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Abstract
In this paper we consider a generalization to the q-calculus theory in the space of
q-integrable functions. We introduce q-delta sequences and develop q-convolution
products to derive certain q-convolution theorem. By using the concept of q-delta
sequences, we establish various axioms and set up q-spaces of generalized functions
named q-Boehmian spaces. The new assigned spaces of q-generalized functions are
acceptable and compatible with the classical spaces of the ordinary functions.
Consequently, we extend the generalized q-Sumudu transform to the sets of
q-Boehmian spaces. On top of that, we nominate the canonical q-embeddings
between the q-integrable sets of functions and the q-integrable sets of q-Boehmians.
Furthermore, we address the general properties of the generalized q-Sumudu
transform and its inversion formula in some detail.
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1 Preliminaries
The subject of fractional calculus has attained an eminent concern during the past decades
due to various applications of this subject in various fields of science and engineering.
Recently, an increase of interest in this area has duly been implemented and utilized in
the theory of ordinary fractional calculus, optimal control problems, q-transform analysis,
statistics, mathematical physics, q-difference equations, and q-integral equations (see, e.g.,
[1, 2]). By fixing a real number q such that 0 < q < 1, the q-derivative of a differentiable
function ϑ is defined by

Dqϑ(x) =
ϑ(x) – ϑ(qx)

(1 – q)x
(x �= 0).

The q-integrals from 0 to y and from 0 to ∞ have been respectively defined by Jackson [3]
as follows:

Iqϑ(y) =
∫ y

0
ϑ(x) dqx = (1 – q)y

∞∑
n=0

ϑ
(
yqn)qn
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and

∫ ∞

0
ϑ(x) dqx = (1 – q)

∞∑
n=–∞

ϑ
(
qn)qn,

provided the two sums converge absolutely. The q-integration by parts has been defined
by

∫ b

a
g(x)Dqϑ(x) dqx = ϑ(b)g(b) – ϑ(a)g(a) –

∫ b

a
ϑ(qx)Dqg(x) dqx.

Ever after Jackson [3] presented the q-integral concept, various q-analogues of various
types of integral transforms were given in a classical way (see, e.g., [4–19]). Consisting
of the notion of regular operators [20], the theory of Boehmians was first introduced by
[21] to generalize distributions and regular operators [22] (see, e.g., [21, 23–31]). Boehmi-
ans with their abstract nature are equivalence classes of quotients of sequences obtained
from an integral domain, where the operations are addition and convolution. Complying
with the q-calculus concept, we introduce the q-Boehmian concept as follows: Let A be a
complex linear space and B be a subspace of A. Let •q : A × B → A be a binary operation
such that, for all α ∈ C, δ̂, δ̌, δ̃ ∈ A and γ1,γ2,γ ∈ B, we have (δ̂ + δ̌) •q γ = δ̂ •q γ + δ̌ •q γ ,
(αδ̂) •q γ = α(δ̂ •q γ ), δ̂ •q (γ1 •q γ2) = (δ̂ •q γ1) •q γ2, δ̃n •q γ → δ̃ •q γ as δ̃n → δ̃ in A as
n → ∞ and, for all (xn), (yn) ∈ �q, we have xn •q yn ∈ �q, where �q is a collection of se-
quences in B and xn •q δ̃n → δ̃ as n → ∞ provided δ̃n → δ̃ in A as n → ∞. The name of
q-Boehmian is proposed to mean the equivalence class δ̃n

xn
obtained from the equivalence

relation

δ̃n •q xn = δ̃m •q xn (m, n ∈N),

where (δ̃n) ∈ A and (xn) ∈ �q. The collection of all q-Boehmians is claimed to form a q-
Boehmian space denoted by Bq. The linear space A is identified as a subspace of the q-
Boehmian space Bq justified by the identification formula

δ̌ → δ̌ •q xn

xn
, where δ̌ ∈ A and (xn) ∈ �q.

Two q-Boehmians δ̂n
xn

and δ̃n
yn

are said to be equal in Bq if δ̂n •q xm = δ̃m •q xm, ∀m, n ∈ N.
The addition is defined in Bq as

δ̂n

xn
+

δ̃n

yn
=

δ̂n •q yn + δ̃n •q xn

xn •q yn
.

The scalar multiplication is defined in Bq as

α
δ̃n

xn
=

αδ̃n

xn
for all α ∈C.

For every (xn) ∈ �q, convergence of type δq, βn
δq→ β , is defined in Bq when

βn •q xk ∈ A,∀k, n ∈N,β •q xk ∈ A,∀k ∈N,
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and for each k ∈ N, βn •q xk → β •q xk as n → ∞ in A, whereas, convergence of type �q,

βn
�q→ β , is defined in Bq if for some (xn) ∈ �q, (βn – β) •q xn ∈ A, ∀n ∈N and

(βn – β) •q xn → 0 as n → ∞ in A.

The space of q-Boehmians furnished with the current convergence notions emerges to
be a complete quasi-normed space. Over the set of functions

A =
{
δ̌(t) : ∃M, τ1, τ2 > 0,

∣∣δ̌(t)
∣∣ < MEq

( |t|
τj

)
, t ∈ (–1)j × [0,∞)

}
,

the q-analogue of the Sumudu transform of the first type was latterly defined by [8, (1.18)]
as follows:

Sq
{
δ̌(t); s

}
=

1
(1 – q)s

∫ s

0
Eq

(
q
s

t
)

δ̌(t) dqt, s ∈ (–τ1, τ2). (1)

The properties of q-analogue Sq of the Sumudu transform including the convergence con-
ditions and its relation with the q-Laplace integral transform have been derived by Al-
bayrak et al. [8]. Over and above, the authors investigated certain fundamental aspects of
the cited integral enfolding linearity, shifting theorems, differentiation, integration, etc.
Also an attempt has been made to obtain the convolution theorem in a convergent series
type. On the other hand, the authors in [6] provided some applications of the q-Sumudu
transform to q-polynomials, q-functions, and q-Fox’s H-functions as well.

The aimed goal of this paper is to discuss the generalized q-theory of the q-integrable
functions in the space L1

q and to investigate fundamental properties of the q-analogue
(1) in the generalized q-theory. In Sect. 2, we introduce a concept of q-Boehmians and
a concept of q-delta sequences. We also establish the space B1

q of q-Boehmians. In Sect. 3,
we establish the second space B2

q of q-Boehmians. In Sect. 4, we introduce the generalized
q-Sumudu transform and discuss several properties. In Sect. 5, we provide a conclusion
part.

2 The space B1
q

Denote by L1
q the space of all q-integrable functions δ̌ on R+ defined by

‖δ̌‖L1
q(R+) =

1
1 – q

∫ ∞

0

∣∣δ̌(x)
∣∣dqx < ∞, (2)

whose comparable definition in a series expression formula is given as
∑∞

–∞ qnδ̌(qn), pro-
vided the series converges absolutely. Denote by Dq the q-space of all test functions of
compact supports on R+, i.e.,

Dq =
{
δ̌ ∈ C∞(R) : sup

0<x<∞

∣∣Dqδ̌(x)
∣∣ < ∞}

.

Denote by �q the set of all sequences from Dq such that �1
q – �3

q satisfy

�1
q :

∫ ∞

0

∣∣xn(x)
∣∣dqx = 1, ∀n ∈ N.
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�2
q :

∣∣xn(x)
∣∣ < M, M > 0, M ∈R+.

�3
q : supp(xn) ⊆ (0, bn), bn → 0 as n → ∞,∀n ∈N.

Between two integrable functions δ̌ and δ̂ in L1
q, we denote by ∗q the q-convolution prod-

uct defined by

(
δ̌ ∗q δ̂

)
(x) =

∫ x

0
δ̌(x – t)δ̂(t) dqt, (3)

provided the right-hand side integral exists for every real number x > 0. It is clear from the
context that δ̌ ∗q δ̂ ∈ L1

q for all δ̌ and δ̂ in L1
q. Following Belgacem [32], the q-convolution

theorem of the q-Sumudu transform of the convolution δ̌ ∗q δ̂ can be easily established by
using [21, (2.1)] (see, also [11]) as follows:

Sq
(
δ̌ ∗q δ̂

)
(x) = xSqδ̌(x)Sqδ̂(x). (4)

An imperative result for categorizing the q-delta sequences may be introduced as fol-
lows.

Lemma 1 Let (xn) and (yn) be arbitrary in �q. Then the sequence (xn ∗q yn) is a q-delta
sequence in �q.

Proof To establish this lemma, we examine that �1
q, �2

q, and �3
q satisfy for (xn ∗q yn). To

examine the correctness of �1
q, we use integral Eq. (3) to write

∫ ∞

0

(
xn ∗q yn

)
(x) dqx =

∫ ∞

0

(∫ x

0
xn(x – t)yn(t) dqt

)
dqx.

Now we change the order of integration to have
∫ ∞

0

(
xn ∗q yn

)
(x) dqx =

∫ ∞

0

∫ ∞

t
xn(x – t)yn(t) dqt dqx.

By changing the variables in the inner integral, i.e., substituting the change of variables
x – t = y, hence dqx = dqy, the above equation reveals

∫ ∞

0

(
xn ∗q yn

)
(x) dqx =

∫ ∞

0
yn(t)xn(y) dqt dqy =

∫ ∞

0
yn(t) dqt

∫ ∞

0
xn(y) dqy = 1.

This proves �1
q. The proof of �2

q follows from the fact that |xn ∗q yn| ≤ |xn||yn|. The proof
of �3

q follows from the fact that supp(xn ∗q yn) ⊂ supp(xn) + supp(yn) for (xn), (yn) ∈ �q.
This completes the proof of the lemma. �

Hence, Lemma 1 shows that every sequence in �q forms an appropriate q-delta se-
quence.

Lemma 2 Let δ̌ and δ̂ be in L1
q. Then, for every γ , γ̂ ∈ Dq and α ∈C, the following assertions

are valid:

(i) γ ∗q γ̂ = γ̂ ∗q γ , (ii) (δ̌ + δ̂) ∗q γ = δ̌ ∗q γ + δ̂ ∗ γ ,
(iii) (αδ̌) ∗q γ = α

(
δ̌ ∗q γ

)
, (iv) δ̌ ∗q (

γ ∗q γ̂
)

=
(
δ̌ ∗q γ

) ∗q γ̂ .
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Proof (i) By using the definition of the convolution product ∗q given by (3) and applying
the change of variables y = x – t, hence dqy = –dqt, we get

(
γ ∗q ψ̂

)
(x) =

∫ x

0
γ (x – t)γ̂ (t) dqt

=
∫ 0

x
γ (y)γ̂ (x – y)(–1) dqy

=
∫ x

0
γ̂ (x – y)γ (y) dqy.

That is,

(
γ ∗q ψ̂

)
(x) =

(
γ̂ ∗q γ

)
(x). (5)

Proof of (ii) and (iii) follows from simple integral calculus. The proof of (iv) follows from
a similar argument to that of (i). This completes the proof of the lemma. �

Lemma 3 Let δ̌ and (δ̌n) be sequences of integrable functions in the space L1
q such that

δ̌n → δ̌ as n → ∞. Then we have

δ̌n ∗q γ → δ̌ ∗q γ as n → ∞ (6)

for every γ ∈ Dq.
The proof of this lemma follows from simple integration. Hence, we delete the details.

Finally, we have to establish the following lemma.

Lemma 4 Let δ̌ and δ̂ be arbitrary functions in L1
q and (xn) be in �q such that δ̌ ∗q xn =

δ̂ ∗q xn. Then we have δ̌ = δ̂ in L1
q for every n ∈ N.

Proof The proof of this lemma follows from Eq. (2) and Lemma 3. Thus, we omit the
details. �

Lemma 5 Let δ̌ be an integrable function in L1
q, then, for every (xn) in �q, we have δ̌∗q xn →

δ̌ as n → ∞.

Proof By the assumption that �1
q and �3

q hold for (xn) and allowing the support of xn to
be included in the interval (0, bn), for some real numbers bn, n ∈N, we obtain

∥∥δ̌ ∗q xn – δ̌
∥∥

L1
q(R+) =

1
1 – q

∫ ∞

0

∣∣(δ̌ ∗q xn
)
(x) – δ̌(x)

∣∣dqx

≤ 1
1 – q

∫ ∞

0

∫ x

0

∣∣δ̌(x – t) – δ̌(x)
∣∣∣∣xn(t)

∣∣dqt dqx

=
1

1 – q

∫ ∞

0

∫ bn

0

∣∣δ̌(x – t) – δ̌(x)
∣∣∣∣xn(t)

∣∣dqt dqx.
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Therefore, we have

∥∥δ̌ ∗q xn – δ̌
∥∥

L1
q(R+) ≤ 1

1 – q

∫ ∞

0

∫ bn

0

∣∣δ̌(x – t)
∣∣∣∣xn(t)

∣∣dqt dqx

+
1

1 – q

∫ ∞

0

∫ bn

0

∣∣δ̌(x)
∣∣∣∣xn(t)

∣∣dqt dqx.

Since δ̌ ∈ L1
q, the above equation can be developed to give

∥∥δ̌ ∗q xn – δ̌
∥∥

L1
q(R+) ≤ A

1
1 – q

∫ bn

0

∣∣xn(t)
∣∣dqt + A

1
1 – q

∫ bn

0

∣∣xn(t)
∣∣dqt (7)

for some constant A. Hence, by applying �2
q and integrating, from Eq. (7) we get

∥∥δ̌ ∗q xn – δ̌
∥∥

L1
q(R+) ≤ AMbn + BMbn → 0

as n → ∞, where M is a certain positive constant. Hence the proof of this lemma is com-
pleted. �

Therefore, the space B1
q is defined with the sets (L1

q,∗q), (Dq,∗q), and �q. The canonical
q-embedding of the space L1

q in the space B1
q is given as

δ̌ → δ̌ ∗q xn

xn
. (8)

Therefore, every δ̌ in L1
q can be identified in B1

q as δ̌∗qxn
xn

. In addition, scalar multiplication,
differentiation, �q convergence, and δq convergence are defined in a natural way. If (δ̌n) ∈
L1

q and (xn) ∈ �q, then the pair (δ̌n, xn) (or δ̌n
xn

) is said to be a quotient of sequences if δ̌n ∗q

xm = δ̌m ∗q xn, ∀n, m ∈ N. Therefore, if δ̌n
xn

and δ̂n
yn

are quotients of sequences and δ̌ ∈ L1
q,

then it is easy to see that

δ̌ ∗q xn

xn
and

δ̌n ∗q xn + δ̂n ∗q xn

xn ∗q yn

are also quotients of sequences. Further, the following equivalence relations can be easily
checked:

δ̌n

xn ∗q δ̌
∼ δ̌n ∗q δ̌

xn
and

δ̌n

xn ∗q δ̂n
∼ δ̌n ∗q δ̂n

xn
.

Two quotients of sequences δ̌n
xn

and δ̂n
yn

are said to be equivalent if δ̌n ∗q ym = δ̂m ∗q xn,

∀n, m ∈ N. The equivalent class w̆B = ( δ̌n
xn

) of quotients of sequences containing δ̌n
xn

is said
to be a q-Boehmian. The space of such q-Boehmians is denoted by B1

q.
For two q-Boehmians w̆B = δ̌n

xn
and z̆B = δ̂n

yn
in B1

q, the following are well defined on B1
q:

(i) w̆B + z̆B =
δ̌n ∗q xn + δ̂n ∗q δn

xn ∗q yn
, (ii) βw̆B =

βδ̌n

xn
,



Al-Omari Advances in Difference Equations         (2021) 2021:10 Page 7 of 14

(iii) w̆B ∗q z̆B =
δ̌n ∗q δ̂n

xn ∗q yn
, (iv) Dkw̆B =

Dk δ̌n

xn
, and (v) w̆B ∗q δ̌ =

δ̌n ∗q δ̌

xn
,

where k ∈R, β ∈C, Dkw̆B is the kth derivative of w̆B and δ̌ ∈ L1
q.

Definition 6 For n = 1, 2, 3, . . . and w̆B,n, w̆B ∈ B1
q, the sequence (w̆B,n) is said to be δq-

convergent to w̆B, denoted by δq – limn→∞ w̆B,n = w̆B, provided there can be found a delta
sequence (xn) such that

(a) (w̆B,n ∗q xk), (w̆B ∗q xk) in L1
q for all n, k ∈N;

(b) limn→∞ w̆B,n ∗q xk = w̆B ∗q xk in L1
q for every k ∈N.

Definition 7 For n = 1, 2, 3, . . . and w̆B,n, w̆B ∈ B1
q, the sequence (w̆B,n) is said to be �q-

convergent to w̆B, denoted by �q-limn→∞ w̆B,n = w̆B, provided there can be found a delta
sequence (xn) such that

(a) (w̆B,n – w̆B) ∗q xn ∈ L1
q(∀n ∈N);

(b) limn→∞(w̆B,n – w̆B) ∗q xn = 0 in L1
q.

Remark 8 Let δ̌ ∈ L1
q and (xn) ∈ �q be fixed. Then the mapping

δ̌ → w̆B,

where w̆B = δ̌∗qxn
xn

is an injective mapping from L1
q into B1

q.

Therefore, it can be easily checked that L1
q may be identified as a subspace of B1

q.

Remark 9 Let (xn) ∈ �q. Then, if δ̌n → δ̌ in L1
q as n → ∞, then for all k ∈N,

δ̌n ∗q xk → δ̌ ∗q xk

as n → ∞. That is, w̆B,n → w̆B in B1
q as n → ∞.

The above remark states the following.

Theorem 10 The mapping δ̌ → w̆B, w̆B = δ̌∗qxn
xn

, is a continuous q-embedding of the space
L1

q into the space B1
q.

3 The space B2
q

In this section we provide the basic essentials that we need in defining the space B2
q of q-

Boehmians, with the set (L1
q,•q), the subset (DSq

q ,∗q), the set of delta sequences (�Sq
q ,∗q),

the convolution products ∗q, and the operation •q; see Eq. (9). To establish the space B2
q,

let us define the following convolution product.

Definition 11 Let δ̌ and δ̂ be integrable functions in L1
q. Between δ̌ and δ̂ we define the

q-product •q as follows:

(
δ̌ •q δ̂

)
(x) = xSqδ̌(x)δ̂(x), (9)

where Sqδ̌ is the q-Sumudu transform of δ̌.
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We have the following assertion.

Theorem 12 Let δ̌ be an integrable function in L1
q, then δ̌ •q ψ ∈ L1

q for all ψ ∈ DSq
q .

Proof Let δ̌ ∈ L1
q and ψ = Sqγ for some γ ∈ Dq. Then, by the definition of the space L1

q and
the product •q, we write

∥∥δ̌ •q ψ
∥∥

L1
q(R+) =

1
1 – q

∫ ∞

0

∣∣(δ̌ •q ψ
)
(x)

∣∣dqx =
1

1 – q

∫ ∞

0
xSqδ̌(x)ψ(x) dqx.

Hence, we have

∥∥δ̌ •q ψ
∥∥

L1
q(R+) ≤ 1

1 – q

∫ ∞

0
xSqδ̌(x)Sq(γ )(x) dqx. (10)

Therefore, if [a, b] denotes a closed interval containing the support of ψ , then the hypoth-
esis that δ̌ ∈ L1

q yields

∥∥δ̌ •q ψ
∥∥

L1
q(R+) =

1
1 – q

∫ ∞

0

∣∣(δ̌ •q ψ
)
(x)

∣∣dqx

≤ M
1

1 – q

∫ b

a

∣∣xSqγ (x)
∣∣dqx

= M
1

1 – q

∫ b

a

∣∣xψ(x)
∣∣dqx

< ∞

for every ψ ∈ DSq
q , M being a positive constant.

This establishes the theorem. �

Now, we reciprocate the product •q as follows.

Theorem 13 Let δ̌ be an integrable function in L1
q, then δ̌ •q (ψ •q ψ̂) = (δ̌ •q ψ) •q ψ̂ for

all ψ , ψ̂ ∈ DSq
q .

Proof Let ψ = Sqγ , ψ̂ = Sqγ̂ , γ , γ̂ ∈ Dq. Then, by the concept of q-convolution •q and
Eq. (3), we get

(
δ̌ •q (

ψ •q ψ̂
))

(x) = x(Sqδ̌)(x)
(
Sqγ •q Sqγ̂

)
(x) = xSqδ̌(x)xSqγ (x)Sqγ̂ (x). (11)

Rearranging Eq. (11) and again the concept of q-convolution •q gives

(
δ̌ •q (

ψ •q ψ̂
))

(x) = x
(
xSqδ̌(x)xSqγ (x)

)(
Sqγ̂ (x)

)

= x
(
δ̌ •q ψ

)
Sq(γ̂ )(x)

=
((

δ̌ •q ψ
) •q ψ̂

)
(x).

Hence the proof of the theorem follows. �
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Theorem 14 (i) Let δ̌ and δ̂ be integrable functions in L1
q, then (δ̌ + δ̂) •q ψ = δ̌ •q ψ + δ̂ •q ψ

for all ψ ∈ DSq
q .

(ii) Let δ̌ be an integrable function in L1
q, then (αδ̌ •q ψ) = α(δ̌ •q ψ) for all ψ ∈ DSq

q , α ∈C.

Proof (i) Let ψ ∈ DSq
q , ψ ∈ DSq

q , ψ = Sqγ , γ ∈ Dq. Then, by the definition of •q and Eq. (11),
we write

(
(δ̌ + δ̂) •q ψ

)
(x) = xSq(δ̌ + δ̂)(x)ψ(x)

= xSqδ̌(x)Sqγ (x) + xSqδ̂(x)Sqγ (x)

=
(
δ̌ •q ψ

)
(x) +

(
δ̂ •q ψ

)
(x).

The proof of the second part is similar. The proof of this theorem is therefore com-
pleted. �

Theorem 15 Let δ̌, δ̂ and (δ̂n) be integrable in L1
q. Then the following hold.

(i) If δ̂n → δ̌ in L1
q as n → ∞, then δ̂n •q ψ → δ̌ •q ψ for all ψ ∈ DSq

q , ψ = Sqγ , γ ∈ Dq as
n → ∞.

(ii) If δ̌ •q xn = δ̂ •q zn, then δ̌ = δ̂ in L1
q for all (zn) ∈ �

Sq
q , zn = Sqxn, n ∈N.

(iii) δ̌ •q xn → 0 in L1
q for all (xn) ∈ �

Sq
q as n → ∞.

Proof (i) Let δ̌, δ̂ and (δ̂n) be integrable in L1
q and ψ ∈ DSq

q , ψ = Sqγ , γ ∈ Dq, such that
δ̂n → δ̂ in L1

q as n → ∞. Then we have

(
δ̂n •q ψ

)
(x) = xSqδ̂n(x)Sqγ (x) → xSqδ̂(x)Sqγ (x) = xSqδ̂(x)ψ(x) = δ̌ •q ψ as n → ∞.

Proof (ii) Let δ̌ and δ̂ be integrable functions in L1
q and (zn) ∈ �

Sq
q , zn = Sqxn, n ∈ N such

that δ̌ •q zn = δ̂ •q zn. Then xSqδ̌(x)Sqxn(x) – xSqδ̂(x)Sq(xn)(x) = 0 for all x ∈ L1
q. Hence, we

have

xSqxn(x)Sq(δ̌ – δ̂)(x) = 0

for all x ∈ L1
q. Therefore, e infers that δ̌(x) = δ̂(x) for all x ∈ L1

q. The proof of (iii) is analogous.
Hence the proof is completed. �

If (δ̌n) ∈ L1
q and (zn) ∈ �

Sq
q , zn = Sqxn, n ∈ N, then the pair (δ̌n, zn) (or δ̌n

zn
) is said to be a

quotient of sequences if δ̌n •q zm = δ̌m •q zn, ∀n, m ∈N. Therefore, if δ̌n
zn

and δ̂n
yn

are quotients
of sequences and δ̌ ∈ L1

q, then it is easy to see that

δ̌ •q zn

zn
and

δ̌n •q zn + δ̂n •q zn

zn •q yn

are quotients of sequences. Further, we can easily check the following equivalence rela-
tions:

δ̌n

zn •q δ̌
∼ δ̌n •q δ̌

zn
and

δ̌n

zn •q δ̂n
∼ δ̌n •q δ̂n

zn
.
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Two quotients of sequences δ̌n
zn

and δ̂n
yn

are said to be equivalent if δ̌n •q ym = δ̂m •q zn,

∀n, m ∈ N. The equivalent class w̆B = δ̌n
zn

of quotients of sequences containing δ̌n
zn

is said to
be a q-Boehmian. The space of such q-Boehmians is denoted by B2

q. For two q-Boehmians
w̆B = δ̌n

zn
and z̆B = δ̂n

yn
in B2

q, the following are well defined on B2
q:

(i) w̆B + z̆B =
δ̌n •q zn + δ̂n •q zn

zn •q yn
, (ii) βw̆B = βδ̌n

zn
,

(iii) w̆B •q z̆B =
δ̌n •q δ̂n

zn •q yn
, (iv) Dkw̆B = Dk δ̌n

zn
, and

(v) w̆B •q δ̌ =
δ̌n •q δ̌

zn
,

where k ∈R, β ∈C, and Dkw̆B is the kth derivative of w̆B and δ̌ ∈ L1
q.

Definition 16 For n = 1, 2, 3, . . . and w̆B,n, w̆B ∈ B2
q, the sequence (w̆B,n) is said to be δq-

convergent to w̆B, denoted by δq – limn→∞ w̆B,n = w̆B, provided there can be found a delta
sequence (zn), zn = Sqxn, n ∈N, such that

(a) (w̆B,n •q zk), (w̆B •q zk) in L1
q for all n, k ∈ N;

(b) limn→∞ w̆B,n •q zk = w̆B •q zk in L1
q for every k ∈ N.

Definition 17 For n = 1, 2, 3, . . . and w̆B,n, w̆B ∈ B2
q, the sequence (w̆B,n) is said to be �

Sq
q -

convergent to w̆B, denoted by �q-limn→∞ w̆B,n = w̆B, provided there can be found a delta
sequence (zn) such that

(a) (w̆B,n – w̆B) •q zn ∈ L1
q (∀n ∈N);

(b) limn→∞(w̆B,n – w̆B) •q zn = 0 in L1
q.

Remark 18 Let δ̌ ∈ L1
q and (zn) ∈ �

Sq
q , zn = Sqxn, n ∈N, be fixed. Then the mapping

δ̌ → w̆B,

where w̆B = δ̌•qzn
zn

is an injective mapping from L1
q into B2

q.

Therefore, it can be easily checked that L1
q may be identified as a subspace of B2

q.

Remark 19 Let (zn) ∈ �
Sq
q , zn = Sqxn, n ∈ N. Then if δ̌n → δ̌ in L1

q as n → ∞, then, for all
k ∈N,

δ̌n •q zk → δ̌ •q zk

as n → ∞. That is, w̆B,n → w̆B in B2
q as n → ∞.

The above remark states the following.

Theorem 20 The mapping ψ → w̆B, w̆B = δ̌•qzn
zn

, is a continuous q-embedding of the space
L1

q into the space B2
q.
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4 The q-Sumudu transform of generalized q-theory
Definition 21 Let δ̌n

xn
be a q-Boehmian in the space B1

q. Then we define the q-Sumudu

transform of δ̌n
xn

as follows:

S1
q
δ̌n

xn
=

Sqδ̌n

Sqxn
for all (δ̌n) ∈ L1

q and (xn) ∈ �q.

It is clear that S1
q

δ̌n
xn

belongs to B2
q as (Sqδ̌n) and (Sqxn) are elements of the spaces L1

q and
�

Sq
q , respectively. The linearity of S1

q follows by easy techniques.

Theorem 22 The operator S1
q : B1

q → B2
q is q-sequentially continuous, i.e., if �q –

limn→∞ w̆B,n = w̆B in B1
q, then

�q – lim
n→∞ S1

qw̆B,n = S1
qw̆B in B2

q.

Proof Let �q – limn→∞ w̆B,n = w̆B in B1
q, then there is (xn) in �q such that �q –

limn→∞(w̆B,n – w̆B) ∗q xn = 0 in B1
q. The continuity of the integral operator gives

�
Sq
q – lim

n→∞ S1
q
(
(w̆B,n – w̆B) ∗q xn

)
= �

Sq
q – lim

n→∞
((

S1
qw̆B,n – S1

qw̆B
) •q Sqxn

)
= 0.

Thus, we have �
Sq
q – limn→∞ S1

qw̆B,n = S1
qw̆B in B2

q.
This finishes the proof of the theorem. �

Theorem 23 S1
q : B1

q → B2
q is one-one, onto, continuous with respect to δq and �q-

convergence and consists with the classical operator Sq.

Proof Proofs of the parts that S1
q is one-one, onto, continuous with respect to δq and �q-

convergence are analogous to those given in the literature. To prove that S1
q consists with

the classical operator S1
q , let δ̂ ∈ L1

q and let δ̂∗qzn
zn

be its representative in B2
q for all zn = Sqxn,

(xn) ∈ �q. Clearly, for all n ∈ N, (zn) is independent of the representative. Hence, by the
convolution theorem we get

S1
q
δ̂ ∗q zn

zn
=

Sqδ̂ •q Sqxn

Sqxn
= Sqδ̂ •q S1

q
xn

xn
.

That is, Sq δ̂•qSqxn
Sqxn

= Sq δ̂•qzn
zn

is the representative of Sqδ̂ in the space L1
q. The proof is, there-

fore, finished.
We introduce the transform inversion formula as follows. �

Definition 24 We define the inverse integral operator of S1
q of a q-Boehmian Sq δ̌n

zn
in B2

q as
a q-Boehmian in B1

q defined by

S–1
q

Sqδ̌n

zn
=

δ̌n

xn
,

where zn = Sqxn, (xn) is a delta sequence in �q, and (δ̌n) is a sequence of integrable func-
tions in L1

q.
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Theorem 25 Let Sq δ̌n
zn

be a q-Boehmian in B2
q, zn = Sqxn, (xn) ∈ �q, and δ̂ ∈ L1

q. Then we
have

S1
q

(
δ̌n

xn
∗q δ̂

)
=

Sqδ̌n

zn
•q δ̂ and S–1

q

(
Sqδ̌n

zn
•q δ̂

)
=

δ̌n

xn
∗q δ̂.

Proof Assume that Sq δ̌n
zn

is a q-Boehmian in the space B2
q, zn = Sqxn, (xn) ∈ �q, and δ̂ ∈ L1

q.
Then, by using the convolution theorem, Definition 21, and Eq. (9), we have

S1
q

(
δ̌n

xn
∗q δ̂

)
= S1

q

(
δ̌n ∗q δ̂

xn

)

=
Sq(δ̌n ∗q δ̂)

Sqxn

=
xSqδ̌n(x)Sqδ̂(x)

Sqxn

=
Sqδ̌n •q δ̂

Sqxn

=
Sqδ̌n

Sqxn
•q δ̂

=
Sqδ̌n

zn
•q δ̂.

Similarly, by using the convolution theorem, Definition 24, and Eq. (9), we obtain

S–1
q

(
Sqδ̌n

zn
•q δ̂

)
= S–1

q
Sqδ̌n •q δ̂

zn

= S–1
q

xSqδ̌n(x)Sqδ̂(x)
zn

= S–1
q

Sq(δ̌n ∗q δ̂)
Sqxn

=
δ̌n ∗q δ̂

xn

=
δ̌n

xn
∗q δ̂.

This completely finishes the proof of the theorem. �

5 Conclusion
This paper could be an evolution of idea. It gives an extension to a set of q-integrable
functions to a set of q-integrable q-generalized functions. It verifies that the q-analysis of
this paper generalizes the q-analysis followed by Albayrak et al. 2013. Moreover, this pa-
per has also shown that the generalized q-Sumudu transform and its q-inversion formula
are well-defined mappings possessing properties alike to the classical properties of their
corresponding classical versions.
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