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Abstract
In this paper, we introduce the concept of coupled type and cyclic coupled type
fuzzy cone contraction mappings in fuzzy cone metric spaces. We establish some
coupled fixed point results without the mixed monotone property, and also present
some coupled fixed results using the partial order metric in the said space. We
present some strong coupled fixed point theorems using cyclic coupled type fuzzy
cone contraction mappings in fuzzy cone metric spaces. Moreover, we present an
application of nonlinear integral equations for the existence of a unique solution to
support our work.
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1 Introduction
Initially, Kirk et al. [1] introduced a cyclic contractive type mapping which ensures the ex-
istence of the best proximity points in complete metric spaces. Several cyclic type mapping
results can be found (see, e.g., [2–4]). Later on, Lakshmikantham and Circ [5] presented
the concept of coupled fixed point in partially ordered metric spaces which has a wide
range of applications in partial differential equations and boundary value problems. In
2014, Choudhury and Maity [6] proved the result on cyclic coupled Kannan type contrac-
tion for a strong coupled fixed point. For more coupled fixed point results, see [7, 8]. More
related works and references are in [9–12].

Huang and Zhang [13] presented an idea of a cone metric space by using an ordered
Banach space instead of real numbers. They proved some nonlinear contractive type fixed
point results in cone metric spaces. After this article, several authors have contributed
their ideas in the field of cone metric spaces. They established different types of contractive
results for fixed point, coincidence point, and a common fixed point in cone metric spaces
(see [14–23] and the references therein).

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03132-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03132-8&domain=pdf
http://orcid.org/0000-0002-3142-3810
mailto:saif.urrehman27@yahoo.com


Chen et al. Advances in Difference Equations        (2020) 2020:671 Page 2 of 25

The fuzzy set theory was initiated by Zadeh [24], while Kramosil et al. [25] introduced
fuzzy metric spaces and some more notions. They compared the notion of fuzzy metric
with the statistical metric spaces and proved that both the conceptions are equivalent in
some cases. Later, George et al. [26] presented the stronger form of the metric fuzziness.
Some fixed point and common fixed point results in fuzzy metric spaces can be found in,
e.g., [27–30].

Oner et al. [31] introduced the fuzzy cone metric space or shortly (FCM-space) and
proved a fuzzy cone Banach contraction theorem for a fixed point in FCM-spaces with
the assumption of Cauchy sequences. Some more topological properties, fixed point and
common fixed point results can be found in, e.g., [32–36].

In this paper, we present a new concept of coupled type and cyclic coupled type fuzzy
cone contraction mappings in FCM-spaces. The rest of the paper is organized as follows.
Section 2 consists of preliminary concepts. In Sect. 3, we prove some coupled fixed point
results without the mixed monotone property in the sense of Sintunavarat et al. [8], and
we prove some coupled fixed point theorems via partial ordered metric FCM-spaces. In
Sect. 4, we establish some strong coupled fixed point results for the generalized cyclic
type fuzzy cone contraction mapping in FCM-space in the sense of Choudhury et al. [6].
In Sect. 5, we present an application of nonlinear integral equations for the existence of
a unique solution to support our work. Finally, the conclusion is discussed in Sect. 6, and
some illustrative examples are presented in the paper to support our work.

2 Preliminaries
Definition 2.1 ([37]) An operation ∗ : [0, 1] × [0, 1] → [0, 1] is known as a continuous
t-norm if it satisfies the following:

(i) ∗ is associative, commutative, and continuous.
(ii) 1 ∗ α0 = α0 and α0 ∗ β0 ≤ α1 ∗ β1, whenever α0 ≤ α1 and β0 ≤ β1 for each

α0,α1,β0,β1 ∈ [0, 1].

The basic continuous t-norms (see [37]), the minimum, the product, and the
Lukasiewicz t-norms, are defined respectively as follows:

α1 ∗ β1 = min{α1,β1}, α1 ∗ β1 = α1β1, and α1 ∗ β1 = max{α1 + β1 – 1, 0}.

Throughout this paper E represents the real Banach space and θ is the zero of E, while N

represents the set of natural numbers.

Definition 2.2 ([13]) A subset P ⊂ E is known as a cone if:
(i) P �= ∅, closed and P �= {θ}.

(ii) α1,β1 ∈ [0,∞) and μ,ν ∈ P, then α1μ + β1ν ∈ P.
(iii) both μ – μ ∈ P, then μ = θ .

A partial ordering on a given cone P ⊂ E is defined by μ 
 ν ⇔ ν – μ ∈ P. μ ≺ ν stands
for μ 
 ν and μ �= ν , while μ 
 ν stands for ν – μ ∈ int(P). In this paper, all cones have
nonempty interior.

Definition 2.3 ([31]) A three-tuple (U , Fm,∗) is said to be a FCM-space if a cone P ⊂ E, U
is an arbitrary set, ∗ is a continuous t-norm, and Fm is a fuzzy set on U2 × int(P) satisfying
the following:
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(i) Fm(μ,ν, t) > 0 and Fm(μ,ν, t) = 1 ⇔ μ = ν ;
(ii) Fm(μ,ν, t) = Fm(ν,μ, t);

(iii) Fm(μ,ν, t) ∗ Fm(ν,ω, s) ≤ Fm(μ,ω, t + s);
(iv) Fm(μ,ν, ·) : int(P) → [0, 1] is continuous;

for all μ,ν,ω ∈ U and t, s ∈ int(P).

Definition 2.4 ([31]) Let (U , Fm,∗) be a FCM-space, μ ∈ U , and (μi) be a sequence in U .
Then

(i) (μi) is said to converge to μ if, for t � θ and 0 < r < 1, ∃ i1 ∈ N such that
Fm(μi,μ, t) > 1 – r, ∀ i ≥ i1. We denote this by limi→∞ μi = μ or μi → μ as i → ∞.

(ii) (μi) is said to be a Cauchy sequence if, for t � θ , 0 < r < 1, ∃ i1 ∈N such that
Fm(μk ,μi, t) > 1 – r, ∀ k, i ≥ i1.

(iii) (U , Fm,∗) is complete if every Cauchy sequence is convergent in U .
(iv) (μi) is known as a fuzzy cone contraction if ∃ 0 < β < 1 such that

1
Fm(μi,μi+1, t)

– 1 ≤ β

(
1

Fm(μi–1,μi, t)
– 1

)
, ∀ t � θ , i ≥ 1.

Definition 2.5 Let (U , Fm,∗) be an FCM-space. The fuzzy cone metric Fm is triangular if

1
Fm(μ,ω, t)

– 1 ≤
(

1
Fm(μ,ν, t)

– 1
)

+
(

1
Fm(ν,ω, t)

– 1
)

, ∀ μ,ν,ω ∈ U , t � θ .

Lemma 2.6 ([31]) Let (U , Fm,∗) be an FCM-space. Let μ ∈ X and (μi) be a sequence in U .
Then μi → μ ⇔ limi→∞ Fm(μi,μ, t) = 1, for t � θ .

Definition 2.7 ([31]) Let (U , Fm,∗) be an FCM-space and T : U → U . Then T is known
as a fuzzy cone contraction if ∃ 0 < h < 1 such that

1
Fm(Tμ, Tν, t)

– 1 ≤ h
(

1
Fm(μ,ν, t)

– 1
)

, ∀ μ,ν ∈ U , t � θ . (2.1)

3 Coupled fixed point results in FCM-spaces
Definition 3.1 ([38]) Let U be a nonempty set, and an ordered pair (μ,ν) ∈ U × U is
called a coupled fixed point of the mapping T : U × U → U if μ = T(μ,ν) and ν = T(ν,μ).

Example 3.2 Let U = [0,∞) and a mapping T : U × U → U be defined as

T(μ,ν) =
μ + ν

2
, ∀ μ,ν ∈ U .

Then T has a unique coupled fixed point in U for all μ = ν .

Definition 3.3 ([39]) Let T : U × U → U be a mapping in a metric space (U , m) and A be
a nonempty subset of U4. Then we say that A is a T-invariant subset of U4 if and only if
∀ μ,ν, g, h ∈ U satisfies:

(i) (μ,ν, g, h) ∈ A ⇔ (h, g,ν,μ) ∈ A.
(ii) (μ,ν, g, h) ∈ A ⇔ (T(μ,ν), T(ν,μ), T(g, h), T(h, g)) ∈ A.
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Definition 3.4 ([8]) Let (U , m) be a metric space and A ⊆ U4 which satisfies the transitive
property if and only if ∀ μ,ν, g, h, x, y ∈ U such that

(μ,ν, g, h) ∈ A and (g, h, x, y) ∈ A ⇒ (μ,ν, x, y) ∈ A.

Remark 3.5 ([8]) Easily one can verify that the set A = U4 is trivially T-invariant, which
satisfies the transitive property.

Theorem 3.6 Let A be a nonempty subset of a complete FCM-space (U , Fm,∗) in which
Fm is triangular. Let a function ψ : [0,∞) → [0,∞) with 0 = ψ(0) < ψ(τ ) < τ , and
limr→τ+ ψ(r) < τ for each τ > 0. Suppose that T : U2 → U is a mapping such that

1
Fm(T(μ,ν), T(x, y), t)

– 1 ≤ ψ

(
1
2

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
))

, (3.1)

for all (μ,ν, x, y) ∈ A. Assume that either:
(1) T is continuous, or
(2) If for any two sequences (μi) and (νi) with (μi+1,νi+1,μi,νi) ∈ A, where (μi) → μ, and

(νi) → ν for all i ≥ 1, then (μ,ν,μi,νi) ∈ A for all i ≥ 1. If ∃ (μo,νo) ∈ U × U such
that (T(μo,νo), T(νo,μo),μo,νo) ∈ A, and A is a T-invariant set which satisfies the
transitive property, then T has a coupled fixed point such that μ = T(μ,ν) and
ν = T(ν,μ).

Proof Let (μi) and (νi) be two sequences in U and T(U2) ⊆ U such that

μi = T(μi–1,νi–1) and νi = T(νi–1,μi–1), ∀ i ∈ N. (3.2)

If ∃ i∗ ∈N such that μi∗–1 = μi∗ and νi∗–1 = νi∗ , then we have

μi∗–1 = T(μi∗–1,νi∗–1) and νi∗–1 = T(νi∗–1,μi∗–1).

Thus, (νi∗–1,μi∗–1) is a coupled fixed point of T and the proof is complete. Otherwise, we
may assume that

μi–1 �= μi or νi–1 �= νi, ∀ i ∈N.

Since (T(μo,νo), T(νo,μo),μo,νo) = (μ1,ν1,μo,νo) ∈ A and A is a T-invariant set, we have
(T(μ1,ν1), T(ν1,μ1), T(μo,νo), T(νo,μo) = (μ2,ν2,μ1,ν1) ∈ A. Similarly, by the fact that A
is a T-invariant set, we have

(
T(μ2,ν2), T(ν2,μ2), T(μ1,ν1), T(ν1,μ1)

)
= (μ3,ν3,μ2,ν2) ∈ A.

Repeating the same argument, we get

(
T(μi–1,νi–1), T(νi–1,μi–1),μi–1,νi–1

)
= (μi,νi,μi–1,νi–1) ∈ A.
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Let us denote ( 1
Fm(μi ,μi–1,t) – 1 + 1

Fm(νi ,νi–1,t) – 1) by δi–1, for t � θ , i.e.,

δi–1 =
(

1
Fm(μi,μi–1, t)

– 1 +
1

Fm(νi,νi–1, t)
– 1

)
> 0, for all i ∈N.

Now we have to show that

δi ≤ 2ψ

(
δi–1

2

)
, for all i ∈N.

Since (μi,νi,μi–1,νi–1) ∈ A, ∀ i ∈ N, and by (3.1), for t � θ ,

1
Fm(μi,μi+1, t)

– 1 =
1

Fm(T(μi–1,νi–1), T(μi,νi), t)
– 1

≤ ψ

(
1
2

(
1

Fm(μi–1,μi, t)
– 1 +

1
Fm(νi–1,νi, t)

– 1
))

= ψ

(
δi–1

2

)
. (3.3)

Since A is T-invariant set and (μi,νi,μi–1,νi–1) ∈ A, ∀ i ∈N, we get that (νi–1,μi–1,νi,μi) ∈
A, ∀ i ∈N. Now, again from (3.1), for t � θ , and (νi–1,μi–1,νi,μi) ∈ A, ∀ i ∈N, we may get

1
Fm(νi,νi+1, t)

– 1 =
1

Fm(T(νi–1,μi–1), T(νi,μi), t)
– 1

≤ ψ

(
1
2

(
1

Fm(νi–1,νi, t)
– 1 +

1
Fm(μi–1,μi, t)

– 1
))

= ψ

(
δi–1

2

)
. (3.4)

Adding (3.3) and (3.4), we have

δi = 2ψ

(
δi–1

2

)
, for all i ∈N. (3.5)

Since ∀ τ > 0, ψ(τ ) < τ , then from (3.5) we have

δi = 2ψ

(
δi–1

2

)
< δi–1, for all i ∈N.

Hence, (δi) is a monotone decreasing sequence, therefore limi→∞ δi = δ for δ ≥ 0.
Next, we have to show that δ = 0. By the contrary case, let δ > 0, taking the limit i → ∞

on both sides of (3.5), i.e., limr→τ+ ψ(r) < τ , ∀ τ > 0, then

δ = lim
i→∞ δi ≤ 2 lim

i→∞ψ

(
δi–1

2

)
= 2 lim

δi–1→δ+
ψ

(
δi–1

2

)
< 2

(
δ

2

)
= δ,

which is a contradiction to the fact that δ > 0. Hence δ = 0, therefore for t � θ we have

δ = lim
i→∞ δi = lim

i→∞

(
1

Fm(μi,μi+1, t)
– 1 +

1
Fm(νi,νi+1, t)

– 1
)

= 0. (3.6)
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Next, we have to show that (μi) and (νi) are Cauchy sequences in (U , Fm,∗). By suppo-
sition, let at least one, (μi) or (νi), be not a Cauchy sequence. Then ∃ ε > 0 and the two
subsequences of integers ik and jk with ik > jk ≥ k such that

rk =
1

Fm(μjk ,μik , t)
– 1 +

1
Fm(νjk ,νik , t)

– 1 ≥ ε, for all k ∈ {1, 2, 3, . . .}. (3.7)

Further, we choose ik is the smallest integer such that ik > jk ≥ k and (3.6) holds, for t � θ ,
we have

1
Fm(μjk ,μik –1, t)

– 1 +
1

Fm(νjk ,νik –1, t)
– 1 < ε. (3.8)

By using the Fm triangle inequality and from (3.7) and (3.8), for t � θ , we have

ε ≤ rk =
1

Fm(μjk ,μik , t)
– 1 +

1
Fm(νjk ,νik , t)

– 1

≤
(

1
Fm(μjk ,μik –1, t)

– 1 +
1

Fm(μik –1,μik , t)
– 1

)

+
(

1
Fm(νjk ,νik –1, t)

– 1 +
1

Fm(νik –1,νik , t)
– 1

)

=
(

1
Fm(μjk ,μik –1, t)

– 1 +
1

Fm(νjk ,νik –1, t)
– 1

)

+
(

1
Fm(μik ,μik –1, t)

– 1 +
1

Fm(νik ,νik –1, t)
– 1

)

< ε + δik –1,

⇒ ε ≤ rk < ε + δik –1. (3.9)

Now taking limit k → ∞, and from (3.6), we have limk→∞ rk = ε > 0. Since ik > jk and A
satisfies the transitive property, we get

(μik ,νik ,μjk ,νjk ) ∈ A and (νjk ,μjk ,νik ,μik ) ∈ A. (3.10)

Now, in the view of (3.1) and (3.10), for t � θ , we get

1
Fm(μjk +1,μik +1)

– 1 =
1

Fm(T(μjk ,νjk ), T(μik ,νik ), t)
– 1

≤ ψ

(
1
2

(
1

Fm(μjk ,μik , t)
– 1 +

1
Fm(νjk ,νik , t)

– 1
))

= ψ

(
rk

2

)
. (3.11)

Similarly, for t � θ ,

1
Fm(νjk +1,νik +1)

– 1 =
1

Fm(T(νjk ,μjk ), T(νik ,μik ), t)
– 1
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≤ ψ

(
1
2

(
1

Fm(νjk ,νik , t)
– 1 +

1
Fm(μjk ,μik , t)

– 1
))

= ψ

(
rk

2

)
. (3.12)

Adding (3.11) and (3.12), we have

rk+1 ≤ 2ψ

(
rk

2

)
, for all k ∈ {1, 2, 3, . . .}. (3.13)

Now, using the limit k → ∞ on both sides of (3.13), i.e., limr→τ+ ψ(r) < τ , ∀ τ > 0, we have

ε = lim
k→∞

rk+1 ≤ 2 lim
k→∞

ψ

(
rk

2

)
= 2 lim

rk→ε+
ψ

(
rk

2

)
< 2

(
ε

2

)
= ε,

which is contradiction. Hence (μi) and (νi) are Cauchy sequences. Since (U , Fm,∗) is com-
plete, ∃ μ,ν ∈ U such that

μi → μ and νi → ν, as i → ∞. (3.14)

Now, finally we have to show that T(μ,ν) = μ and T(ν,μ) = ν . If assertion (1) holds, then
we have

μ = lim
i→∞μi+1 = lim

i→∞ T(μi,νi) = T
(

lim
i→∞μi, lim

i→∞νi

)
= T(μ,ν),

and

ν = lim
i→∞νi+1 = lim

i→∞ T(νi,μi) = T
(

lim
i→∞νi, lim

i→∞μi

)
= T(ν,μ).

Hence, μ = T(μ,ν) and ν = T(ν,μ), i.e., T has a coupled fixed point in U . Suppose that, if
assertion (2) holds. We obtain two sequences (μi) and (νi) converging to μ and ν respec-
tively for some μ,ν ∈ U . Then, by supposition, we have (μ,ν,μi,νi) ∈ A, ∀ i ∈ N. Since Fm

is triangular and by (3.1), for t � θ , we have

1
Fm(T(μ,ν),μ, t)

– 1 ≤ 1
Fm(T(μ,ν),μi+1, t)

– 1 +
1

Fm(μi+1,μ, t)
– 1

=
1

Fm(T(μ,ν), T(μi,νi), t)
– 1 +

1
Fm(μi+1,μ, t)

– 1

≤ ψ

(
1
2

(
1

Fm(μ,μi, t)
– 1 +

1
Fm(ν,νi, t)

))
+

1
Fm(μi+1,μ, t)

– 1

→ 0, as i → ∞.

Hence we get that Fm(T(μ,ν),μ, t) = 1, this implies that μ = T(μ,ν). Similarly, we can
prove that ν = T(ν,μ). Thus, T has a coupled fixed point in U . �

Example 3.7 Let U = [0,∞), ∗ be a continuous t-norm, and Fm : U × U × (0,∞) → [0, 1]
be defined as

Fm(μ,ν, t) =
t

t + m(μ,ν)
,
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where m(μ,ν) = |μ – ν| is a usual metric ∀ μ,ν ∈ U , and t > 0. The partial order is usually
defined as μ 
 ν ⇔ ν – μ ∈ [0,∞). Let a continuous mapping T : U × U → U be defined
as

T(μ,ν) =
2μ + 2ν + 4

5
, ∀ μ,ν ∈ U2.

The mixed monotone property is not satisfied. If we choose ν1 = 4 and ν2 = 5, then ν1 
 ν2,
implies that T(μ,ν1) 
 T(μ,ν2). Further, we define a mapping ψ : [0,∞) → [0,∞) such
that ψ(τ ) = 4

5τ , ∀ τ > 0. By a direct calculation, ∀ μ,ν, x, y ∈ U , we have that

1
Fm(T(μ,ν), T(x, y), t)

– 1 =
1
t
(
m

(
T(μ,ν), T(x, y)

))

=
1
t

∣∣∣∣2μ + 2ν + 4
5

–
2x + 2y + 4

5

∣∣∣∣
≤ 2

5t
(
m(μ, x) + m(ν, y)

)

=
4
5t

(
1
2
(
m(μ, x) + m(ν, y)

))

=
4
5

(
1
2

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
))

= ψ

(
1
2

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
))

.

Hence all the conditions of Theorem 3.6 are satisfied with A = U4 and T has a unique
coupled fixed point, i.e., T(4, 4) = 4.

If we define a mapping ψ(τ ) = λτ for any λ ∈ [0, 1) in Theorem 3.6, then we get the
following.

Corollary 3.8 Let A be a nonempty subset of a complete FCM-space (U , Fm,∗) in which
Fm is triangular. Let T : U × U → U be a mapping and ∃ λ ∈ [0, 1) such that

1
Fm(T(μ,ν), T(x, y), t)

– 1 ≤ λ

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
)

, (3.15)

for all (μ,ν, x, y) ∈ A. Assume that either:
(1) T is continuous, or
(2) If for any two sequences (μi) and (νi) with (μi+1,νi+1,μi,νi) ∈ A, where (μi) → μ, and

(νi) → ν , for all i ≥ 1, ∃ μ,ν ∈ U such that μ = T(μ,ν) and ν = T(ν,μ), then A is a
T-invariant set which satisfies the transitive property. Then T has a coupled fixed
point.

In the following theorem we prove the uniqueness of a coupled fixed point of a mapping
T on U .

Theorem 3.9 By addition to the hypotheses of Theorem 3.6, assume that ∀ (μ,ν), (g, h) ∈
X2, ∃ (x, y) ∈ U2 such that (μ,ν,μ,ν) ∈ A and (g, h, x, y) ∈ A. Then T has a unique coupled
fixed point in U .
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Proof From the proof of Theorem 3.6, the mapping T has a coupled fixed point in U .
Assume that (μ,ν) and (g, h) are coupled fixed points of T , i.e., T(μ,ν) = μ, T(ν,μ) = ν ,
T(g, h) = g , and T(h, g) = h. We have to show that μ = g and ν = h.

By hypotheses, ∃ (x, y) ∈ X2 such that (μ,ν, g, h) ∈ A and (g, h, x, y) ∈ A.
Let x = xo and y = yo. We define two sequences (xi) and (yi) such that xi = T(xi–1, yi–1),

yi = T(yi–1, xi–1) for all i ∈ N. Since A is T-invariant and (μ,ν, xo, yo) = (μ,ν, x, y) ∈ A ⇒
(T(μ,ν), T(ν,μ), T(xo, yo), T(yo, xo)) ∈ A, i.e., (μ,ν, x1, y1) ∈ A.

Again, by the property of T-invariance, we have

(
T(μ,ν), T(ν,μ), T(x1, y1), T(y1, x1)

) ∈ A, i.e. (μ,ν, x2, y2) ∈ A.

Repeating this argument, we get (μ,ν, xi, yi) ∈ A, ∀ i ∈ N. Now, in view of (3.1), for t � θ ,
we have

1
Fm(μ, xi+1, t)

– 1 =
1

Fm(T(μ,ν), T(xi, yi), t)
– 1

≤ ψ

(
1
2

(
1

Fm(μ, xi, t)
– 1 +

1
Fm(ν, yi, t)

– 1
))

.
(3.16)

Since A is T-invariant and (μ,ν, xi, yi) ∈ A, ∀ i ∈N, we have (yi, xi,ν,μ) ∈ A, ∀ i ∈N. Then,
again by (3.1), for t � θ , we have

1
Fm(yi+1,ν, t)

– 1 =
1

Fm(T(yi, xi), T(ν,μ), t)
– 1

≤ ψ

(
1
2

(
1

Fm(yi,ν, t)
– 1 +

1
Fm(xi,μ, t)

– 1
))

.
(3.17)

Adding (3.16) and (3.17), for t � θ , we have

1
2

(
1

Fm(μ, xi+1, t)
– 1 +

1
Fm(yi+1,ν, t)

– 1
)

≤ ψ

(
1
2

(
1

Fm(μ, xi, t)
– 1 +

1
Fm(ν, yi, t)

– 1
))

.
(3.18)

Repeating the same argument, for t � θ and ∀ i ∈ N, we have

1
2

(
1

Fm(μ, xi+1, t)
– 1 +

1
Fm(yi+1,ν, t)

– 1
)

≤ ψ i
(

1
2

(
1

Fm(μ, x1, t)
– 1 +

1
Fm(ν, y1, t)

– 1
))

.
(3.19)

Now from mapping ψ , ψ(τ ) < τ and limr→τ+ ψ(r) < τ , it follows that limi→∞ ψ i(τ ) = 0,
∀ τ > 0. Hence, from (3.19), for t � θ , we get

lim
i→∞

(
1

Fm(μ, xi+1, t)
– 1 +

1
Fm(yi+1,ν, t)

– 1
)

= lim
i→∞

(
1

Fm(μ, xi+1, t)
– 1 +

1
Fm(ν, yi+1, t)

– 1
)

= 0.
(3.20)
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Similarly, for t � θ , we can prove that

lim
i→∞

(
1

Fm(g, xi+1, t)
– 1 +

1
Fm(yi+1, h, t)

– 1
)

= lim
i→∞

(
1

Fm(g, xi+1, t)
– 1 +

1
Fm(h, yi+1, t)

– 1
)

= 0.
(3.21)

Since Fm is triangular and from (3.20) and (3.21) ∀ i ∈N, and t � θ , we have

1
Fm(μ, g, t)

– 1 +
1

Fm(ν, h, t)
– 1

≤
(

1
Fm(μ, xi+1, t)

– 1 +
1

Fm(xi+1, g, t)
– 1

)
+

(
1

Fm(ν, yi+1, t)
– 1 +

1
Fm(yi+1, h, t)

– 1
)

=
(

1
Fm(μ, xi+1, t)

– 1 +
1

Fm(ν, yi+1, t)
– 1

)
+

(
1

Fm(xi+1, g, t)
– 1 +

1
Fm(yi+1, h, t)

– 1
)

→ 0, as i → ∞.

We get that ( 1
Fm(μ,g,t) – 1 + 1

Fm(ν,h,t) – 1) = 0 ⇒ Fm(μ, g, t) = 1, i.e., μ = g and Fm(ν, h, t) = 1,
i.e., ν = h. Hence T has a unique coupled fixed point. This completes the proof.

In the following we prove some coupled fixed point results by partial ordered metric
space in FCM-spaces.

Let C(U) denote the collection of all subsets of a set U , and a pair (U ,
) denotes the par-
tially ordered set with partially ordered 
. A mapping F : U → U is known as nondecreas-
ing (resp. nonincreasing) if ∀ a, b ∈ U such that a 
 b ⇒ F(a) 
 F(b) (resp. F(b) 
 F(a)). �

Definition 3.10 ([38]) Let a pair (U ,
) be a partially ordered set, and a mapping T :
U × U → U is known to have a mixed monotone property if T : U × U → U is mono-
tone nondecreasing in the first argument, and T is monotone nonincreasing in the second
argument ∀ μ,ν ∈ U :

(i) μ,μ∗ ∈ U , μ 
 μ∗ ⇒ T(μ,ν) 
 T(μ∗,ν).
(ii) ν,ν∗ ∈ U , ν 
 ν∗ ⇒ T(μ,ν) � T(μ,ν∗).

Example 3.11 Let (U , m) be a metric space with partial ordered “ 
”, let (U , Fm,∗) be an
FCM-space defined ∀ μ,ν ∈ U and t � θ as follows: Fm(μ,ν, t) = t

t+m(μ,ν) with m(μ,ν) =
|μ – ν|. A mapping T : U2 → U satisfies the mixed monotone property ∀ μ,ν ∈ U such
that

μ,μ∗ ∈ U , μ 
 μ∗ ⇒ T(μ,ν) 
 T
(
μ∗,ν

)
,

and

ν,ν∗ ∈ U , ν 
 ν∗ ⇒ T
(
μ,ν∗) 
 T(μ,ν).

We define a subset A ⊆ U4 by A = {(μ,μ∗,ν,ν∗) ∈ U4 : μ � ν,μ∗ 
 ν∗}. Then A is a T-
invariant subset of U4 which satisfies the transitive property.
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Theorem 3.12 Assume that (U ,
) is a partial ordered set, and let (U , Fm,∗) be a complete
FCM-space in which Fm is triangular. Let there be a mapping ψ : [0,∞) → [0,∞) with
ψ(0) = 0 < ψ(τ ) < τ , and limr→τ+ ψ(r) < τ for τ > 0, and suppose that a mapping T : U ×
U → U has the mixed monotone property and satisfies

1
Fm(T(μ,ν), T(x, y), t)

– 1 ≤ ψ

(
1
2

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
))

, (3.22)

for all (μ,ν, x, y) ∈ U for which μ � x and ν 
 y. Assume that either:
(1) T is continuous, or
(2) U has the following properties:

(i) If a nondecreasing sequence (μi) in U with μi → μ, then μi 
 μ, ∀ i ∈ N;
(ii) If a nonincreasing sequence (νi) in U with νi → ν , then ν � νi, ∀ i ∈N.
If there exist μo,νo ∈ U such that μo 
 T(μo,νo) and νo � T(νo,μo) such that
μ = T(μ,ν) and ν = T(ν,μ), then T has a coupled fixed point.

Proof Let a subset A ⊆ U4 be defined as A = {(μ,μ∗,ν,ν∗) ∈ U4 : μ � ν and μ∗ 
 ν∗}. Now
from Example 3.11 we conclude that A is a T-invariant set which satisfies the transitive
property. In view of (3.22), ∀ μ,ν, x, y ∈ U with (μ,ν, x, y) ∈ A. Since μo,νo ∈ U such that
μo 
 T(μo,νo) and νo � T(νo,μo), we get that (T(μo,νo), T(νo,μo),μo,νo) ∈ A.

Now for assertion (2), (μi) and (νi) are any two sequences in U such that (μi) is a non-
decreasing sequence with μi → μ and (νi) is a nonincreasing sequence with νi → ν . Then
we have

μ1 
 μ2 
 · · · 
 μi 
 μ and ν1 � ν2 � · · ·νi � · · · � ν, ∀ i ∈N.

Therefore, (μ,ν,μi,νi) ∈ A, i ∈N, hence assertion (2) of Theorem 3.6 is satisfied. Since all
the hypotheses of Theorem 3.6 are satisfied, F has a coupled fixed point. �

Corollary 3.13 In addition to the hypotheses of Theorem 3.12, assume that ∀ (μ,ν), (g, h) ∈
U2, ∃ (x, y) ∈ X2 such that μ � x, ν 
 y and g � x, h 
 y. Then T has a unique coupled fixed
point.

Proof Let a subset A ⊆ X4 be defined as A = {(μ,μ∗,ν,ν∗) ∈ X4 : μ � ν and μ∗ 
 ν∗}. Now,
from Example 3.11, we conclude that A is a T-invariant set which satisfies the transitive
property. Then, through the proof of Theorem 3.12, easily from simple calculation we can
get the existence of a coupled fixed point.

Uniqueness: Now we have to show the unique coupled fixed point of the mapping T .
Since ∀ (μ,ν), (g, h) ∈ U2, ∃ (x, y) ∈ U2 such that μ � x, ν 
 y and g � x, h 
 y, we conclude
that (μ,ν, x, y) ∈ A and (g, h, x, y) ∈ A. Thus all the hypotheses of Theorem 3.9 hold and T
has a unique coupled fixed point. �

4 Strong coupled fixed point results in FCM-spaces
Definition 4.1 ([6]) Let A and B be two nonempty subsets of a given set U . A mapping
T : U × U → U such that T(μ,ν) ∈ A if μ ∈ B and ν ∈ A, and T(μ,ν) ∈ B if μ ∈ A and
ν ∈ B is called a cyclic map w.r.t A and B.
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Definition 4.2 ([6, 38]) Let U be a nonempty set, and an element (μ,ν) ∈ U2 is called a
coupled fixed point of the mapping T : U × U → U if T(μ,ν) = μ and T(ν,μ) = ν , and it
is called a strong coupled fixed point if μ = ν , that is, T(μ,μ) = μ.

Definition 4.3 ([6]) Let A and B be two nonempty subsets of a metric space (U , m). Then
a mapping T : U × U → U is called a cyclic coupled Kannan type contraction w.r.t A and
B if T is cyclic w.r.t A and B satisfying

m
(
T(μ,ν), T(x, y)

) ≤ a
(
m

(
u, T(μ,ν)

)
+ m

(
x, T(x, y)

))
, (4.1)

where μ, y ∈ A, ν, x ∈ B, and a ∈ (0, 1
2 ).

Definition 4.4 Let A and B be two nonempty closed subsets of an FCM-space (U , Fm,∗).
A mapping T : U × U → U is called a cyclic coupled Kannan type fuzzy cone contraction
w.r.t. A and B if T is cyclic w.r.t. A and B satisfying the inequality

1
Fm(T(μ,ν), T(x, y), t)

– 1 ≤ a
(

1
Fm(μ, T(μ,ν), t)

– 1 +
1

Fm(x, T(x, y), t)
– 1

)
, (4.2)

where μ, y ∈ A, ν, x ∈ B, t � θ , and a ∈ (0, 1
2 ).

In the following, we shall study a more generalized cyclic coupled type fuzzy cone con-
traction condition in (U , Fm,∗) and prove some strong coupled fixed point results in FCM-
spaces. A mapping T : U × U → U is known as a generalized cyclic coupled type fuzzy
cone contraction condition in FCM-spaces if T satisfies the inequality

1
Fm(T(μ,ν), T(x, y), t)

– 1

≤ a
(

1
Fm(μ, T(μ,ν), t)

– 1
)

+ b
(

1
Fm(x, T(x, y), t)

– 1
)

+ c
(

1
Fm(x, T(μ,ν), t)

– 1
)

+ d
(

1
Fm(μ, T(x, y), t)

– 1
)

,

(4.3)

where μ, y ∈ A, ν, x ∈ B, t � θ , and a, b, c, d ∈ [0,∞). We note that (4.3) is the same as (4.2)
if a = b ∈ (0, 1

2 ) and c = d = 0. Also, we illustrate some examples to support our results.

Theorem 4.5 Assume that A and B are two nonempty closed subsets of a complete FCM-
space (U , Fm,∗) in which Fm is triangular and T : U ×U → U is a generalized cyclic coupled
type fuzzy cone contraction w.r.t A and B. Suppose that T satisfies (4.3) with (a + b + 2c +
2d) < 1. Then A ∩ B �= ∅ and T has a strong coupled fixed in A ∩ B.

Proof Fix μ0 ∈ A and ν0 ∈ B. Let (μi) and (νi) be two sequences defined as

μi+1 = T(νi,μi) and νi+1 = T(μi,νi), for all i ≥ 0. (4.4)

Then (μi) ⊂ A and (νi) ⊂ B since T is a cyclic mapping w.r.t A and B. We denote the
following:

h =
a + d

1 – (b + d)
.
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Then h ∈ (0, 1) for a + b + 2c + 2d < 1. We claim that, for t � θ and i ≥ 0,

(
1

Fm(μi,νi+1, t)
– 1

)
+

(
1

Fm(νi,μi+1, t)
– 1

)

≤ hi
(

1
Fm(μo,ν1, t)

– 1 +
1

Fm(νo,μ1, t)
– 1

)
.

(4.5)

It is clear that (4.5) holds for i = 0. Suppose that (4.5) holds for i = k for t � θ , then by (4.3)
we have

1
Fm(μk+1,νk+2, t)

– 1

=
1

Fm(T(νk ,μk), T(μk+1,νk+1), t)
– 1

≤ a
(

1
Fm(νk , T(νk ,μk), t)

– 1
)

+ b
(

1
Fm(μk+1, T(μk+1,νk+1), t)

– 1
)

+ c
(

1
Fm(μk+1, T(νk ,μk), t)

– 1
)

+ d
(

1
Fm(νk , T(μk+1,νk+1), t)

– 1
)

≤ a
(

1
Fm(νk ,μk+1, t)

– 1
)

+ b
(

1
Fm(μk+1,νk+2), t)

– 1
)

+ d
(

1
Fm(νk ,μk+1, t)

– 1 +
1

Fm(μk+1,νk+2), t)
– 1

)
,

which implies that

1
Fm(μk+1,νk+2, t)

– 1 ≤ h
(

1
Fm(νk ,μk+1, t)

– 1
)

, for t � θ .

Similarly, in view of (4.3),

1
Fm(νk+1,μk+2, t)

– 1

=
1

Fm(T(μk ,νk), T(νk+1,μk+1), t)
– 1

≤ a
(

1
Fm(μk , T(μk ,νk), t)

– 1
)

+ b
(

1
Fm(νk+1, T(νk+1,μk+1), t)

– 1
)

+ c
(

1
Fm(νk+1, T(μk ,νk), t)

– 1
)

+ d
(

1
Fm(μk , T(νk+1,μk+1), t)

– 1
)

≤ a
(

1
Fm(μk ,νk+1, t)

– 1
)

+ b
(

1
Fm(νk+1,μk+2), t)

– 1
)

+ d
(

1
Fm(μk ,νk+1, t)

– 1 +
1

Fm(νk+1,μk+2), t)
– 1

)
,

which implies that

1
Fm(νk+1,μk+2, t)

– 1 ≤ h
(

1
Fm(μk ,νk+1, t)

– 1
)

, for t � θ .
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Thus, by the induction hypothesis, i.e., (4.5) with i = k for t � θ , we have

(
1

Fm(μk+1,νk+2, t)
– 1

)
+

(
1

Fm(νk+1,μk+2, t)
– 1

)

≤ h
(

1
Fm(μk ,νk+1, t)

– 1 +
1

Fm(νk ,μk+1, t)
– 1

)

≤ · · · ≤ hk+1
(

1
Fm(μo,ν1, t)

– 1 +
1

M(νo,μ1, t)
– 1

)
.

That is, (4.5) holds for i = k + 1. Therefore, we have proved that (4.5) holds for all i ≥ 0 by
induction. Meanwhile, by (4.3), for i ≥ 0,

(
1

Fm(μi,μi+1, t)
– 1

)
+

(
1

Fm(νi,νi+1, t)
– 1

)

≤
(

1
Fm(μi,νi+1, t)

– 1 +
1

Fm(νi+1,μi+1, t)
– 1

)

+
(

1
Fm(νi,μi+1, t)

– 1 +
1

Fm(μi+1,νi+1, t)
– 1

)

=
(

1
Fm(μi,νi+1, t)

– 1
)

+
(

1
Fm(νi,μi+1, t)

– 1
)

+ 2
(

1
Fm(μi+1,νi+1, t)

– 1
)

=
(

1
Fm(μi,νi+1, t)

– 1
)

+
(

1
Fm(νi,μi+1, t)

– 1
)

+ 2
(

1
Fm(F(νi,μi), F(μi,νi), t)

– 1
)

≤
(

1
Fm(μi,νi+1, t)

– 1
)

+
(

1
Fm(νi,μi+1, t)

– 1
)

+ 2a
(

1
Fm(νi,μi+1, t)

– 1
)

+ 2b
(

1
Fm(μi,νi+1, t)

– 1
)

+ 2c
(

1
Fm(μi,μi+1)

– 1
)

+ 2d
(

1
Fm(νi,νi+1, t)

– 1
)

.

Here, we suppose that α = max{a, b} and β = max{c, d}, then we have

(
1

Fm(μi,μi+1, t)
– 1

)
+

(
1

Fm(νi,νi+1, t)
– 1

)

≤ (1 + 2α)
(

1
Fm(μi,νi+1, t)

– 1 +
1

Fm(νi,μi+1, t)
– 1

)

+ 2β

(
1

Fm(μi,μi+1)
– 1 +

1
Fm(νi,νi+1, t)

– 1
)

.

This together with (4.5) implies that

(
1

Fm(μi,μi+1, t)
– 1

)
+

(
1

Fm(νi,νi+1, t)
– 1

)

≤ 1 + 2α

1 – 2β
hi

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

, for t � θ .
(4.6)

Then, for i, j ≥ 0, without loss of generality we assume that i ≤ j,

1
Fm(μi,μj, t)

– 1 ≤
j–1∑
k=i

(
1

Fm(μi,μi+1, t)
– 1

)
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≤
j–1∑
k=i

1 + 2α

1 – 2β
hi

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

=
1 + 2α

(1 – 2β)(1 – h)
hi

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

→ θ , as i → ∞.

This implies that (μi) is a Cauchy sequence and hence convergent in X. Since A is a
nonempty closed subset of U , therefore

μi → μ ∈ A, as i → ∞. (4.7)

Similarly,

νi → ν ∈ B, as i → ∞. (4.8)

So, from (4.7) and (4.8), we have

lim
i→∞ Fm(μi,νi, t) = Fm(μ,ν, t), for t � θ . (4.9)

Since Fm is triangular, by (4.5) and (4.6),

1
Fm(μi,νi, t)

– 1 ≤
(

1
Fm(μi,μi+1, t)

– 1
)

+
(

1
Fm(μi+1,νi, t)

– 1
)

≤
(

1 + 2α

1 – 2β
+ 1

)
hi

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

→ θ , as i → ∞.

Therefore, Fm(μ,ν, t) = 1, for t � θ and hence μ = ν ∈ A ∩ B.
Now we have to prove that μ is a strong coupled fixed point of T by using the Fm trian-

gularity condition, we have

1
Fm(μ, T(μ,ν), t)

– 1 ≤
(

1
Fm(μ,μi+1, t)

– 1
)

+
(

1
Fm(μi+1, T(μ,ν), t)

– 1
)

, (4.10)

for t � θ . In view of (4.3), (4.7), and (4.8),

1
Fm(μi+1, T(μ,ν), t)

– 1

=
1

Fm(T(νi,μi), T(μ,ν), t)
– 1

≤ a
(

1
Fm(νi, T(νi,μi), t)

– 1
)

+ b
(

1
Fm(μ, T(μ,ν), t)

– 1
)

+ c
(

1
Fm(μ, T(νi,μi), t)

– 1
)

+ d
(

1
Fm(νi, T(μ,ν), t)

– 1
)

≤ a
(

1
Fm(νi,μi+1, t)

– 1
)

+ b
(

1
Fm(μ, T(μ,ν), t)

– 1
)
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+ c
(

1
Fm(μ,μi+1, t)

– 1
)

+ d
(

1
Fm(νi,μ, t)

– 1 +
1

Fm(μ, T(μ,ν), t)
– 1

)

→ (b + d)
(

1
Fm(μ, T(μ,ν), t)

– 1
)

, as i → ∞.

Then

lim sup
i→∞

(
1

Fm(μi+1, T(μ,ν), t)
– 1

)
≤ (b + d)

(
1

Fm(μ, T(μ,ν), t)
– 1

)
, for t � θ .

Hence this together with (4.10) implies that

1
Fm(μ, T(μ,ν), t)

– 1 ≤ (b + d)
(

1
Fm(μ, T(μ,ν), t)

– 1
)

, for t � θ .

Since b + d < 1, which yields that Fm(μ, T(μ,ν), t) = 1. This implies that T(μ,ν) = μ = ν is
the strong coupled fixed point of T . �

Corollary 4.6 Assume that A and B are two nonempty subsets of a complete FCM-space
(U , Fm,∗) in which Fm is triangular and T : U × U → U is a cyclic coupled type fuzzy cone
contraction w.r.t. A and B. Suppose that T satisfies the inequality

1
Fm(T(μ,ν), T(x, y), t)

– 1

≤ a
(

1
Fm(μ, T(μ,ν), t)

– 1
)

+ b
(

1
Fm(x, T(x, y), t)

– 1
)

+ c
(

1
Fm(x, T(μ,ν), t)

– 1
)

,

(4.11)

where μ, y ∈ A, ν, x ∈ B, and t � θ for a, b, c ∈ [0,∞) with (a + b + 2c) < 1. Then A ∩ B �= ∅
and T has a strong coupled fixed point in A ∩ B.

Corollary 4.7 Assume that A and B are two nonempty closed subsets of a complete FCM-
space (U , Fm,∗) in which Fm is triangular and T : U ×U → U is a cyclic coupled type fuzzy
cone contraction w.r.t. A and B. Suppose that T satisfies the inequality

1
Fm(T(μ,ν), T(x, y), t)

– 1

≤ a
(

1
Fm(μ, T(μ,ν), t)

– 1
)

+ b
(

1
Fm(x, T(x, y), t)

– 1
)

+ d
(

1
Fm(μ, T(x, y), t)

– 1
)

,

(4.12)

where μ, y ∈ A, ν, x ∈ B, and t � θ for some a, b, d ∈ [0,∞) with (a + b + 2d) < 1. Then
A ∩ B �= ∅, and T has a strong coupled fixed point in A ∩ B.

If a = b and c = d = 0 in (4.3), then we may get the following corollary of Kannan type
for a cyclic coupled fixed point in FCM-spaces.



Chen et al. Advances in Difference Equations        (2020) 2020:671 Page 17 of 25

Corollary 4.8 Assume that A and B are two nonempty closed subsets of a complete FCM-
space (U , Fm,∗) in which Fm is triangular and T : U × U → U is a cyclic coupled Kannan
type fuzzy cone contraction w.r.t A and B satisfying (4.2) for some a ∈ (0, 1

2 ). Then A∩B �= ∅,
and T has a strong coupled fixed in A ∩ B.

Remark 4.9 In a special case, Theorem 4.5, Corollary 4.6, Corollary 4.7, Corollary 4.8, and
the result in reference (see [6, Theorem 5]) contains the same results if a = b ∈ (0, 1/2) and
c = d = 0.

Example 4.10 Let U = [0,∞), ∗ be a continuous t-norm, and Fm : U × U × (0,∞) → [0, 1]
be defined as follows:

Fm(μ,ν, t) =
t

t + m(μ,ν)
,

where m(μ,ν) = |μ–ν|, ∀μ,ν ∈ U , and t � θ . Then easily one can prove that Fm is triangu-
lar and (U , Fm,∗) is a complete FCM-space. Let A = [0, 1] and B = [0, 1

3 ] be two nonempty
closed subsets of U and m(A, B) = 0. Let a mapping T : U × U → U be defined as follows:

T(μ,ν) =

⎧⎪⎨
⎪⎩

μ+4ν

20 , if μ,ν ∈ [0, 1],

2μ+ν+10
5 , if μ,ν ∈ (1,∞).

Then easily one can verify that T is a cyclic mapping w.r.t A and B for any μ, y ∈ A and
ν, x ∈ B. Now, for t � θ , we have

1
Fm(T(μ,ν), T(x, y), t)

– 1

=
1
t

m
(
T(μ,ν), T(x, y)

)

=
1
t

∣∣∣∣μ – x
20

+
4(ν – y)

20

∣∣∣∣
≤ 12

35t

∣∣∣∣19(μ + x)
20

–
4(ν + y)

20

∣∣∣∣
≤ 1

5t

∣∣∣∣19(μ + x)
20

–
4(ν + y)

20

∣∣∣∣ +
1
7t

∣∣∣∣19(μ + x)
20

–
4(ν + y)

20

∣∣∣∣
=

1
5t

(∣∣∣∣μ –
μ + 4ν

20
+ x –

x + 4y
20

∣∣∣∣
)

+
1
7t

(∣∣∣∣x –
μ + 4ν

20
+ μ –

x + 4y
20

∣∣∣∣
)

≤ 1
5t

(∣∣∣∣μ –
μ + 4ν

20

∣∣∣∣ +
∣∣∣∣x –

x + 4y
20

∣∣∣∣
)

+
1
7t

(∣∣∣∣x –
μ + 4ν

20

∣∣∣∣ +
∣∣∣∣μ –

x + 4y
20

∣∣∣∣
)

=
1
5t

m
(
μ, T(μ,ν)

)
+

1
5t

m
(
x, T(x, y)

)
+

1
7t

m
(
x, T(μ,ν)

)
+

1
7t

m
(
μ, T(x, y)

)

=
1
5

(
1

Fm(μ, T(μ,ν), t)
– 1

)
+

1
5

(
1

Fm(x, T(x, y), t)
– 1

)

+
1
7

(
1

Fm(x, T(μ,ν), t)
– 1

)
+

1
7

(
1

Fm(μ, T(x, y), t)
– 1

)
.
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Hence, inequality (4.3) is satisfied with a = b = 1
5 and c = d = 1

7 for t � θ . Thus all the
conditions of Theorem 4.5 are satisfied and T has a strong coupled fixed point, that is,
T(5, 5) = 5 ∈ (1,∞).

Theorem 4.11 Assume that A and B are two nonempty closed subsets of a complete FCM-
space (U , Fm,∗) in which Fm is triangular and T : U ×U → U is a cyclic coupled contractive
type mapping w.r.t. A and B for some a ∈ [0, 1) satisfying

1
Fm(T(μ,ν), T(x, y), t)

– 1 ≤ a
(

1
min{Fm(μ, T(μ,ν), t), Fm(x, T(x, y), t)} – 1

)
, (4.13)

where μ, y ∈ A, ν, x ∈ B, and t � θ . Then A ∩ B �= ∅ and T has a strong coupled fixed point
in A ∩ B.

Proof Let μo ∈ A and νo ∈ B be two fixed elements, and let (μi) and (νi) be any two se-
quences in A and B, respectively, which are defined as follows:

μi+1 = T(νi,μi) and νi+1 = T(μi,νi), ∀ i ≥ 0. (4.14)

Now, we have to show that (μi) is a Cauchy sequence. Then from (4.13) we have

1
Fm(μi+1,νi+2, t)

– 1 =
1

Fm(T(νi,μi), T(μi+1,νi+1), t)
– 1

≤ a
(

1
min{Fm(νi, T(νi,μi), t), Fm(μi+1, T(μi+1,νi+1, t)} – 1

)

= a
(

1
min{Fm(νi,μi+1, t), Fm(μi+1,νi+2, t)} – 1

)
. (4.15)

If Fm(μi+1,νi+2, t) is minimum, then ( 1
Fm(μi+1,νi+2,t) – 1) is the maximum in (4.15), which is

not possible. Therefore,

1
Fm(μi+1,νi+2, t)

– 1 ≤ a
(

1
Fm(νi,μi+1, t)

– 1
)

, for t � θ . (4.16)

Similarly,

1
Fm(νi+1,μi+2, t)

– 1 ≤ a
(

1
Fm(μi,νi+1, t)

– 1
)

, for t � θ . (4.17)

Adding (4.16) and (4.17), for t � θ , we have

(
1

Fm(μi+1,νi+2, t)
– 1

)
+

(
1

Fm(νi+1,μi+2, t)
– 1

)

≤ a
(

1
Fm(νi,μi+1, t)

– 1 +
1

Fm(μi,νi+1, t)
– 1

)
.

(4.18)

Now, again by (4.13) and similar as above, we get

1
Fm(νi,μi+1, t)

– 1 ≤ a
(

1
Fm(μi–1,νi, t)

– 1
)

, for t � θ (4.19)
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and

1
Fm(μi,νi+1, t)

– 1 ≤ a
(

1
Fm(νi–1,μi, t)

– 1
)

, for t � θ . (4.20)

Adding (4.19) and (4.20), and substituting in (4.18) for t � θ , we get

(
1

Fm(μi+1,νi+2, t)
– 1

)
+

(
1

Fm(νi+1,μi+2, t)
– 1

)

≤ a2
(

1
Fm(μi–1,νi, t)

– 1 +
1

Fm(νi–1,μi, t)
– 1

)
.

Continuing this process, for t � θ , we have

(
1

Fm(μi+1,νi+2, t)
– 1

)
+

(
1

Fm(νi+1,μi+2, t)
– 1

)

≤ ai+1
(

1
Fm(μo,ν1, t)

– 1 +
1

Fm(νo,μ1, t)
– 1

)
.

(4.21)

Thus (4.21) is true ∀ i ≥ 0. Now, for an integer k,

1
Fm(μk+1,νk+1, t)

– 1 =
1

Fm(T(νk ,μk), T(μk ,νk), t)
– 1

≤ a
(

1
min{Fm(νk , T(νk ,μk), t), Fm(μk , T(μk ,νk), t)} – 1

)

≤ a
(

1
min{Fm(νk ,μk+1, t), Fm(μk ,νk+1, t)} – 1

)
. (4.22)

Then, again we may have the following two cases:
(i) If Fm(νk ,μk+1, t) is minimum, then ( 1

Fm(νk ,μk+1,t) – 1) is the maximum in (4.22) such
that

1
Fm(μk+1,νk+1, t)

– 1 ≤ a
(

1
Fm(νk ,μk+1, t)

– 1
)

, for t � θ . (4.23)

(ii) If Fm(μk ,νk+1, t) is minimum, then ( 1
Fm(μk ,νk+1,t) – 1) will be maximum in (4.22) such

that

1
Fm(μk+1,νk+1, t)

– 1 ≤ a
(

1
Fm(μk ,νk+1, t)

– 1
)

, for t � θ . (4.24)

Adding (4.23) and (4.24),

1
Fm(μk+1,νk+1, t)

– 1 ≤ a∗
(

1
Fm(μk ,νk+1, t)

– 1 +
1

Fm(νk ,μk+1, t)
– 1

)
,

where a∗ = a
2 , and by (4.21) for t � θ , we have

1
Fm(μk+1,νk+1, t)

– 1 ≤ a∗ak
(

1
Fm(μo,ν1, t)

– 1 +
1

Fm(νo,μ1, t)
– 1

)
, for k ≥ 0. (4.25)
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Since Fm is triangular, and by (4.21) and (4.25),

(
1

Fm(μi,μi+1, t)
– 1

)
+

(
1

Fm(νi,νi+1, t)
– 1

)

≤
(

1
Fm(μi,νi, t)

– 1 +
1

Fm(νi,μi+1, t)
– 1

)
+

(
1

Fm(νi,μi, t)
– 1 +

1
Fm(μi,νi+1, t)

– 1
)

=
(

1
Fm(μi,νi, t)

– 1 +
1

Fm(νi,μi, t)
– 1

)
+

(
1

Fm(νi,μi+1, t)
– 1 +

1
Fm(μi,νi+1, t)

– 1
)

≤ 2a∗ai–1
(

1
Fm(μ0,ν1, t)

– 1 +
1

Fm(νo,μ1, t)
– 1

)

+ ai
(

1
Fm(μo,ν1, t)

– 1 +
1

Fm(νo,μ1, t)
– 1

)

=
(

1 +
2a∗

a

)
ai

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

, for i ≥ 0.

Now, for m, i ≥ 0, without loss of generality we may assume that m > i,

1
Fm(μi,μm, t)

– 1 ≤
m–1∑
n=i

(
1

Fm(μn,μn+1, t)
– 1

)

≤
m–1∑
n=i

(
1 +

2a∗

a

)
an

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

≤
(

1 +
2a∗

a

)
ai

1 – a

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

→ 0, as i → ∞.

This shows that (μi) is a Cauchy sequence and hence convergent in X. Since A �= ∅ a closed
subset of U , therefore

μi → μ ∈ A, as i → ∞. (4.26)

Similarly,

νi → ν ∈ B, as i → ∞. (4.27)

Hence, from (4.26) and (4.27), we have

lim
i→∞ Fm(μi,νi, t) = Fm(μ,ν, t), for t � θ .

Since Fm is triangular, by (4.21) and (4.26), we get

1
Fm(μi,νi, t)

– 1 ≤
(

1
Fm(μi,μi+1, t)

– 1
)

+
(

1
Fm(μi+1,νi, t)

– 1
)

≤
(

a + 2a∗

a
+ 1

)
ai

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)
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= 2
(

1 +
a∗

a

)
ai

(
1

Fm(μo,ν1, t)
– 1 +

1
Fm(νo,μ1, t)

– 1
)

→ 0, as i → ∞.

Therefore, Fm(μ,ν, t) = 1 ⇒ (μ = ν) ∈ A ∩ B.
Now we show that μ is a strong coupled fixed point of T . Since Fm is triangular, for

t � θ , we have

1
Fm(μ, T(μ,ν), t)

– 1 ≤
(

1
Fm(μ,μi+1, t)

– 1
)

+
(

1
Fm(μi+1, T(μ,ν), t)

– 1
)

. (4.28)

Then, in view of (4.13), (4.26), and (4.27),

1
Fm(μi+1, T(μ,ν), t)

– 1 =
1

Fm(T(νi,μi), T(μ,ν), t)
– 1

≤ a
(

1
min{Fm(νi, T(νi,μi), t), Fm(μ, T(μ,ν), t)} – 1

)

= a
(

1
min{Fm(νi,μi+1, t), Fm(μ, T(μ,ν), t)} – 1

)

→ a
(

1
min{1, Fm(μ, T(μ,ν), t)} – 1

)
, as i → ∞.

If 1 is the minimum of {1, Fm(μ, T(μ,ν), t)}, then directly from (4.28) we may get
that Fm(μ, T(μ,ν), t) = 1 as i → ∞, which implies that T(μ,ν) = μ = ν . Secondly, if
Fm(μ, T(μ,ν), t) is the minimum of {1, Fm(μ, T(μ,ν), t)}, then we have

lim sup
i→∞

(
1

Fm(μi+1, T(μ,ν), t)
– 1

)
≤ a

(
1

Fm(μ, T(μ,ν), t)
– 1

)
, for t � θ .

Now, from (4.28),

1
Fm(μ, T(μ,ν), t)

– 1 ≤ a
(

1
Fm(μ, T(μ,ν), t)

– 1
)

,

(1 – a)
(

1
Fm(μ, T(μ,ν), t)

– 1
)

≤ 0, for t � θ ,

which is a contradiction. Hence Fm(μ, T(μ,ν), t) = 1 ⇒ T(μ,ν) = μ = ν is a strong coupled
fixed point of T . �

Example 4.12 As from Example 4.10, and in view of (4.13), we have that

1
Fm(T(μ,ν), T(x, y), t)

– 1 =
1
t

m
(
T(μ,ν), T(x, y)

)

=
1
t

∣∣∣∣μ – x
20

+
4(ν – y)

20

∣∣∣∣
≤ 6

140t
(
max

{|19μ – 4ν|, |19x – 4y|})

=
6
7t

(
max

{∣∣∣∣19μ – 4ν

20

∣∣∣∣,
∣∣∣∣19x – 4y

20

∣∣∣∣
})
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=
6
7t

(
max

{∣∣∣∣μ –
μ + 4ν

20

∣∣∣∣,
∣∣∣∣x –

x + 4y
20

∣∣∣∣
})

=
6
7t

(
max

{
m

(
μ, T(μ,ν)

)
, m

(
x, T(x, y)

)})

≤ 6
7

(
1

min{Fm(μ, T(μ,ν), t), Fm(x, T(x, y), t)} – 1
)

.

Hence all the conditions of Theorem 4.11 are satisfied with a = 6
7 for t � θ , and 5 is the

strong coupled fixed point of T , that is, T(5, 5) = 5.

5 An application of nonlinear integral equations
In this section, we present an application of nonlinear integral equations to support our re-
sults. Let U = C([0,�],R) be the space of all R-valued continuous functions on the interval
[0,�], where 0 < � ∈R. The two nonlinear integral equations are:

μ(τ ) =
∫ �

0



(
τ ,μ(r),ν(r)

)
dr and ν(τ ) =

∫ �

0



(
τ ,μ(r),ν(r)

)
dr, (5.1)

where τ ∈ [0,�] and 
 is a mapping, i.e., 
 : [0,�] × R × R → R. The induced metric
m : U × U →R is defined as follows:

m(μ,ν) = sup
τ∈[0,�]

∣∣μ(τ ) – ν(τ )
∣∣, where μ,ν ∈ C

(
[0,�],R

)
.

The binary operation ∗ is defined by a ∗ b = ab, ∀ a, b ∈ [0,�]. A standard fuzzy metric
Fm : U × U × (0,∞) → [0, 1] is defined as follows:

Fm(μ,ν, t) =
t

t + m(μ,ν)
, for t > 0, and μ,ν ∈ (

[0,�],R
)
. (5.2)

Then easily one can show that Fm is triangular and (U , Fm,∗) is a complete FCM-space.
An element (μ,ν) ∈ C([0,�],R) × C([0,�],R) is called a lower and upper coupled solution
of integral equation (5.1) if μ(τ ) ≤ ν(τ ), and

μ(τ ) ≤
∫ �

0



(
τ ,μ(r),ν(r)

)
dr and ν(τ ) ≥

∫ �

0



(
τ ,ν(r),μ(r)

)
dr, ∀ τ ∈ [0,�].

(O1) 
 : [0,�] ×R×R →R is continuous.
(O2) ∀ τ ∈ [0,�] and ∀ μ,ν, x, y ∈R for which μ ≥ x and ν ≤ y, we have

0 ≤ 
(τ ,μ,ν) – 
(τ , x, y) ≤ 1
�
ψ

(
1
2

(μ – x + y – ν)
)

,

ψ : [0,∞) → [0,∞) is nondecreasing, continuous and satisfies 0 = ψ(0) < ψ(τ ) < τ and
limr→τ+ ψ(τ ) < τ for each τ > 0.

Now we are in the position to present a result of an integral equation.

Theorem 5.1 Assume that assertions (O1) and (O2) hold. Then equations (5.1) have a
unique solution, i.e., (μ∗,ν∗) ∈ C([0,�],R) × C([0,�],R) if ∃ a lower and upper coupled
solution for (5.1).
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Proof Consider the mapping T : C([0,�],R) × C([0,�],R) → C([0,�],R)

T(μ,ν)(τ ) ≤
∫ �

0



(
τ ,μ(r),ν(r)

)
dr, ∀ μ,ν ∈ C

(
[0,�],R

)
and τ ∈ [0,�].

Let A = {(μ,ν, x, y) ∈ U2 × U2 : μ(τ ) ≥ x(τ ) and ν(τ ) ≤ y(τ )∀ τ ∈ [0,�]}. It is obvious that a
subset A of U4 is T-invariant which satisfies the transitive property. Easily one can verify
that assertion (b) given in Theorem 3.6 is satisfied.

Now we shall show that an element (μ∗,ν∗) ∈ C([0,�],R) × C([0,�],R) has a coupled
fixed point of a mapping T .

Let (μ,ν, x, y) ∈ A, by using assertion (O1)∀ τ ∈ [0,�], then we have

∣∣T(μ,ν)(τ ) – T(x, y)(τ )
∣∣ =

∫ �

0
(


(
τ ,μ(r),ν(r)

)
– 


(
τ , x(r), y(r)

)
dr

≤ 1
�

∫ �

0
ψ

(
1
2
(
μ(r) – x(r) + y(r) – ν(r)

))
dr

≤ 1
�

∫ �

0
ψ

(
1
2

(
sup

s∈[0,�]

∣∣μ(s) – x(s)
∣∣ + sup

s∈[0,�]

∣∣y(s) – ν(s)
∣∣))

dr

= ψ

(
1
2

(
sup

s∈[0,�]

∣∣μ(s) – x(s)
∣∣ + sup

s∈[0,�]

∣∣y(s) – ν(s)
∣∣))

.

This implies that

sup
τ∈[0,�]

∣∣T(μ,ν)(τ ) – T(x, y)(τ )
∣∣ ≤ ψ

(
1
2

(
sup

s∈[0,�]

∣∣μ(s) – x(s)
∣∣ + sup

s∈[0,�]

∣∣y(s) – ν(s)
∣∣))

. (5.3)

Thus, we get

1
Fm(T(μ,ν), T(x, y), t)

– 1

=
1
t
(
m

(
T(μ,ν), T(x, y)

))

=
1
t

(
sup

τ∈[0,�]

∣∣T(μ,ν)(τ ) – T(x, y)(τ )
∣∣)

≤ 1
t
ψ

(
1
2

(
sup

s∈[0,�]

∣∣μ(s) – x(s)
∣∣ + sup

s∈[0,�]

∣∣y(s) – ν(s)
∣∣))

≤ ψ

(
1
2t

(
sup

s∈[0,�]

∣∣μ(s) – x(s)
∣∣ + sup

s∈[0,�]

∣∣y(s) – ν(s)
∣∣))

= ψ

(
1
2

(
m(μ, x)

t
+

m(ν, y)
t

))

= ψ

(
1
2

(
1

Fm(μ, x, t)
– 1 +

1
Fm(ν, y, t)

– 1
))

, ∀ (μ,ν, x, y) ∈ A.

Thus (3.6) is satisfied. Moreover, easily one can verify that ∃ (μ0,ν0) ∈ C([0,�],R) ×
C([0,�],R) such that (T(μ0,ν0), T(ν0,μ0),μ0,ν0) ∈ A, and all the conditions of The-
orem 3.6 are satisfied. Therefore, from Theorem 3.6 we get the solution (μ∗,ν∗) ∈
C([0,�],R) × C([0,�],R). �
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6 Conclusion
In this paper, we have introduced the concept of coupled type and cyclic coupled type
fuzzy cone contraction mappings in fuzzy cone metric spaces. We have established some
coupled fixed point results without the mixed monotone property and also we have pre-
sented some more coupled fixed results via partial order metric in fuzzy cone metric
spaces. We have proved some strong coupled fixed point theorems for cyclic type fuzzy
cone contraction mappings. As a consequence, the main results of this paper extend and
unify several results given in the literature of coupled fixed points. Moreover, we presented
an integral type application for the existence of unique solution in fuzzy cone metric spaces
to support our work.
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