α2

)

– α1ψ(a1) – α2ψ(a2)

≥ α1α2

α1 + α2
(a2 – a1)

(
ψ ′(a1) – ψ ′(a2)

)
. (13)
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Dividing (13) by –(α1 + α2), we obtain

0 ≤ α1ψ(a1) + α2ψ(a2)
α1 + α2

– ψ

(
α1a1 + α2a2

α1 + α2

)

≤ α1α2

(α1 + α2)2 (a2 – a1)
(
ψ ′(a2) – ψ ′(a1)

)
. (14)

Now using α1 = ζ2 – x, α2 = x – ζ1, a1 = ζ1, a2 = ζ2 in (14), we get

0 ≤ (ζ2 – x)ψ(ζ1) + (x – ζ1)ψ(ζ2)
(ζ2 – ζ1)

– ψ(x)

≤ (ζ2 – x)(x – ζ1)
(ζ2 – ζ1)

(
ψ ′(ζ2) – ψ ′(ζ1)

)
. (15)

Putting x = r̃(y)
s̃(y) in (15) and multiplying by s̃(y), we obtain

(ζ2s̃(y) – r̃(y))ψ(ζ1) + (r̃(y) – ζ1s̃(y))ψ(ζ2)
(ζ2 – ζ1)

– s̃(y)ψ
(

r̃(y)
s̃(y)

)

≤ (ζ2s̃(y) – r̃(y))(r̃(y) – ζ1s̃(y))
(ζ2 – ζ1)s̃(y)

(
ψ ′(ζ2) – ψ ′(ζ1)

)
(16)

for all y ∈ T.
By taking �-integral on both sides of (16) with

∫ b
a r̃(y)�y =

∫ b
a s̃(y)�y = 1 we get

(ζ2 – 1)ψ(ζ1) + (1 – ζ1)ψ(ζ2)
(ζ2 – ζ1)

– Iψ (r̃, s̃)

≤ (ψ ′(ζ2) – ψ ′(ζ1))
(ζ2 – ζ1)

∫ b

a

(ζ2s̃(y) – r̃(y))(r̃(y) – ζ1s̃(y))
s̃(y)

�y

=
(ψ ′(ζ2) – ψ ′(ζ1))

(ζ2 – ζ1)

[

ζ2 –
∫ b

a

r̃2(y)
s̃(y)

�y – ζ1ζ2 + ζ1

]

=
(ψ ′(ζ2) – ψ ′(ζ1))

(ζ2 – ζ1)

[

ζ2 –
∫ b

a
s̃(y)

(
r̃(y)
s̃(y)

)2

�y +
∫ b

a
s̃(y)�y

–
∫ b

a
s̃(y)�y – ζ1ζ2 + ζ1

]

=
(ψ ′(ζ2) – ψ ′(ζ1))

(ζ2 – ζ1)
[
ζ2 + ζ1 – ζ1ζ2 – 1 – Dχ2 (r̃, s̃)

]

=
(ψ ′(ζ2) – ψ ′(ζ1))

(ζ2 – ζ1)
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
,

which is inequality (8). Inequality (9) is obvious, since

(ζ2 – 1)(1 – ζ1) ≤ 1
4

(ζ2 – ζ1)2 and Dχ2 (r̃, s̃) ≥ 0. �

Example 4 Choosing T = R in Theorem 3, we get [7, Theorem 2 on p. 3].
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Example 5 Choosing T = hZ, h > 0, in Theorem 3, we obtain

0 ≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2) –

b
h –1
∑

k= a
h

s̃(kh)hψ

(
r̃(kh)
s̃(kh)

)

≤ ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

(

(ζ2 – 1)(1 – ζ1) –

b
h –1
∑

k= a
h

s̃(kh)h
[(

r̃(kh)
s̃(kh)

)2

– 1
])

≤ 1
4

(ζ2 – ζ1)
[
ψ ′(ζ2) – ψ ′(ζ1)

]
.

Example 6 Choosing T = qN0 (q > 1) in Theorem 3, we get

0 ≤ ζ2 – 1
ζ2 – ζ1

ψ(ζ1) +
1 – ζ1

ζ2 – ζ1
ψ(ζ2) –

logq(b)–1
∑

k=logq(a)

qk(q – 1)s̃
(
qk)ψ

(
r̃(qk)
s̃(qk)

)

≤ ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

(

(ζ2 – 1)(1 – ζ1) –
logq(b)–1

∑

k=logq(a)

qk(q – 1)s̃
(
qk)

[(
r̃(qk)
s̃(qk)

)2

– 1
])

≤ 1
4

(ζ2 – ζ1)
[
ψ ′(ζ2) – ψ ′(ζ1)

]
. (17)

Remark 3 Equation (17) is new in quantum calculus, which involves the Csiszár diver-
gence and Pearson χ2-divergence.

Theorem 4 Consider a twice differentiable function � : [0,∞) →R on [ζ1, ζ2] with

m ≤ � ′′(t) ≤ M for all t ∈ [ζ1, ζ2].

If ζ1 ≤ r̃(y)
s̃(y) ≤ ζ2 for all y ∈ T, then

m
2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ ζ2 – 1
ζ2 – ζ1

�(ζ1) +
1 – ζ1

ζ2 – ζ1
�(ζ2) – I� (r̃, s̃) (18)

≤ 1
2

M
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
, (19)

where Dχ2 (r̃, s̃) is defined in Theorem 3.

Proof Define ηm : [0,∞) → R by ηm(t) = �(t) – 1
2 mt2. Then η′′

m(t) = � ′′(t) – m ≥ 0, t ∈
[ζ1, ζ2], and this implies that ηm is convex on [ζ1, ζ2]. By using (1) for ηm instead of ψ we
get

I�– 1
2 m(·)2 (r̃, s̃) ≤ ζ2 – 1

ζ2 – ζ1

[

�(ζ1) –
1
2

mζ 2
1

]

+
1 – ζ1

ζ2 – ζ1

[

�(ζ2) –
1
2

mζ 2
2

]

. (20)
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However,

I�– 1
2 m(·)2 (r̃, s̃)

= I� (r̃, s̃) –
1
2

m
[∫ b

a
s̃(y)

r̃2(y)
s̃2(y)

�y
]

= I� (r̃, s̃) –
1
2

m
[∫ b

a

r̃2(y)
s̃(y)

�y – 1 + 1
]

= I� (r̃, s̃) –
1
2

mDχ2 (r̃, s̃) –
1
2

m,

and by (20) we obtain

1
2

mζ 2
2

(1 – ζ1)
(ζ2 – ζ1)

+
1
2

mζ 2
1

(ζ2 – 1)
(ζ2 – ζ1)

–
1
2

mDχ2 (r̃, s̃) –
1
2

m

≤ (ζ2 – 1)
ζ2 – ζ1

�(ζ1) +
(1 – ζ1)
ζ2 – ζ1

�(ζ2) – I� (r̃, s̃). (21)

Simplification of the left-hand side of (21) gives

1
2

mζ 2
2

(1 – ζ1)
(ζ2 – ζ1)

+
1
2

mζ 2
1

(ζ2 – 1)
(ζ2 – ζ1)

–
1
2

mDχ2 (r̃, s̃) –
1
2

m

=
1
2

m
[
ζ 2

2 (1 – ζ1) + ζ 2
1 (ζ2 – 1)

(ζ2 – ζ1)
– Dχ2 (r̃, s̃) – 1

]

=
1
2

m
[
ζ 2

2 – ζ1ζ
2
2 + ζ 2

1 ζ2 – ζ 2
1

(ζ2 – ζ1)
– 1 – Dχ2 (r̃, s̃)

]

=
1
2

m
[
ζ 2

2 – ζ 2
1 – ζ1ζ2(ζ2 – ζ1)
(ζ2 – ζ1)

– 1 – Dχ2 (r̃, s̃)
]

=
1
2

m
[
ζ2 + ζ1 – ζ1ζ2 – 1 – Dχ2 (r̃, s̃)

]

=
1
2

m
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
,

and (18) is proved. Similarly, inequality (19) can be obtained for the mapping ηm(t) =
1
2 Mt2 – �(t). �

Example 7 Choosing T = R in Theorem 4, we get [7, Theorem 3 on p. 4].

Example 8 Choosing T = hZ, h > 0, in Theorem 4, we have

m
2

(

(ζ2 – 1)(1 – ζ1) –

b
h –1
∑

k= a
h

s̃(kh)h
[(

r̃(kh)
s̃(kh)

)2

– 1
])

≤ ζ2 – 1
ζ2 – ζ1

�(ζ1) +
1 – ζ1

ζ2 – ζ1
�(ζ2) –

b
h –1
∑

k= a
h

s̃(kh)h�

(
r̃(kh)
s̃(kh)

)

≤ 1
2

M

(

(ζ2 – 1)(1 – ζ1) –

b
h –1
∑

k= a
h

s̃(kh)h
[(

r̃(kh)
s̃(kh)

)2

– 1
])

.
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Example 9 Choosing T = qN0 (q > 1) in Theorem 4, we have

m
2

(

(ζ2 – 1)(1 – ζ1) –
logq(b)–1

∑

k=logq(a)

qk(q – 1)s̃
(
qk)

[(
r̃(qk)
s̃(qk)

)2

– 1
])

≤ ζ2 – 1
ζ2 – ζ1

�(ζ1) +
1 – ζ1

ζ2 – ζ1
�(ζ2) –

logq(b)–1
∑

k=logq(a)

qk(q – 1)s̃
(
qk)�

(
r̃(qk)
s̃(qk)

)

≤ 1
2

M

(

(ζ2 – 1)(1 – ζ1) –
logq(b)–1

∑

k=logq(a)

qk(q – 1)s̃
(
qk)

[(
r̃(qk)
s̃(qk)

)2

– 1
])

. (22)

Remark 4 In Example 9, we get some new inequalities involving the Csiszár divergence
for quantum calculus.

Corollary 1 Under the conditions of Theorem 4, if m ≥ 0, then

0 ≤ 1
2

m
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ (ζ2 – 1)
ζ2 – ζ1

�(ζ1) +
(1 – ζ1)
ζ2 – ζ1

�(ζ2) – I� (r̃, s̃).

Proof We just need to show that

Dχ2 (r̃, s̃) ≤ (ζ2 – 1)(1 – ζ1),

which follows from the proof of Theorem 3, since

0 ≤
∫ b

a

(ζ2s̃(y) – r̃(y))(r̃(y) – ζ1s̃(y))
s̃(y)

�y

= (ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃). �

Example 10 Choosing T = R in Corollary 1, we get [7, Corollary 1 on p. 5].

4 Bounds of some divergence measures
First we recall some special means:

A(δ1, δ2) =
δ1 + δ2

2
(arithmetic mean),

G(δ1, δ2) = ±√
δ1δ2 (geometric mean),

L(δ1, δ2) =

⎧
⎨

⎩

δ2 if δ1 = δ2,
δ2–δ1

ln δ2–ln δ1
if δ1 
= δ2, δ1, δ2 > 0

(logarithmic mean),

and

I(δ1, δ2) =

⎧
⎪⎨

⎪⎩

δ2 if δ1 = δ2;
1
e ( δ

δ2
2

δ
δ1
1

)
1

δ2–δ1 if δ1 
= δ2
(identric mean).
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4.1 Kullback–Leibler divergence on time scales
Let ψ : (0,∞) →R be the convex mapping ψ(t) = t ln t. Then

Iψ (r̃, s̃) =
∫ b

a
r̃(y) ln

[
r̃(y)
s̃(y)

]

�y = D(r̃, s̃),

where D(r̃, s̃) is the Kullback–Leibler distance.

Proposition 1 If

ζ1 ≤ r̃(y)
s̃(y)

≤ ζ2 for all y ∈ T, (23)

then

D(r̃, s̃) =
∫ b

a
r̃(y) ln

[
r̃(y)
s̃(y)

]

�y ≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1,

where G(·, ·) is the usual geometric mean, L(·, ·) is the logarithmic mean, and I(·, ·) is the
identric mean.

Proof Using Theorem 2 for ψ(t) = t ln t, we obtain

D(r̃, s̃) =
∫ b

a
r̃(y) ln

[
r̃(y)
s̃(y)

]

�y ≤ ζ2 – 1
ζ2 – ζ1

ζ1 ln ζ1 +
1 – ζ1

ζ2 – ζ1
ζ2 ln ζ2

=
ζ1ζ2 ln ζ1 – ζ1 ln ζ1 + ζ2 ln ζ2 – ζ1ζ2 ln ζ2

ζ2 – ζ1

=
ζ2 ln ζ2 – ζ1 ln ζ1

ζ2 – ζ1
– ζ1ζ2

[ln ζ2 – ln ζ1]
ζ2 – ζ1

= ln

(
ζ

ζ2
2

ζ
ζ1
1

) 1
ζ2–ζ1

– ln e + ln e – (
√

ζ1ζ2)2 [ln ζ2 – ln ζ1]
ζ2 – ζ1

= ln I(ζ1, ζ2) + 1 –
G2(ζ1, ζ2)
L(ζ1, ζ2)

. �

Example 11 Choosing T = R in Proposition 1, we get [7, Proposition 1 on p. 6].

Example 12 Choosing T = hZ, h > 0, in Proposition 1, we obtain

b
h –1
∑

k= a
h

r̃(kh)h ln

[
r̃(kh)
s̃(kh)

]

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1. (24)

Remark 5 Equation (24) is an extension of the specific bound for the Kullback–Leibler
divergence obtained by Lovričević et al. [15, Corollary 4.4].

Example 13 Choosing T = qN0 (q > 1) in Proposition 1, we have

logq(b)–1
∑

k=logq(a)

qk(q – 1)r̃
(
qk) ln

[
r̃(qk)
s̃(qk)

]

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1. (25)
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Remark 6 Equation (25) shows an upper bound for the Kullback–Leibler divergence,
which is new in quantum calculus.

Proposition 2 Under the conditions of Proposition 1, we get

0 ≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1 –
∫ b

a
r̃(y) ln

[
r̃(y)
s̃(y)

]

�y

≤ (ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)
L(ζ1, ζ2)

, (26)

where Dχ2 (r̃, s̃) is defined in Theorem 3.

Proof Apply Theorem 3 for ψ(t) = t ln t:

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
ln ζ2 – ln ζ1

ζ2 – ζ1
=

1
L(ζ1, ζ2)

. �

Example 14 Putting T = R in Proposition 2, we get [7, Proposition 2 on p. 6].

Example 15 Choosing T = qN0 (q > 1), in Proposition 2, we have

0 ≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1 –
logq(b)–1

∑

k=logq(a)

qk(q – 1)r̃
(
qk) ln

[
r̃(qk)
s̃(qk)

]

≤
(ζ2 – 1)(1 – ζ1) –

∑logq(b)–1
k=logq(a) qk(q – 1)r̃(qk)[( s̃(qk )

r̃(qk ) )2 – 1]

L(ζ1, ζ2)
.

By using Theorem 4 we can improve (26) as follows.

Proposition 3 Let r̃, s̃ satisfy (23). Then we have

1
2ζ2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1 – D(r̃, s̃)

≤ 1
2ζ1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Consider ψ(t) = t ln t in Theorem 4. In this case, ψ ′′(t) = 1
t , t ∈ [ζ1, ζ2], and then

1
ζ2

≤ ψ ′′(t) ≤ 1
ζ1

, t ∈ [ζ1, ζ2],

which gives the desired result. �

Remark 7 For T = R in Proposition 3, we get [7, Proposition 3 on p. 7].
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Example 16 Choosing T = qN0 (q > 1) in Proposition 3, we have

1
2ζ2

(

(ζ2 – 1)(1 – ζ1) –
logq(b)–1

∑

k=logq(a)

qk(q – 1)r̃
(
qk)

[(
s̃(qk)
r̃(qk)

)2

– 1
])

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2)
L(ζ1, ζ2)

+ 1 –
logq(b)–1

∑

k=logq(a)

qk(q – 1)r̃
(
qk) ln

[
r̃(qk)
s̃(qk)

]

≤ 1
2ζ1

(

(ζ2 – 1)(1 – ζ1) –
logq(b)–1

∑

k=logq(a)

qk(q – 1)r̃
(
qk)

[(
s̃(qk)
r̃(qk)

)2

– 1
])

.

Now consider the convex mapping ψ(t) = – ln t. We get

Iψ (r̃, s̃) = –
∫ b

a
s̃(y) ln

[
r̃(y)
s̃(y)

]

�y

=
∫ b

a
s̃(y) ln

[
s̃(y)
r̃(y)

]

�y = D(s̃, r̃).

By using Theorem 2 we obtain the following result.

Proposition 4 Let r̃, s̃ satisfy (23). Then

D(s̃, r̃) =
∫ b

a
s̃(y) ln

[
s̃(y)
r̃(y)

]

�y ≤ ln I
(

1
ζ1

,
1
ζ2

)

–
1

L(ζ1, ζ2)
+ 1.

Proof Using (1) for ψ(t) = – ln t, we get

D(s̃, r̃) =
∫ b

a
s̃(y) ln

[
s̃(y)
r̃(y)

]

�y ≤ (ζ2 – 1)(– ln ζ1) + (1 – ζ1)(– ln ζ2)
ζ2 – ζ1

=
(ζ1 ln ζ2 – ζ2 ln ζ1)

ζ2 – ζ1
–

(ln ζ2 – ln ζ1)
ζ2 – ζ1

=
ζ1ζ2( 1

ζ2
ln ζ2 – 1

ζ1
ln ζ1)

ζ2 – ζ1
–

1
L(ζ1, ζ2)

=
( 1
ζ1

ln 1
ζ1

– 1
ζ2

ln 1
ζ2

)
1
ζ1

– 1
ζ2

–
1

L(ζ1, ζ2)

= ln I
(

1
ζ1

,
1
ζ2

)

–
1

L(ζ1, ζ2)
+ 1. �

Remark 8 For T = R in Proposition 4, we get [7, Proposition 4 on p. 7].

Proposition 5 Let r̃, s̃ satisfy (23). Then we have

0 ≤ ln I
(

1
ζ1

,
1
ζ2

)

–
1

L(ζ1, ζ2)
+ 1 –

∫ b

a
s̃(y) ln

[
s̃(y)
r̃(y)

]

�y

=
1

G2(ζ1, ζ2)
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
, (27)

where Dχ2 (r̃, s̃) is defined in Theorem 3.
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Proof Apply Theorem 3 for ψ(t) = – ln t:

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
1

ζ1ζ2
=

1
G2(ζ1, ζ2)

. �

Remark 9 For T = R, Proposition 5 becomes [7, Proposition 5 on p. 7].

Further improvement of (27) is as follows.

Proposition 6 Under the assumptions of Theorem 4, we have

1
2ζ 2

2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ ln I
(

1
ζ1

,
1
ζ2

)

–
1

L(ζ1, ζ2)
+ 1 – D(s̃, r̃).

≤ 1
2ζ 2

1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Apply Theorem 4, for which ψ ′′(t) = 1
t2 and

1
2ζ 2

2
≤ ψ ′′(t) ≤ 1

2ζ 2
1

for all t ∈ [ζ1, ζ2]. �

Remark 10 Choosing T = R in Proposition 6, we get [7, Proposition 6 on p. 8].

4.2 Triangular discrimination on time scales
Let ψ : [0,∞) →R be the convex mapping ψ(t) = (t–1)2

t+1 . Then

Iψ (r̃, s̃) =
∫ b

a

[r̃(y) – s̃(y)]2

r̃(y) + s̃(y)
�y = D�(r̃, s̃),

where D�(r̃, s̃) is the triangular discrimination.

Proposition 7 Under the assumptions of Theorem 2, we have

D�(r̃, s̃) ≤ 4A(ζ1, ζ2) – 2G2(ζ1, ζ2) – 2
2A(ζ1, ζ2) + G2(ζ1, ζ2) + 1

.

Proof Using Theorem 2 for ψ(t) = (t–1)2

t+1 , we obtain

D�(r̃, s̃)

≤ (ζ2 – 1)(ζ1 – 1)2(ζ2 + 1) + (1 – ζ1)(ζ2 – 1)2(ζ1 + 1)
(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)

=
ζ 2

2 ζ 2
1 + ζ 2

2 – 2ζ1ζ
2
2 – ζ 2

1 – 1 + 2ζ1 + ζ 2
2 + 1 – 2ζ2 – ζ 2

2 ζ 2
1 – ζ 2

1 + 2ζ2ζ
2
1

(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)

=
(2ζ 2

2 – 2ζ 2
1 ) – (2ζ1ζ

2
2 – 2ζ2ζ

2
1 ) – (2ζ2 – 2ζ1)

(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)
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=
2(ζ2 + ζ1)(ζ2 – ζ1) – 2ζ1ζ2(ζ2 – ζ1) – 2(ζ2 – ζ1)

(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)

=
2(ζ2 + ζ1 – ζ1ζ2 – 1)

(ζ1 + 1)(ζ2 + 1)
=

2(ζ2 + ζ1 – ζ1ζ2 – 1)
ζ1 + ζ2 + ζ1ζ2 + 1

=
4A(ζ1, ζ2) – 2G2(ζ1, ζ2) – 2
2A(ζ1, ζ2) + G2(ζ1, ζ2) + 1

. �

The following example gives an upper bound for triangular discrimination, which is new
in quantum calculus.

Example 17 Choosing T = qN0 (q > 1) in Proposition 7, we have

logq(b)–1
∑

k=logq(a)

qk(q – 1)
[r̃(qk) – s̃(qk)]2

r̃(qk) + s̃(qk)
≤ 4A(ζ1, ζ2) – 2G2(ζ1, ζ2) – 2

2A(ζ1, ζ2) + G2(ζ1, ζ2) + 1
.

Proposition 8 Under the conditions of Theorem 3, we have

0 ≤ 4A(ζ1, ζ2) – 2G2(ζ1, ζ2) – 2
2A(ζ1, ζ2) + G2(ζ1, ζ2) + 1

– D�(r̃, s̃),

0 ≤ 8A(ζ1, ζ2) + 8
[G2(ζ1, ζ2) + 2A(ζ1, ζ2) + 1]2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Apply Theorem 3 with ψ(t) = (t–1)2

t+1 , which gives ψ ′(t) = 1 – 4
(1+t)2 and

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
4(ζ2 + ζ1 + 2)

[(ζ2 + 1)(ζ1 + 1)]2 =
8A(ζ1, ζ2) + 8

[G2(ζ1, ζ2) + 2A(ζ1, ζ2) + 1]2 . �

Proposition 9 Under the assumptions of Theorem 4, we have

0 ≤ 8
(1 + ζ2)3

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ 4A(ζ1, ζ2) – 2G2(ζ1, ζ2) – 2
2A(ζ1, ζ2) + G2(ζ1, ζ2) + 1

– D�(r̃, s̃)

≤ 8
(1 + ζ1)3

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Use Theorem 4 for ψ(t) = (t–1)2

t+1 , which implies that ψ ′′(t) = 8
(1+t)3 and

8
(1 + ζ2)3 ≤ ψ ′′(t) ≤ 8

(1 + ζ1)3 for all t ∈ [ζ1, ζ2]. �

4.3 Hellinger discrimination on time scales
Let ψ : [0,∞) →R be the convex mapping ψ(t) = 1

2 (
√

t – 1)2. Then

Iψ (r̃, s̃) =
1
2

∫ b

a
s̃(y)

(√
r̃(y)
s̃(y)

– 1
)2

�y

=
1
2

∫ b

a

[√
r̃(y) –

√
s̃(y)

]2
�y = h2(r̃, s̃),

where h2(r̃, s̃) is the Hellinger discrimination.
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Proposition 10 Under the assumptions of Theorem 2, we get

h2(r̃, s̃) ≤ 2A(
√

ζ1,
√

ζ2) – G(ζ1, ζ2) – 1
2A(

√
ζ1,

√
ζ2)

.

Proof Use Theorem 2 for ψ(t) = 1
2 (

√
t – 1)2 to obtain

h2(r̃, s̃)

≤ (ζ2 – 1) 1
2 (

√
ζ1 – 1)2 + (1 – ζ1) 1

2 (
√

ζ2 – 1)2

ζ2 – ζ1

=
( 1

2
√

ζ2 – 1)(1 –
√

ζ1)
ζ2 – ζ1

[
(
√

ζ2 + 1)(1 –
√

ζ1) + (1 +
√

ζ1)(
√

ζ2 – 1)
]

=
(
√

ζ2 – 1)(1 –
√

ζ1)(
√

ζ2 –
√

ζ1)
ζ2 – ζ1

=
(
√

ζ2 – 1)(1 –
√

ζ1)
(
√

ζ2 +
√

ζ1)

=
√

ζ2 +
√

ζ1 –
√

ζ1ζ2 – 1√
ζ1 +

√
ζ2

=
2A(

√
ζ1,

√
ζ2) – G(ζ1, ζ2) – 1

2A(
√

ζ1,
√

ζ2)
. �

Example 18 For T = R in Proposition 10, we get [7, Proposition 7 on p. 8].

The following example gives an upper bound for the Hellinger discrimination, which is
new in quantum calculus.

Example 19 Choosing T = qN0 (q > 1) in Proposition 10, we have

logq(b)–1
∑

k=logq(a)

qk(q – 1)
[√

r̃
(
qk

)
–

√
s̃
(
qk

)]2 ≤ 2A(
√

ζ1,
√

ζ2) – G(ζ1, ζ2) – 1
2A(

√
ζ1,

√
ζ2)

.

Proposition 11 Under the assumptions of Theorem 3, we have

0 ≤ (
√

ζ2 – 1)(1 –
√

ζ1)√
ζ2 +

√
ζ1

– h2(r̃, s̃),

0 ≤ 1
4
√

ζ1ζ2A(
√

ζ1,
√

ζ2)
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
,

where A(·, ·) is the arithmetic mean.

Proof Apply Theorem 3 with ψ(t) = 1
2 (

√
t – 1)2, which implies that ψ ′(t) = 1

2 – 1
2
√

t and

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
1

2
√

ζ1ζ2(
√

ζ2 +
√

ζ1)
. �

Remark 11 For T = R, Proposition 11 becomes [7, Proposition 8 on p. 9].
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Proposition 12 Under the assumptions of Theorem 4, we have

0 ≤ 1

8
√

ζ 3
2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ (
√

ζ2 – 1)(1 –
√

ζ1)√
ζ2 +

√
ζ1

– h2(r̃, s̃)

≤ 1

8
√

ζ 3
1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Use Theorem 4 for ψ(t) = 1
2 (

√
t – 1)2, which gives ψ ′′(t) = 1

4t
3
2

and, obviously,

1

4ζ
3
2

2

≤ ψ ′′(t) ≤ 1

4ζ
3
2

1

for all t ∈ [ζ1, ζ2].
�

Remark 12 Choosing T = R in Proposition 12, we get [7, Proposition 9 on p. 9].

4.4 Jeffreys distance on time scales
Let ψ : (0,∞) →R be the convex mapping ψ(t) = (t – 1) ln(t). Then

Iψ (r̃, s̃) =
∫ b

a

(
r̃(y) – s̃(y)

)
ln

[
r̃(y)
s̃(y)

]

�y = DJ (r̃, s̃),

where DJ (r̃, s̃) is the Jeffreys distance.

Proposition 13 Let r̃, s̃ satisfy (23). Then we get

DJ (r̃, s̃) =
∫ b

a

(
r̃(y) – s̃(y)

)
ln

[
r̃(y)
s̃(y)

]

�y ≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2) + 1

L(ζ1, ζ2)
+ ln I

(
1
ζ1

,
1
ζ2

)

+ 2.

Proof Use Theorem 2 for ψ(t) = (t – 1) ln t to get

DJ (r̃, s̃) =
∫ b

a

(
r̃(y) – s̃(y)

)
ln

[
r̃(y)
s̃(y)

]

�y

≤ ζ2 – 1
ζ2 – ζ1

(ζ1 – 1) ln ζ1 +
1 – ζ1

ζ2 – ζ1
(ζ2 – 1) ln ζ2

=
(ζ2 – 1)(ζ1 – 1) ln ζ1 – (1 – ζ1)(ζ2 – 1) ln ζ2

ζ2 – ζ1

=
ζ2 ln ζ2 – ζ1 ln ζ1

ζ2 – ζ1
– ζ1ζ2

[ln ζ2 – ln ζ1]
ζ2 – ζ1

+
ζ1 ln ζ2 – ζ2 ln ζ1

ζ2 – ζ1
–

[ln ζ2 – ln ζ1]
ζ2 – ζ1

= ln

(
ζ

ζ2
2

ζ
ζ1
1

) 1
ζ2–ζ1

– ln e + ln e – (ζ1ζ2 + 1)
[ln ζ2 – ln ζ1]

ζ2 – ζ1
+

ζ1ζ2( 1
ζ2

ln ζ2 – 1
ζ1

ln ζ1)
ζ2 – ζ1

= ln I(ζ1, ζ2) + 1 –
[(
√

ζ1ζ2)2 + 1]
L(ζ1, ζ2)

+
( 1
ζ1

ln 1
ζ1

– 1
ζ2

ln 1
ζ2

)
1
ζ1

– 1
ζ2

= ln I(ζ1, ζ2) –
G2(ζ1, ζ2) + 1

L(ζ1, ζ2)
+ ln I

(
1
ζ1

,
1
ζ2

)

+ 2. �
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The following example gives an upper bound for the Jeffreys distance, which is new in
quantum calculus.

Example 20 Choosing T = qN0 (q > 1) in Proposition 13, we have

logq(b)–1
∑

k=logq(a)

qk(q – 1)
(
r̃
(
qk) – s̃

(
qk)) ln

[
r̃(qk)
s̃(qk)

]

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2) + 1

L(ζ1, ζ2)
+ ln I

(
1
ζ1

,
1
ζ2

)

+ 2.

Proposition 14 Under the assumptions of Theorem 3, we get

0 ≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2) + 1

L(ζ1, ζ2)
+ ln I

(
1
ζ1

,
1
ζ2

)

+ 2 – DJ (r̃, s̃)

≤
[

1
G2(ζ1, ζ2)

+
1

L(ζ1, ζ2)

]
[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Apply Theorem 3 for ψ(t) = (t – 1) ln t, for which

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
1

ζ1ζ2
+

ln ζ2 – ln ζ1

ζ2 – ζ1
=

1
G2(ζ1, ζ2)

+
1

L(ζ1, ζ2)
. �

Proposition 15 Under the assumptions of Theorem 4, we have

ζ2 + 1
ζ 2

2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ ln I(ζ1, ζ2) –
G2(ζ1, ζ2) + 1

L(ζ1, ζ2)
+ ln I

(
1
ζ1

,
1
ζ2

)

+ 2 – DJ (r̃, s̃)

≤ ζ1 + 1
ζ 2

1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Consider ψ(t) = (t – 1) ln t in Theorem 4. In this case, ψ ′′(t) = t+1
t2 , t ∈ [ζ1, ζ2], and

then

ζ2 + 1
ζ 2

2
≤ ψ ′′(t) ≤ ζ1 + 1

ζ 2
1

, t ∈ [ζ1, ζ2],

which gives the desired result. �

4.5 Bhattacharyya distance on time scales
Let ψ : [0,∞) →R be a convex mapping, ψ(t) = –

√
t. Then

Iψ (r̃, s̃) = –
∫ b

a
s̃(y)

√
r̃(y)
s̃(y)

�y

= –
∫ b

a

√
s̃(y)r̃(y)�y = DB(r̃, s̃),

where DB(r̃, s̃) is the Bhattacharyya distance.
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Proposition 16 Under the assumptions of Theorem 2, we obtain

DB(r̃, s̃) ≤ –1 – G(ζ1, ζ2)
2A(

√
ζ1,

√
ζ2)

.

Proof Use Theorem 2 for ψ(t) = –
√

t to obtain

DB(r̃, s̃) ≤ (ζ2 – 1)(–
√

ζ1) + (1 – ζ1)(–
√

ζ2)
ζ2 – ζ1

=
–
√

ζ2 +
√

ζ1 – ζ2
√

ζ1 + ζ1
√

ζ2

ζ2 – ζ1

=
–1(

√
ζ2 –

√
ζ1) –

√
ζ1

√
ζ2(

√
ζ2 –

√
ζ1)

(
√

ζ2 –
√

ζ1)(
√

ζ2 +
√

ζ1)

=
(–1 –

√
ζ1

√
ζ2)

(
√

ζ2 +
√

ζ1)
=

–1 – G(ζ1, ζ2)
2A(

√
ζ1,

√
ζ2)

. �

Example 21 Choosing T = qN0 (q > 1) in Proposition 16, we have

logq(b)–1
∑

k=logq(a)

–
√

qk(q – 1)r̃
(
qk

)
s̃
(
qk

) ≤ –1 – G(ζ1, ζ2)
2A(

√
ζ1,

√
ζ2)

.

Remark 13 In Example 21, we get an upper bound for the Bhattacharyya distance, which
is new in quantum calculus.

Proposition 17 Under the assumptions of Theorem 3, we have

0 ≤ –1 – G(ζ1, ζ2)
2A(

√
ζ1,

√
ζ2)

– DB(r̃, s̃),

0 ≤ 1
4G(ζ1, ζ2)A(

√
ζ1,

√
ζ2)

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
,

where A(·, ·) is the arithmetic mean.

Proof Apply Theorem 3 with ψ(t) = –
√

t, which implies that ψ ′(t) = – 1
2
√

t and

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
1

2
√

ζ1ζ2(
√

ζ2 +
√

ζ1)
. �

Proposition 18 Under the assumptions of Theorem 4, we have

0 ≤ 1

8
√

ζ 3
2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ –1 – G(ζ1, ζ2)
2A(

√
ζ1,

√
ζ2)

– DB(r̃, s̃)

≤ 1

8
√

ζ 3
1

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.
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Proof Use Theorem 4 for ψ(t) = –
√

t, which implies that ψ ′′(t) = 1

4t
3
2

and, obviously,

1

4ζ
3
2

2

≤ ψ ′′(t) ≤ 1

4ζ
3
2

1

for all t ∈ [ζ1, ζ2].
�

4.6 Harmonic distance on time scales
Let ψ : (0,∞) →R be the convex mapping ψ(t) = –2t

1+t . Then

Iψ (r̃, s̃) = –
∫ b

a

2r̃(y)s̃(y)
r̃(y) + s̃(y)

�y = DHa(r̃, s̃),

where DHa(r̃, s̃) is the harmonic distance.

Proposition 19 Under the assumptions of Theorem 2, we have

DHa(r̃, s̃) ≤ –2
1 + 2A(ζ1, ζ2) + G2(ζ1, ζ2)

.

Proof Use Theorem 2 for ψ(t) = –2t
1+t to get

DHa(r̃, s̃) ≤ ζ2 – 1
ζ2 – ζ1

–2ζ1

1 + ζ1
+

1 – ζ1

ζ2 – ζ1

–2ζ2

1 + ζ2

=
–2ζ1ζ2 + 2ζ1 – 2ζ2 + 2ζ1ζ2

(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)

=
–2(ζ2 – ζ1)

(ζ2 – ζ1)(ζ1 + 1)(ζ2 + 1)

=
–2

(ζ1 + 1)(ζ2 + 1)
=

–2
1 + 2A(ζ1, ζ2) + G2(ζ1, ζ2)

. �

The following example gives an upper bound for the harmonic distance, which is new
in quantum calculus.

Example 22 Choosing T = qN0 (q > 1) in Proposition 19, we obtain

–
logq(b)–1

∑

k=logq(a)

2qk(q – 1)r̃(qk)s̃(qk)
r̃(qk) + s̃(qk)

≤ –2
1 + 2A(ζ1, ζ2) + G2(ζ1, ζ2)

.

Proposition 20 Under the conditions of Theorem 3, we have

0 ≤ –2
1 + 2A(ζ1, ζ2) + G2(ζ1, ζ2)

– DHa(r̃, s̃),

0 ≤ 8A(ζ1, ζ2) + 8
[G2(ζ1, ζ2) + 2A(ζ1, ζ2) + 1]2

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Apply Theorem 3 with ψ(t) = –2t
1+t , which implies that ψ ′(t) = –1

(1+t)2 and

ψ ′(ζ2) – ψ ′(ζ1)
ζ2 – ζ1

=
(ζ2 + ζ1 + 2)

[(ζ2 + 1)(ζ1 + 1)]2 =
2A(ζ1, ζ2) + 2

[G2(ζ1, ζ2) + 2A(ζ1, ζ2) + 1]2 . �
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Proposition 21 Under the assumptions of Theorem 4, we get

0 ≤ 2
(1 + ζ2)3

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]

≤ –2
1 + 2A(ζ1, ζ2) + G2(ζ1, ζ2)

– DHa(r̃, s̃)

≤ 2
(1 + ζ1)3

[
(ζ2 – 1)(1 – ζ1) – Dχ2 (r̃, s̃)

]
.

Proof Use Theorem 4 for ψ(t) = –2t
1+t , which implies that ψ ′′(t) = 2

(1+t)3 and

2
(1 + ζ2)3 ≤ ψ ′′(t) ≤ 2

(1 + ζ1)3 for all t ∈ [ζ1, ζ2]. �

5 Conclusion
In this paper, we introduced the Csiszár f -divergence on time scales and establish inequal-
ities involving the Csiszár f -divergence on time scales. The obtained results are an exten-
sion of some known results in the literature and report new results in h-discrete calculus
and quantum calculus.
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The research of Josip Pečarić is supported by the Ministry of Education and Science of the Russian Federation (Agreement
number 02.a03.21.0008).

Funding
There is no funding for this work.

Availability of data and materials
Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors jointly worked on the results and read and approved the final manuscript.

Author details
1Department of Mathematics, University of Sargodha, Sargodha, Pakistan. 2Department of Mathematics, University of
Lahore (Sargodha Campus), Sargodha, Pakistan. 3Catholic University of Croatia, Zagreb, Croatia. 4RUDN University,
Moscow, Russia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 September 2020 Accepted: 3 December 2020

References
1. Agarwal, R., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)
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