
Cao et al. Advances in Difference Equations        (2020) 2020:668 
https://doi.org/10.1186/s13662-020-03133-7

R E S E A R C H Open Access

A note on generalized q-difference
equations for general Al-Salam–Carlitz
polynomials
Jian Cao1, Binbin Xu1 and Sama Arjika2*

*Correspondence:
rjksama2008@gmail.com
2Department of Mathematics and
Informatics, University of Agadez,
Agadez, Niger
Full list of author information is
available at the end of the article

Abstract
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1 Introduction
In this paper, we refer to the general references [2] for definitions and notations. Through-
out this paper, we suppose that 0 < q < 1. For complex numbers a, the q-shifted factorials
are defined by

(a; q)n =

⎧
⎨

⎩

1, n = 0,

(1 – a)(1 – aq) · · · (1 – aqn–1), n = 1, 2, 3, . . .

and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n · · · (am; q)n, where m is a positive integer and n is a
nonnegative integer or ∞.

The q-binomial coefficient is defined by

[
n
k

]

:=
(q; q)n

(q; q)k(q; q)n–k
. (1.1)

The basic (or q-) hypergeometric function of the variable z and with r numerator and s

denominator parameters is defined as follows (see, for details, the monographs by Slater
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([3], Chap. 3) and by Srivastava and Karlsson ([4], p. 347, Eq. (272)); see also [5–7]):

r�s

[
a1, a2, . . . , ar;
b1, b2, . . . , bs;

q; z

]

:=
∞∑

n=0

[
(–1)nq(n

2)
]1+s–r (a1, a2, . . . , ar; q)n

(b1, b2, . . . , bs; q)n

zn

(q; q)n
,

where q �= 0 when r > s + 1. We also note that

r+1�r

[
a1, a2, . . . , ar+1;
b1, b2, . . . , br;

q; z

]

=
∞∑

n=0

(a1, a2, . . . , ar+1; q)n

(b1, b2, . . . , br; q)n

zn

(q; q)n
.

We remark in passing that, in a recently-published survey-cum-expository review ar-
ticle, the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential
variation of the classical q-calculus, the additional parameter p being redundant or super-
fluous (see, for details, ([8], p. 340)).

The basic (or q-) series and basic (or q-) polynomials, especially the basic (or q-) hyper-
geometric functions and basic (or q-) hypergeometric polynomials, are applicable partic-
ularly in several diverse areas [see also ([4], pp. 350–351)]. In particular, the celebrated
Chu–Vandermonde summation theorem and its known q-extensions, which have already
been demonstrated to be useful (see, for details, [2, 9–11]).

The usual q-differential operator, or q-derivative, is defined by [12–14]

Da
{

f (a)
}

=
f (a) – f (aq)

a
, θa

{
f (a)

}
=

f (aq–1) – f (a)
q–1a

. (1.2)

The Leibniz rule for Da and θa is the following identities [12, 13, 15]:

Dn
a
{

f (a)g(a)
}

=
n∑

k=0

qk(k–n)

[
n
k

]

Dk
a
{

f (a)
}

Dn–k
a

{
g
(
aqk)}, (1.3)

θn
a
{

f (a)g(a)
}

=
n∑

k=0

[
n
k

]

θ k
a
{

f (a)
}
θn–k

a
{

g
(
aq–k)}. (1.4)

The following property of Dq is straightforward and important [16]:

Dq

{
1

(at; q)∞

}

=
t

(at; q)∞
, Dk

q

{
1

(at; q)∞

}

=
tk

(at; q)∞
,

Dk
q
{

an} =

⎧
⎪⎪⎨

⎪⎪⎩

(q,q)n
(q,q)n–k

an–k , 0 ≤ k ≤ n – 1,

(q, q)n, k = n,

0, k ≥ n + 1.

(1.5)

The Al-Salam–Carlitz polynomials were introduced by Al-Salam and Carlitz in 1965
[17, Eqs. (1.11) and (1.15)]

φ(a)
n (x|q) =

n∑

k=0

[
n
k

]

(a; q)kxk and ψ (a)
n (x|q) =

n∑

k=0

[
n
k

]

qk(k–n)(aq1–k ; q
)

kxk . (1.6)

They play important roles in the theory of q-orthogonal polynomials. In fact, there are
two families of these polynomials: one with continuous orthogonality and another with
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discrete orthogonality, which are given explicitly in the book of Koekoek, Swarttouw, and
Lesky [18, Eqs. (14.24.1) and (14.25.1)]. For further information about q-polynomials, see
[18–23].

The generalized Al-Salam–Carlitz polynomials [24, Eq. (4.7)]

φ(a,b,c)
n (x, y|q) =

n∑

k=0

[
n
k

]
(a, b; q)k

(c; q)k
xkyn–k ,

ψ (a,b,c)
n (x, y|q) =

n∑

k=0

[
n
k

]
(–1)kq(k+1

2 )–nk(a, b; q)k

(c; q)k
xkyn–k , (1.7)

whose generating functions are [24, Eqs. (4.10) and (4.11))]

∞∑

n=0

φ(a,b,c)
n (x, y|q)

tn

(q; q)n
=

1
(yt; q)∞

2�1

[
a, b;
c;

q; xt

]

, max
{|yt|, |xt|} < 1, (1.8)

∞∑

n=0

ψ (a,b,c)
n (x, y|q)

(–1)nq(n
2)tn

(q; q)n
= (yt; q)∞ 2�1

[
a, b;
c;

q; xt

]

, |xt| < 1. (1.9)

Chen and Liu [12, 13] gave the clever way of parameter augmentation by use of the
following two q-exponential operators:

T(bDa) =
∞∑

n=0

(bDa)n

(q; q)n
, E(bθa) =

∞∑

n=0

q(n
2)(bθa)n

(q; q)n
, (1.10)

which is a rich and powerful tool for basic hypergeometric series, especially makes many
famous results easily fall into this framework. For further information about q-exponential
operators, see [12, 13, 25–28].

Recently, Srivastava, Arjika, and Sherif Kelil [29] introduced the following homogeneous
q-difference operator Ẽ(a, b; Dq):

Ẽ(a, b; Dq) =
∞∑

n=0

(–1)nq(n
2)(a; q)n

(q; q)n
(bDa)n. (1.11)

The operators (1.11) have turned out to be suitable for dealing with generalized Cauchy
polynomials pn(x, y, a)

pn(x, y, a) = Ẽ(a, b; Dq)
{

xn}. (1.12)

For more information about the relations between operators and q-polynomials, see [29].
Liu [16, 30] deduced several results involving Bailey’s 6ψ6, q-Mehler formulas for

Rogers–Szegö polynomials and q-integral of Sears’ transformation by the following q-
difference equations.

Proposition 1 ([30, Theorems 1 and 2]) Let f (a, b) be a two-variable analytic function in
the neighborhood of (a, b) = (0, 0) ∈C

2.
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(I) If f (a, b) satisfies the difference equation

bf (aq, b) – af (a, bq) = (b – a)f (a, b), (1.13)

then we have

f (a, b) = T(bDa)
{

f (a, 0)
}

. (1.14)

(II) If f (a, b) satisfies the difference equation

af (aq, b) – bf (a, bq) = (a – b)f (aq, bq), (1.15)

then we have

f (a, b) = E(bθa)
{

f (a, 0)
}

. (1.16)

Arjika [1] continues to consider the following generalized q-difference equations.

Proposition 2 ([1, Theorem 2.1]) Let f (a, x, y) be a three-variable analytic function in the
neighborhood of (a, x, y) = (0, 0, 0) ∈ C

3. If f (a, x, y) can be expanded in terms of pn(x, y, a) if
and only if

x
[
f (a, x, y) – f (a, x, qy)

]
= y

[
f (a, qx, qy) – f (a, x, qy)

]

– ay
[
f
(
a, qx, q2y

)
– f

(
a, x, q2y

)]
. (1.17)

Proposition 3 ([1, Theorem 2.2]) Let f (a, x, y) be a three-variable analytic function in the
neighborhood of (a, x, y) = (0, 0, 0) ∈C

3. If f (a, x, y) satisfies the q-difference equation

x
[
f (a, x, y) – f (a, x, qy)

]
= y

[
f (a, qx, qy) – f (a, x, qy)

]

– ay
[
f
(
a, qx, q2y

)
– f

(
a, x, q2y

)]
, (1.18)

then we have

f (a, x, y) = Ẽ(a, b; Dq)
{

f (a, x, 0)
}

. (1.19)

In this paper, our goal is to generalize the results of Arjika [1] in Sect. 2. We first construct
the following q-operators:

T(a, b, c, d, e, yDx) =
∞∑

n=0

(a, b, c; q)n

(q, d, e; q)n
(yDx)n, (1.20)

E(a, b, c, d, e, yθx) =
∞∑

n=0

(–1)nq(n
2)(a, b, c; q)n

(q, d, e; q)n
(yθx)n. (1.21)

We remark that the q-operator (1.20) is a particular case of the homogeneous q-
difference operator T(a, b, cDx) (see [31]) by taking

a = (a, b, c), b = (d, e), and c = y.
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We also built the relations between operators T(a, b, c, d, e, yDx), E(a, b, c, d, e, yθx) and

the new generalized Al-Salam–Carlitz polynomials φ
(a,b,c

d,e )
n (x, y|q), ψ

(a,b,c
d,e )

n (x, y|q), respec-
tively,

φ
(a,b,c

d,e )
n (x, y|q) � T(a, b, c, d, e, yDx)

{
xn} =

n∑

k=0

[
n
k

]
(a, b, c; q)k

(d, e; q)k
xn–kyk , (1.22)

ψ
(a,b,c

d,e )
n (x, y|q) � E(a, b, c, d, e, yθx)

{
xn} =

n∑

k=0

[
n
k

]
(–1)kqk(k–n)(a, b, c; q)k

(d, e; q)k
xn–kyk . (1.23)

The paper is organized as follows: In Sect. 2, we state two theorems and give the proofs.
In Sect. 3, we gain generalized generating functions for new generalized Al-Salam–Carlitz
polynomials by using the method of q-difference equations perspectively. In Sect. 4, we ob-
tain transformational identities involving generating functions for generalized Al-Salam–
Carlitz polynomials by q-difference equations. In Sect. 5, we deduce U(n + 1) type gen-
erating functions for generalized Al-Salam–Carlitz polynomials by q-difference equation.
In Sect. 6, we deduce generalizations of Ramanujan’s integrals.

2 Main results and proofs
In this section, we give the following two theorems.

Theorem 1 Let f (a, b, c, d, e, x, y) be a seven-variable analytic function in the neighborhood
of (a, b, c, d, e, x, y) = (0, 0, 0, 0, 0, 0, 0) ∈C

7.

(I) If f (a, b, c, d, e, x, y) can be expanded in terms of φ
(a,b,c

d,e )
n (x, y|q) if and only if

x
{

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, x, yq)

– (d + e)q–1[f (a, b, c, d, e, x, yq) – f
(
a, b, c, d, e, x, yq2)]

+ deq–2[f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, x, yq3)]}

= y
{[

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, xq, y)
]

– (a + b + c)
[
f (a, b, c, d, e, x, yq) – f (a, b, c, d, e, xq, yq)

]

+ (ab + ac + bc)
[
f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, xq, yq2)]

– abc
[
f
(
a, b, c, d, e, x, yq3) – f

(
a, b, c, d, e, xq, yq3)]}. (2.1)

(II) If f (a, b, c, d, e, x, y) can be expanded in terms of ψ
(a,b,c

d,e )
n (x, y|q) if and only if

x
{

f (a, b, c, d, e, xq, y) – f (a, b, c, d, e, xq, yq)

– (d + e)q–1[f (a, b, c, d, e, xq, yq) – f
(
a, b, c, d, e, xq, yq2)]

+ deq–2[f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, xq, yq3)]}

= y
{[

f (a, b, c, d, e, xq, yq) – f (a, b, c, d, e, x, yq)
]

– (a + b + c)
[
f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, x, yq2)]

+ (ab + ac + bc)
[
f
(
a, b, c, d, e, xq, yq3) – f

(
a, b, c, d, e, x, yq3)]

– abc
[
f
(
a, b, c, d, e, xq, yq4) – f

(
a, b, c, d, e, x, yq4)]}. (2.2)
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Remark 1 For c = d = e = 0 and b → 1
b , y → yb, b → 0, then equation (2.1) reduces to

(1.17).

Theorem 2 Let f (a, b, c, d, e, x, y) be a seven-variable analytic function in the neighborhood
of (a, b, c, d, e, x, y) = (0, 0, 0, 0, 0, 0, 0) ∈C

7.
(I) If f (a, b, c, d, e, x, y) satisfies the difference equation

x
{

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, x, yq)

– (d + e)q–1[f (a, b, c, d, e, x, yq) – f
(
a, b, c, d, e, x, yq2)]

+ deq–2[f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, x, yq3)]}

= y
{[

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, xq, y)
]

– (a + b + c)
[
f (a, b, c, d, e, x, yq) – f (a, b, c, d, e, xq, yq)

]

+ (ab + ac + bc)
[
f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, xq, yq2)]

– abc
[
f
(
a, b, c, d, e, x, yq3) – f

(
a, b, c, d, e, xq, yq3)]}, (2.3)

then we have

f (a, b, c, d, e, x, y) = T(a, b, c, d, e, yDx)
{

f (a, b, c, d, e, x, 0)
}

. (2.4)

(II) If f (a, b, c, d, e, x, y) satisfies the difference equation

x
{

f (a, b, c, d, e, xq, y) – f (a, b, c, d, e, xq, yq)

– (d + e)q–1[f (a, b, c, d, e, xq, yq) – f
(
a, b, c, d, e, xq, yq2)]

+ deq–2[f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, xq, yq3)]}

= y
{[

f (a, b, c, d, e, xq, yq) – f (a, b, c, d, e, x, yq)
]

– (a + b + c)
[
f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, x, yq2)]

+ (ab + ac + bc)
[
f
(
a, b, c, d, e, xq, yq3) – f

(
a, b, c, d, e, x, yq3)]

– abc
[
f
(
a, b, c, d, e, xq, yq4) – f

(
a, b, c, d, e, x, yq4)]}, (2.5)

then we have

f (a, b, c, d, e, x, y) = E(a, b, c, d, e, yθx)
{

f (a, b, c, d, e, x, 0)
}

. (2.6)

Remark 2 For c = d = e = 0 and b → 1
b , y → yb, b → 0, then equation (2.3) reduces to

(1.18).

To determine if a given function is an analytic function in several complex variables, we
often use the following Hartogs theorem. For more information, please refer to [32, 33].

Lemma 1 ([34, Hartogs theorem]) If a complex-valued function is holomorphic (analytic)
in each variable separately in an open domain D ∈ C

n, then it is holomorphic (analytic)
in D.
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In order to prove Theorem 1, we need the following fundamental property of several
complex variables.

Lemma 2 ([35, Proposition 1]) If f (x1, x2, . . . , xk) is analytic at the origin (0, 0, . . . , 0) ∈ C
k ,

then f can be expanded in an absolutely convergent power series

f (x1, x2, . . . , xk) =
∞∑

n1,n2,...,nk =0

αn1,n2,...,nk xn1
1 xn2

2 · · ·xnk
k .

Proof of Theorem 1 (I) From the Hartogs theorem and the theory of several complex vari-
ables, we assume that

f (a, b, c, d, e, x, y) =
∞∑

k=0

Ak(a, b, c, d, e, x)yk . (2.7)

On one hand, substituting (2.7) into (2.1) yields

x
∞∑

k=0

[
1 – qk – (d + e)qk–1 + (d + e)q2k–1 + deq2k–2 – deq3k–2]Ak(a, b, c, d, e, x)yk

=
∞∑

k=0

[
1 – (a + b + c)qk + (ab + bc + ac)q2k – abcq3k][Ak(a, b, c, d, e, x)

– Ak(a, b, c, d, e, xq)
]
yk+1, (2.8)

which is equal to

x
∞∑

k=0

(
1 – qk)(1 – dqk–1)(1 – eqk–1)Ak(a, b, c, d, e, x)yk

=
∞∑

k=0

(
1 – aqk)(1 – bqk)(1 – cqk)[Ak(a, b, c, d, e, x) – Ak(a, b, c, d, e, xq)

]
yk+1. (2.9)

Equating coefficients of yk on both sides of equation (2.9), we have

x
(
1 – qk)(1 – dqk–1)(1 – eqk–1)Ak(a, b, c, d, e, x)

=
(
1 – aqk–1)(1 – bqk–1)

× (
1 – cqk–1)[Ak–1(a, b, c, d, e, x) – Ak–1(a, b, c, d, e, xq)

]
, (2.10)

which is equivalent to

Ak(a, b, c, d, e, x)

=
(1 – aqk–1)(1 – bqk–1)(1 – cqk–1)

(1 – qk)(1 – dqk–1)(1 – eqk–1)
· Ak–1(a, b, c, d, e, x) – Ak–1(a, b, c, d, e, xq)

x

=
(1 – aqk–1)(1 – bqk–1)(1 – cqk–1)

(1 – qk)(1 – dqk–1)(1 – eqk–1)
· Dx

{
Ak–1(a, b, c, d, e, x)

}
.
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By iteration, we gain

Ak(a, b, c, d, e, x) =
(a, b, c; q)k

(q, d, e; q)k
· Dk

x
{

A0(a, b, c, d, e, x)
}

.

Letting f (a, b, c, d, e, x, 0) = A0(a, b, c, d, e, x) =
∑∞

n=0 μnxn yields

Ak(a, b, c, d, e, x) =
(a, b, c; q)k

(q, d, e; q)k
·

∞∑

n=0

μn
(q; q)n

(q; q)n–k
xn–k , (2.11)

we have

f (a, b, c, d, e, x, y) =
∞∑

k=0

(a, b, c; q)k

(q, d, e; q)k

∞∑

n=0

μn
(q; q)n

(q; q)n–k
xn–kyk

=
∞∑

n=0

μn

∞∑

k=0

[
n
k

]
(a, b, c; q)k

(d, e; q)k
xn–kyk

=
∞∑

n=0

μnφ
(a,b,c

d,e )
n (x, y|q).

On the other hand, if f (a, b, c, d, e, x, y) can be expanded in terms of φ
(a,b,c

d,e )
n (x, y|q), we verify

that f (a, b, c, d, e, x, y) satisfies (2.1). Similarly, we deduce (II). The proof of Theorem 1 is
complete. �

Proof of Theorem 2 From the theory of several complex variables, we begin to solve the
q-difference. First we may assume that

f (a, b, c, d, e, x, y) =
∞∑

k=0

Ak(a, b, c, d, e, x)yk . (2.12)

Substituting this equation into (2.12) and comparing the coefficients of yk (k ≥ 1), we
readily find that

x
(
1 – qk)(1 – dqk–1)(1 – eqk–1)Ak(a, b, c, d, e, x)

=
(
1 – aqk–1)(1 – bqk–1)(1 – cqk–1)

× [
Ak–1(a, b, c, d, e, x) – Ak–1(a, b, c, d, e, xq)

]
, (2.13)

which equals

Ak(a, b, c, d, e, x)

=
(1 – aqk–1)(1 – bqk–1)(1 – cqk–1)

(1 – qk)(1 – dqk–1)(1 – eqk–1)
· Ak–1(a, b, c, d, e, x) – Ak–1(a, b, c, d, e, xq)

x

=
(1 – aqk–1)(1 – bqk–1)(1 – cqk–1)

(1 – qk)(1 – dqk–1)(1 – eqk–1)
· Dx

{
Ak–1(a, b, c, d, e, x)

}
.
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By iteration, we gain

Ak(a, b, c, d, e, x) =
(a, b, c; q)k

(q, d, e; q)k
· Dk

x
{

A0(a, b, c, d, e, x)
}

. (2.14)

Now we return to calculate A0(a, b, c, d, e, x). Just taking y = 0 in equation (2.12), we
immediately obtain A0(a, b, c, d, e, x) = f (a, b, c, d, e, x, 0). Substituting (2.14) into (2.12), we
achieve (2.4) directly. The proof of Theorem 2 is complete. �

3 Generating functions for new generalized Al-Salam–Carlitz polynomials
In this section we generalize generating functions for the new generalized Al-Salam–
Carlitz polynomials by the method of q-difference equations.

We start with the following lemmas.

Lemma 3 ([36]) The Cauchy polynomials are given as follows:

pn(x, y) = (x – y)(x – qy) · · · (x – qn–1y
)

= (y/x; q)nxn (3.1)

together with the following Srivastava–Agarwal type generating function (see also [37]):

∞∑

n=0

pn(x, y)
(λ; q)ntn

(q; q)n
= 2�1

[
λ, y

x ;
0;

q; xt

]

. (3.2)

Lemma 4 ([36]) Suppose that max{|xt|, |yt|} < 1, we have

∞∑

n=0

pn(x, y)
tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

. (3.3)

Based upon the q-binomial theorem or the homogeneous version of Cauchy identity
(3.3) and Heine’s transformations, Srivastava et al. [38] established a set of two presumably
new theta-function identities (see, for details, [38]).

Lemma 5 ([36, Theorem 5]) Suppose that max{|act|, |adt|, |bct|, |bdt|} < 1, we have

∞∑

n=0

hn(a, b|q)hn(c, d|q)
tn

(q; q)n
=

(abcdt2; q)∞
(act, adt, bct, bdt; q)∞

. (3.4)

Theorem 3 Suppose that max{|xt|, |yt|} < 1, we have

∞∑

n=0

φ
(a,b,c

d,e )
n (x, y|q)

tn

(q; q)n
=

1
(xt; q)∞

3�2

[
a, b, c;
d, e;

q; yt

]

, (3.5)

∞∑

n=0

ψ
(a,b,c

d,e )
n (x, y|q)

tn

(q; q)n
= (xt; q)∞ 3�3

[
a, b, c;
0, d, e;

q; –yt

]

. (3.6)

Remark 3 For c = e = 0 in Theorem 3, equations (3.5) and (3.6) reduce to equations (1.8)
and (1.9), respectively.
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Proof of Theorem 3 By denoting the right-hand side of equation (3.5) by f (a, b, c, d, e, x, y),
we can verify that f (a, b, c, d, e, x, y) satisfies (2.1). So, we have

f (a, b, c, d, e, x, y) =
∞∑

k=0

μnφ
(a,b,c

d,e )
n (x, y|q)

and

f (a, b, c, d, e, x, 0) =
∞∑

k=0

μnxn =
1

(xt; q)∞
=

∞∑

n=0

tn

(q; q)n
xn.

So, f (a, b, c, d, e, x, y) is equal to

f (a, b, c, d, e, x, y) =
∞∑

k=0

tn

(q; q)n
φ
(a,b,c

d,e )
n (x, y|q),

equal to the right-hand side of equation (3.5).
Similarly, by denoting the right-hand side of equation (3.6) by f (a, b, c, d, e, x, y), we can

verify that f (a, b, c, d, e, x, y) satisfies (2.2). So, we can use the same way to achieve equation
(3.6). The proof of Theorem 3 is complete. �

Theorem 4 Suppose that max{|xt|, |yt|} < 1, we have

∞∑

n=0

φ
(a,b,c

d,e )
n (x, y|q)

pn(s, t)
(q; q)n

=
(xs; q)∞
(xt; q)∞

4�3

[
a, b, c, s/t;
d, e, xs;

q; yt

]

. (3.7)

Corollary 1 Suppose that |yt| < 1, we have

∞∑

n=0

φ
(a,b,c

d,e )
n (x, y|q)

(–1)nq(n
2)tn

(q; q)n
= (xt; q)∞ 3�3

[
a, b, c;
d, e, xt;

q; yt

]

. (3.8)

Remark 4 For t = 0, in Theorem 4, equation (3.7) reduces to (3.8). For s = 0 in Theorem 4,
equation (3.7) reduces to (3.5), respectively.

Proof of Theorem 4 By denoting the right-hand side of equation (3.7) by f (a, b, c, d, e, x, y),
we can verify that f (a, b, c, d, e, x, y) satisfies (2.1). So, we have

f (a, b, c, d, e, x, y) =
∞∑

k=0

μnφ
(a,b,c

d,e )
n (x, y|q) (3.9)

and

f (a, b, c, d, e, x, 0) =
∞∑

k=0

μnxn =
(xs; q)∞
(xt; q)∞

=
∞∑

n=0

pn(t, s)
(q; q)n

xn.

So, f (a, b, c, d, e, x, y) is equal to the right-hand side of equation (3.7). The proof of Theo-
rem 4 is complete. �
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Theorem 5 For k ∈N and max{|xt|, |yt|} < 1, we have

∞∑

n=0

φ
(a,b,c

d,e )
n+k (x, y|q)

tn

(q; q)n

=
xk

(xt; q)∞

∞∑

n=0

(a, b, c; q)n

(q, d, e; q)n
(yt)n

n∑

j=0

[
n
k

]
(–1)jqnj–( j

2)(q–k , xt; q)j

(xt)j . (3.10)

Remark 5 For k = 0 in Theorem 5, equation (3.10) reduces to (3.5).

Proof of Theorem 5 Denote the right-hand side of equation (3.10) equivalently by

f (a, b, c, d, e, x, y)

=
xk

(xt; q)∞

∞∑

n=0

(a, b, c; q)n

(q, d, e; q)n
(yt)n

n∑

j=0

[
n
k

]
(–1)jqnj–( j

2)(q–k , xt; q)j

(xt)j , (3.11)

and it is easy to check that (3.11) satisfies (2.1), so we have

f (a, b, c, d, e, x, y) =
∞∑

k=0

μnφ
(a,b,c

d,e )
n (x, y|q). (3.12)

Setting y = 0 in (3.12) leads to

f (a, b, c, d, e, x, 0) =
∞∑

k=0

μnxn =
xn

(xt; q)∞
=

∞∑

n=0

xk (xt)n

(q; q)n
=

∞∑

n=0

xn+k tn

(q; q)n

=
∞∑

n=k

xn tn–k

(q; q)n–k
.

Hence

f (a, b, c, d, e, x, y) =
∞∑

n=k

φ
(a,b,c

d,e )
n (x, y|q)

tn–k

(q; q)n–k
=

∞∑

n=0

φ
(a,b,c

d,e )
n+k (x, y|q)

tn

(q; q)n
.

The proof of Theorem 5 is complete. �

Theorem 6 We have

∞∑

n=0

φ
(

a1,b1,c1
d1,e1 )

n (x1, y1|q)φ
(

a2,b2,c2
d2,e2 )

n (x2, y2|q)
tn

(q; q)n

=
1

(x1x2t; q)∞

∞∑

n=0

(a2, b2, c2; q)n(x1y2t)n

(q, d2, e2; q)n

×
∞∑

j=0

(qn–j+1, x1x2t, a1, b1, c1; q)j( y1
x1

)j

(q, d1, e1; q)j
3�2

[
a1qj, b1qj, c1qj;
d1qj, e1qj;

q; x2y1t

]

. (3.13)

Remark 6 For a1 = b1 = c1 = d1 = e1 = a2 = b2 = c2 = d2 = e2 = 0 in Theorem 6, equation
(3.13) reduces to (3.4).
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Proof of Theorem 6 Denoting the right-hand side of equation (3.13) by H(a1, b1, c1, d1, e1,
x1, y1), we have

H(a1, b1, c1, d1, e1, x1, y1)

=
1

(x1x2t; q)∞

∞∑

n=0

(a2, b2, c2; q)n(x1y2t)n

(q, d2, e2; q)n

×
∞∑

j=0

(qn–j+1, x1x2t, a1, b1, c1; q)j( y1
x1

)j

(q, d1, e1; q)j
3�2

[
a1qj, b1qj, c1qj;
d1qj, e1qj;

q; x2y1t

]

. (3.14)

Because equation (3.14) satisfies (2.3), we have

H(a1, b1, c1, d1, e1, x1, y1)

= T(a1, b1, c1, d1, e1, y1Dx1 )
{

H(a1, b1, c1, d1, e1, x1, 0)
}

= T(a1, b1, c1, d1, e1, y1Dx1 )

{
1

(x1x2t; q)∞

∞∑

n=0

(a2, b2, c2; q)n(x1y2t)n

(q, d2, e2; q)n

}

= T(a1, b1, c1, d1, e1, y1Dx1 )

{ ∞∑

n=0

φ
(

a2,b2,c2
d2,e2 )

n (x2, y2|q)
(x1t)n

(q; q)n

}

=
∞∑

n=0

φ
(

a2,b2,c2
d2,e2 )

n (x2, y2|q)
tn

(q; q)n
T(a1, b1, c1, d1, e1, y1Dx1 )

{
xn

1
}

=
∞∑

n=0

φ
(

a1,b1,c1
d1,e1 )

n (x1, y1|q)φ
(

a2,b2,c2
d2,e2 )

n (x2, y2|q)
tn

(q; q)n
.

The proof of Theorem 6 is complete. �

4 Transformational identities from q-difference equations
Liu [24] gave some important transformational identities by the method of q-difference
operator. For more details, please refer to [18, 24, 39].

In this section we deduce the following transformational identities involving generat-
ing functions for new generalized Al-Salam–Carlitz polynomials by the method of q-
difference equation.

Theorem 7 Let A(k) and B(k) satisfy

∞∑

k=0

A(k)xk =
∞∑

k=0

B(k)
(xtqk ; q)∞
(xqk ; q)∞

, (4.1)

and we have

∞∑

k=0

A(k)φ(a,b,c
d,e )

k (x, y|q) =
∞∑

k=0

B(k)
(xtqk ; q)∞
(xqk ; q)∞

4�3

[
a, b, c, 1/t;
d, e, xtqk ;

q; yqk

]

, (4.2)

supposing that equations (4.1) and (4.2) are convergent.
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Corollary 2 Suppose that |r|, |x|, |xt| < 1, we have

∞∑

k=0

φ
(a,b,c

d,e )
k (x, y|q)

(t, s; q)k

(q, r; q)k
=

(xt, s; q)∞
(x, r; q)∞

∞∑

k=0

(r/s, x; q)ksk

(q, xt; q)k
4�3

[
a, b, c, 1/t;
d, e, xtqk ;

q; yqk

]

. (4.3)

Remark 7 Setting A(k) and B(k) in Theorem 7 by (4.6) given below, equation (4.2) reduces
to (4.3). For y = 0 in (4.3), equation (4.2) reduces to (4.5).

Proof of Theorem 7 Denoting the right-hand side of equation (4.2) equivalently by
f (a, b, c, d, e, x, y), we can check that f (a, b, c, d, e, x, y) satisfies (2.1), so we have

f (a, b, c, d, e, x, y) =
∞∑

k=0

μnφ
(a,b,c

d,e )
n (x, y|q). (4.4)

Setting y = 0 in (4.4), it becomes

f (a, b, c, d, e, x, 0) =
∞∑

k=0

μnxn =
∞∑

k=0

B(k)
(xtqk ; q)∞
(xqk ; q)∞

by(48)

=
∞∑

k=0

A(k)xk .

Hence

f (a, b, c, d, e, x, y) =
∞∑

k=0

A(k)φ(a,b,c
d,e )

k (x, y|q).

The proof of Theorem 7 is complete. �

Proof of Corollary 2 Using Heine’s q-Euler transformations [17, Eq. (1.4.1)]

2�1

[
t, s;
r;

q; x

]

=
(s, xt; q)∞
(r, x; q)∞

2�1

[
r/s, x;
xt;

q; s

]

, (4.5)

formula (4.1) is valid for the case

A(k) =
∞∑

k=0

(t, s; q)k

(q, r)k
and B(k) =

(s; q)∞
(r; q)∞

∞∑

k=0

(r/s; q)k

(q; q)k
sk . (4.6)

Using equation (4.2), we can deduce Corollary 2. �

5 U(n + 1) type generating functions for generalized Al-Salam–Carlitz
polynomials

Multiple basic hypergeometric series associated with the unitary U(n+1) group have been
investigated by various authors, see [40, 41]. In [40], Milne initiated theory and application
of the U(n + 1) generalization of the classical Bailey transform and Bailey lemma, which
involves the following nonterminating U(n+1) generalizations of the q-binomial theorem.
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Proposition 4 ([16, Theorem 5.42]) Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1.
Suppose that none of the denominators in the following identity vanishes, and that 0 < |q| <
1 and |z| < |x1, . . . , xn||xm|–n|q|(n–1)/2 for m = 1, 2, . . . , n. Then

∑

yn≥0
k=1,2,...,n

{
∏

1≤r<s≤n

[
1 – (xr/xsqyr–ys )

1 – (xr/xs)

] n∏

r,s=1

(

q
xr

xs
; q

)–1

yr

n∏

i=1

(xi)nyi–(y1+···+yn)

× (–1)(n–1)(y1+···+yn)qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)

× (b; q)y1+···+yn zy1+···+yn

}

=
(bz; q)∞
(z; q)∞

, (5.1)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

In this section, we deduce U(n + 1) type generating functions for generalized Al-Salam–
Carlitz polynomials by the method of q-difference equation.

Theorem 8 Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1. Suppose that none
of the denominators in the following identity vanishes, and that 0 < |q| < 1 and |z| <
|x1, . . . , xn||xm|–n|q|(n–1)/2 for m = 1, 2, . . . , n. Then

∑

yn≥0
k=1,2,...,n

{
∏

1≤r<s≤n

[
1 – (xr/xsqyr–ys )

1 – (xr/xs)

] n∏

r,s=1

(

q
xr

xs
; q

)–1

yr

n∏

i=1

(xi)nyi–(y1+···+yn)

× (–1)(n–1)(y1+···+yn)qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)

× φ
(r,s,t

u,v)
y1+···+yn (z, y|q)(b; q)y1+···+yn

}

=
(bz; q)∞
(z; q)∞

4�3

[
r, s, t, b;
u, v, bz;

q; y

]

, (5.2)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

Remark 8 For y = 0, in Theorem 8, equation (5.2) reduces to (5.1).

Proof of Theorem 8 Denote the right-hand side of equation (5.2) equivalently by f (r, s, t, u,
v, z, y), and we can check that f (r, s, t, u, v, z, y) satisfies (2.3), so we have

f (r, s, t, u, v, z, y)

= T(r, s, t, u, v, yDz)
{

f (r, s, t, u, v, z, 0)
}

=
∑

yn≥0
k=1,2,...,n

{
∏

1≤r<s≤n

[
1 – (xr/xsqyr–ys )

1 – (xr/xs)

] n∏

r,s=1

(

q
xr

xs
; q

)–1

yr

n∏

i=1

(xi)nyi–(y1+···+yn)

× (–1)(n–1)(y1+···+yn)qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)

× (b; q)y1+···+yn

}

T(r, s, t, u, v, yDz)
{

zy1+···+yn
}

,

which is the left-hand side of (5.2) by (1.22). The proof of Theorem 8 is complete. �
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6 Generalization of Ramanujan’s integrals
The following integral of Ramanujan [42] is quite famous.

Proposition 5 ([42, Eq. (2)]) For 0 < q = e–2k2 < 1 and m ∈ R. Suppose that |abq| < 1, we
have

∫ ∞

∞
e–x2+2mx

(aq1/2e2ikx, bq1/2e–2ikx; q)∞
dx =

√
πem2 (–aqe2mki, –bqe–2mki; q)∞

(abq; q)∞
. (6.1)

In this section, we have the following generalization of Ramanujan’s integrals.

Theorem 9 For 0 < q = e–2k2 < 1 and m ∈R. Suppose that |abq| < 1, we have

∫ ∞

∞
e–x2+2mx

(aq1/2e2ikx, bq1/2e–2ikx; q)∞
3�2

[
r, s, t;
u, v;

q; yq1/2e2ikx

]

dx

=
√

πem2 (–aqe2mki, –bqe–2mki; q)∞
(abq; q)∞

4�3

[
r, s, t, e2mki/b;
u, v, –aqe2mki;

q; ybq

]

. (6.2)

Remark 9 For y = 0 in Theorem 9, equation (6.2) reduces to (6.1).

Proof of Theorem 9 Denote the right-hand side of (6.2) equivalently by f (r, s, t, u, v, a, y).
f (r, s, t, u, v, a, y) is analytic near (r, s, t, u, v, a, y), and we can check that f (r, s, t, u, v, a, y) sat-
isfies (2.1), so we have

f (r, s, t, u, v, a, y) =
∞∑

k=0

μnφ
(r,s,t

u,v)
n (a, y|q)

and

f (r, s, t, u, v, a, 0) =
∞∑

k=0

μnan =
√

πem2 (–aqe2mki, –bqe–2mki; q)∞
(abq; q)∞

by (6.1)

=
∫ ∞

∞
e–x2+2mx

(aq1/2e2ikx, bq1/2e–2ikx; q)∞
dx

=
∫ ∞

∞
e–x2+2mx

(bq1/2e–2ikx; q)∞

{ ∞∑

n=0

(q1/2e2ikx)n

(q; q)n
an

}

dx.

So we have

f (r, s, t, u, v, a, y) =
∫ ∞

∞
e–x2+2mx

(bq1/2e–2ikx; q)∞

{ ∞∑

n=0

φ
(r,s,t

u,v)
n (a, y|q)

(q1/2e2ikx)n

(q; q)n

}

dx,

which is equal to the left-hand side of equation (6.2). The proof of Theorem 9 is com-
plete. �

7 Concluding remarks and observations
In our present investigation, we have introduced a set of two q-operatorsT(a, b, c, d, e, yDx)
and E(a, b, c, d, e, yθx) with the aim to apply them to generalize Arjika’s recently results [1]
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and derive transformational identities by means of the q-difference equations. We have
also derived U(n + 1)-type generating functions and Ramanujan’s integrals involving gen-
eral Al-Salam–Carlitz polynomials by means of the q-difference equations.

It is believed that the q-series and q-integral identities, which we have been presented in
this paper, as well as the various related recent works cited here, will provide encourage-
ment and motivation for further research on the topics that are dealt with and investigated
in this paper.

In conclusion, we find it to be worthwhile to remark that some potential further appli-
cations of the methodology and findings, which we have been presented here by means of
q-analysis and q-calculus, can be found in the study of zeta and q-zeta functions as well as
their related functions of analytic number theory (see, for example, [43, 44]; see also [9])
and also in the study of analytic and univalent functions of geometric function theory via
number-theoretic entities (see, for example, [45]).

Acknowledgements
Not applicable.

Funding
This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21A010019).

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors equally contributed to this manuscript and approved the final version.

Author details
1Department of Mathematics, Hangzhou Normal University, Hangzhou City, Zhejiang Province, 311121, China.
2Department of Mathematics and Informatics, University of Agadez, Agadez, Niger.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 4 September 2020 Accepted: 20 November 2020

References
1. Arjika, S.: q-Difference equation for homogeneous q-difference operators and their applications. J. Differ. Equ. Appl.

26, 987–999 (2020)
2. Gasper, G., Rahman, M.: Basic Hypergeometric Series (with a Foreword by Richard Askey), 2nd edn. Encyclopedia of

Mathematics and Its Applications, vol. 35. Cambridge University Press, Cambridge (1990); see also 2nd edn.,
Encyclopedia of Mathematics and Its Applications, vol. 96. Cambridge University Press, Cambridge (2004)

3. Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)
4. Srivastava, H.M., Karlsson, P.W.: Multiple Gaussian Hypergeometric Series. Halsted, Chichester (1985)
5. Koekock, R., Swarttouw, R.F.: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue.

Report No. 98-17, Delft University of Technology, Delft, The Netherlands (1998)
6. Srivastava, H.M.: Certain q-polynomial expansions for functions of several variables. I. IMA J. Appl. Math. 30, 315–323

(1983)
7. Srivastava, H.M.: Certain q-polynomial expansions for functions of several variables. II. IMA J. Appl. Math. 33, 205–209

(1984)
8. Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric

function theory of complex analysis. Iran. J. Sci. Technol. Trans. A, Sci. 44, 327–344 (2020)
9. Srivastava, H.M., Choi, J.: Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier, Amsterdam (2012)
10. Andrews, G.E.: q-Series: Their Development and Applications in Analysis, Number Theory, Combinatorics, Physics and

Computer Algebra. CBMS Regional Conference Lecture Series, vol. 66. Am. Math. Soc., Providence (1986)
11. Srivastava, H.M., Cao, J., Arjika, S.: A note on generalized q-difference equations and their applications involving

q-hypergeometric functions. Symmetry 12, Article ID 1816 (2020)
12. Chen, W.Y.C., Liu, Z.-G.: Parameter augmenting for basic hypergeometric series, I. In: Sagan, B.E., Stanley, R.P. (eds.)

Mathematical Essays in Honor of Gian-Carlo Roto, pp. 111–129. Birkhäuser, Basel (1998)
13. Chen, W.Y.C., Liu, Z.-G.: Parameter augmenting for basic hypergeometric series, II. J. Comb. Theory, Ser. A 80, 175–195

(1997)



Cao et al. Advances in Difference Equations        (2020) 2020:668 Page 17 of 17

14. Srivastava, H.M., Abdlhusein, M.A.: New forms of the Cauchy operator and some of their applications. Russ. J. Math.
Phys. 23, 124–134 (2016)

15. Roman, S.: The theory of the umbral calculus I. J. Math. Anal. Appl. 87, 58–115 (1982)
16. Liu, Z.-G.: Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 16, 1293–1307 (2010)
17. Al-Salam, W.A., Carlitz, L.: Some orthogonal q-polynomials. Math. Nachr. 30, 47–61 (1965)
18. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer

Monographs in Mathematics. Springer, Berlin (2010)
19. Cao, J., Niu, D.-W.: A note on q-difference equations for Cigler’s polynomials. J. Differ. Equ. Appl. 22, 1880–1892 (2016)
20. Cao, J., Srivastava, H.M., Liu, Z.-G.: Some iterated fractional q-integrals and their applications. Fract. Calc. Appl. Anal. 21,

672–695 (2018)
21. Cao, J.: A note on q-difference equations for Ramanujan’s integrals. Ramanujan J. 48, 63–73 (2019)
22. Wang, M.: An identity from the Al-Salam–Carlitz polynomials. Math. Æterna 2, 185–187 (2012)
23. Wang, M.: A transformation for the Al-Salam–Carlitz polynomials. Ars Comb. 112, 411–418 (2013)
24. Liu, Z.-G.: Some operator identities and q-series transformation formulas. Discrete Math. 265, 119–139 (2003)
25. Fang, J.-P.: Remarks on homogeneous Al-Salam and Carlitz polynomials. J. Math. 2014, Article ID 523013 (2014), 12 pp.
26. Fang, J.-P.: q-Difference equation and q-polynomials. Appl. Math. Comput. 248, 550–561 (2014)
27. Fang, J.-P.: Remarks on a generalized q-difference equation. J. Differ. Equ. Appl. 21, 934–953 (2015)
28. Jia, Z.: Two new q-exponential operator identities and their applications. J. Math. Anal. Appl. 419, 329–338 (2014)
29. Srivastava, H.M., Arjika, S., Sherif Kelil, A.: Some homogeneous q-difference operators and the associated generalized

Hahn polynomials. Appl. Set-Valued Anal. Optim. 1, 187–201 (2019)
30. Liu, Z.-G.: An extension of the non-terminating 6ψ5 summation and the Askey–Wilson polynomials. J. Differ. Equ.

Appl. 17, 1401–1411 (2011)
31. Srivastava, H.M., Arjika, S.: Generating functions for some families of the generalized Al-Salam–Carlitz q-polynomials.

Adv. Differ. Equ. 2020, Article ID 498 (2020)
32. Liu, Z.-G.: On the q-partial differential equations and q-series. In: The Legacy of Srinivasa Ramanujan. Ramanujan

Mathematical Society Lecture Note Series, Mysore, vol. 20, pp. 213–250 (2013)
33. Taylor, J.: Several Complex Variables with Connections to Algebraic Geometry and Lie Groups. Graduate Studies in

Mathematics, vol. 46. Am. Math. Soc., Providence (2002)
34. Gunning, R.: Introduction to holomorphic functions of several variables. In: Function Theory, vol. 1. Wadsworth and

Brooks/Colc, Bclmont (1990)
35. Malgrange, B.: Lectures on the Theory of Functions of Several Complex Variables. Springer, Berlin (1984)
36. Chen, W.Y.C., Fu, A.M., Zhang, B.: The homogeneous q-difference operator. Adv. Appl. Math. 31, 659–668 (2003)
37. Cao, J., Srivastava, H.M.: Some q-generating functions of the Carlitz and Srivastava–Agarwal types associated with the

generalized Hahn polynomials and the generalized Rogers–Szegö polynomials. Appl. Math. Comput. 219, 8398–8406
(2013)

38. Srivastava, H.M., Chaudhary, M.P., Wakene, F.K.: A family of theta-function identities based upon q-binomial theorem
and Heine’s transformations. Montes Taurus J. Pure Appl. Math. 8, 918 (2020)

39. Liu, Z.-G.: q-Difference equation and the Cauchy operator identities. J. Math. Anal. Appl. 359, 265–274 (2009)
40. Milne, S.C.: Balanced 3φ2 summation theorems for U(n) basic hypergeometric series. Adv. Math. 131, 93–187 (1997)
41. Wang, M.: q-Integral representation of the Al-Salam–Carlitz polynomials. Appl. Math. Lett. 22, 943–945 (2009)
42. Askey, R.: Two integrals of Ramanujan. Proc. Am. Math. Soc. 85, 192–194 (1982)
43. Srivastava, H.M.: The zeta and related functions: recent developments. J. Adv. Eng. Comput. 3, 329–354 (2019)
44. Srivastava, H.M.: Some general families of the Hurwitz–Lerch zeta functions and their applications: recent

developments and directions for further researches. Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 45, 234–269 (2019)
45. Shafiq, M., Srivastava, H.M., Khan, N., Ahmad, Q.Z., Darus, M., Kiran, S.: An upper bound of the third Hankel determinant

for a subclass of q-starlike functions associated with k-Fibonacci numbers. Symmetry 12, Article ID 1043 (2020)


	A note on generalized q-difference equations for general Al-Salam-Carlitz polynomials
	Abstract
	MSC
	Keywords

	Introduction
	Main results and proofs
	Generating functions for new generalized Al-Salam-Carlitz polynomials
	Transformational identities from q-difference equations
	U(n+1) type generating functions for generalized Al-Salam-Carlitz polynomials
	Generalization of Ramanujan's integrals
	Concluding remarks and observations
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


