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Abstract
In this paper we develop a stochastic mathematical model of cholera disease
dynamics by considering direct contact transmission pathway. The model considers
four compartments, namely susceptible humans, infectious humans, treated humans,
and recovered humans. Firstly, we develop a deterministic mathematical model of
cholera. Since the deterministic model does not consider the randomness process or
environmental factors, we converted it to a stochastic model. Then, for both types of
models, the qualitative behaviors, such as the invariant region, the existence of a
positive invariant solution, the two equilibrium points (disease-free and endemic
equilibrium), and their stabilities (local as well as global stability) of the model are
studied. Moreover, the basic reproduction numbers are obtained for both models and
compared. From the comparison, we obtained that the basic reproduction number of
the stochastic model is much smaller than that of the deterministic one, which means
that the stochastic approach is more realistic. Finally, we performed sensitivity analysis
and numerical simulations. The numerical simulation results show that reducing
contact rate, improving treatment rate, and environmental sanitation are the most
crucial activities to eradicate cholera disease from the community.
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1 Introduction
According to WHO [15] the occurrence of an infectious disease causes death of thousands
of individuals in a population. It is vital that tolerable attention is paid to prevent the spread
of such an infectious disease using an effective controlling mechanism. Various infectious
diseases are a result of poor hygienic conditions, contact between an infectious person and
a susceptible person. Different infectious diseases, like common cold and tuberculosis,
are air-borne, whereas some are water-borne like acute water diarrhea (AWD) or cholera
(Ochoche [12]). From this, cholera is an infection of small intestine common in developing
countries like Asia, Africa, and South and Central America due to poor sanitation and
using uncleaned water (Beryl et al. [2]). Cholera bacteria shed in their stool for seven to
fourteen days, they can infect others through contaminated food or water (Obeng [11]).
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Cholera is an acute diarrheal illness caused by the gram-negative bacteria Vibrio cholerae
which lives in an aquatic environment (Cui et al. [5]).

The symptom of cholera includes extreme vomiting, dry mouth, irregular heartbeat,
painless watery stools, little or no urine output, and low blood pleasure (Fatima et al.
[7]). It can be transmitted either by direct and indirect transmission pathways (Fakai
[6]). Human-to-human (direct) way of cholera transmission is from the infected indi-
vidual to the other individuals (touching, biting, and sexual intercourse). Whereas indi-
rect (environment-to-human) way of transmission of cholera is through ingesting vibrio
cholera bacteria from contaminated foods and waters (Wang and Modnak [14]). In this pa-
per we concentrate only on the direct transmission path way by incorporating the stochas-
tic nature of the disease.

Mathematical modeling has been an important tool in analyzing the spread and control
of infectious diseases and also in making decision as regards the intervention mechanisms
for the control of disease (Adewale et al. [1]). Mathematical epidemiology contributed
to the understanding of the behavior of infectious diseases, its impacts and possible fu-
ture predictions about its spreading. Mathematical models are used in comparing, plan-
ning, implementing, evaluating, and optimizing various detection, prevention, therapy,
and control programs (Bubniakova [3]). Several mathematical models on cholera were de-
veloped by different authors. The study done by Codeco [4] focused mainly on endemicity
of cholera and suggested two controlling mechanisms. The other study done by Codeco
[4] proposed an SIR-B deterministic model by adding an environmental component into
the regular SIR model. The study done by Fatima et al. [7] in Nigeria also proposed a de-
terministic mathematical model for the control of cholera. Additionally, a lot of authors
like Fakai [6], Adewale et al. [1], Beryl et al. [2], Javidi and Ahmad [8], and others devel-
oped mathematical model of cholera to explore the transmission dynamics and control-
ling strategies. But none of them consider some stochastic environmental factors that can
cause cholera outbreaks like, water, rain fall, air temperature, etc. In this paper we consider
environmental factors and develop a stochastic model of cholera dynamics.

The rest of the paper is organized as follows: In Sect. 2, the cholera model is described
and formulated in deterministic as well as stochastic approach. In Sect. 3, qualitative anal-
ysis and sensitivity analysis of the model are discussed. In Sect. 4, we use MATLAB soft-
ware to investigate numerical simulation results. Finally, our discussions and conclusions
are presented in Sect. 5.

2 Model formulation and description
The model considers a total human population size (P(t)) and is divided into four com-
partments, namely susceptible represented by S(t), infected (I(t)), treated (T(t)), and re-
covered (R(t)) classes. Susceptible individuals (S(t)) are those individuals that cannot be
infected, but can get infection sometime in the future, infected individuals (I(t)) are indi-
viduals who have developed the symptom of cholera and are able to transmit the disease,
treatment class (T(t)) includes those individuals that get treatment at a time t for t > 0
after they have been infected with cholera, and recovered compartment (R(t)) includes
those individuals that have recovered from cholera disease and got temporary immunity.

Population in the susceptible compartment will be increased from the recovered com-
partment with a rate of δ by losing temporary immunity and also with a recruitment rate
of π . However, its number decreases by the natural causing death rate of μ and also moving
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to the infected compartment with the rate of α. Population in the infected compartment
will be increased by the contact rate of α, and also its number decreases by the natu-
ral causing death rate of μ, cholera causing death rate τ , and moving to the treatment
compartment with the treatment rate of σ . Population in the treatment compartment in-
creases from the infected compartment with the treatment rate of σ and decreases with
the recovery rate of γ and the natural causing death rate of μ. Population in the recovered
compartment also increases by the recovery rate of γ , but its number will decrease by the
natural causing death rate of μ and by losing their immunity at the rate of δ.

The model is guided by the following assumptions: the size of homan population is con-
stant, the birth rate and death rate are not equal, all parameters are nonnegative, all in-
dividuals are susceptible in the community, therapeutic treatment is applied to the infec-
tious individuals, the treated individuals (individuals that are on treatment) do not trans-
mit cholera disease to the susceptible human population, on recovery there is temporary
immunity and there is the disease induced death (disease causing death). By the above
descriptions and assumptions, our model is expressed diagrammatically in Fig. 1.

From the description and flow diagram of Fig. 1, the following deterministic model equa-
tion is obtained in equation (2):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS
dt = π + δR – (αI + μ)S,
dI
dt = αIS – (μ + τ + σ )I,
dT
dt = σ I – (μ + γ + g)T ,
dR
dt = γ T – (μ + δ)R

(1)

with the initial condition S(0) = S0, I(0) = I0, T(0) = T0, R(0) = R0.
Since the above deterministic model in equation (2) does not consider stochastic envi-

ronmental factors and lacks realistic conditions, we extended it to a stochastic model.
To extend, we introduce Brownian motion (Bi(t)) and the intensity of stochastic envi-

ronmental factors (βi) on equation (1) and multiply it by dt. Then we obtain the following

Figure 1 Flow diagram of SITRS cholera model
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stochastic model of cholera dynamics in equation (3):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = (π + δR – αIS – μ) dt + β1S dB1(t),

dI = (αIS – (μ + τ + σ )I) dt + β2I dB2(t),

dT = (σ I – (μ + γ + g)T) dt + β3T dB3(t),

dR = (γ T – (μ + δ)R) dt + β4R dB4(t),

(2)

where β1,β2,β3,β4 ≥ 0 denotes the intensity of Brownian motion and B1, B2, B3, B4 are
independent Brownian motions.

3 Qualitative analysis
In this section, some basic qualitative behaviors of the model, including the invariant re-
gion, positivity of the solution, disease-free equilibrium point, basic reproduction num-
bers, local and global stabilities of disease-free equilibrium, endemic equilibrium point,
stability of endemic equilibrium, and sensitivity analysis, are discussed.

3.1 Invariant region
In this subsection we obtain invariant regions of model equations (1) and (2).

3.1.1 Invariant region for deterministic model
To get invariant region, we consider the total population at a time t given by P(t) = S(t) +
I(t) + T(t) + R(t). Then differentiating P(t) with respect to time t on both sides, we get

dP(t)
dt

=
dS
dt

+
dI
dt

+
dT
dt

+
dR
dt

. (3)

Substituting dS(t)
dt , dI(t)

dt , dT(t)
dt , and dR(t)

dt from equation (1) into equation (3), we get

dP(t)
dt

= π – μP(t) – τ I – gT . (4)

If there is no infectious individual due to cholera disease, which means (τ = 0, g = 0), then
equation (4) becomes

dP(t)
dt

≤ π – μP(t). (5)

By the separation of variables of differential in equality (5), we obtain

⇒ –1
μ

ln
(
π – μP(t)

) ≤ t + C

⇒ π – μP(t) ≥ De–μt , (6)

where C and D are constant.
After solving and evaluating equation (6) as t goes to ∞, we have limt → ∞P(t) = π

μ
,

which implies that 0 ≤ P(t) ≤ π
μ

.
Therefore, the model is biologically meaningful and bounded in the domain

	 =
{

(S, I, T , R) ∈ R4
+ : 0 ≤ P(t) ≤ π

μ

}

.
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3.1.2 Invariant region for stochastic model
Theorem 1 The region 	 is almost surely positive invariant of our stochastic model equa-
tion (2).

Proof Let us take K0 as a large integer so that if (S0, I0, T0, R0) ∈ R4
+, then every component

of (S0, I0, T0, R0) lies in the interval [ 1
k0

, 1]. For each integer K ≥ k0, we can define stopping
time:

τk = inf

{

t ∈ [0, τe] : S(t) ≤ 1
k

, or I(t) ≤ 1
k

, or R(t) ≤ 1
k

}

,

τ∞ = inf
{

t ∈ [0, τe] : S(t) ≤ 0, or I(t) ≤ 0, or R(t) ≤ 0
}

.

We want to prove P(τ = ∞), which is P(τ < M) = 0 for M > 0, so that it allows us to show
limt→∞ sup P(τk < 0) = 0.

Now consider a Lyapunov function V technically:

V (x) = – ln(S) – ln(I) – ln(T) – ln(R).

Then, by using Ito’s formula, for M > 0, t ∈ [0, M ∧ τk] to X(t) = (S(t), I(t), T(t), R(t)), we
obtain that

dV (t) = –
1

s(t)
dS(t) –

1
I(t)

dI(t) –
1

T(t)
dT(t) –

1
R(t)

dR(t) +
1

S2(t)
d2S(t) +

1
I2(t)

d2I(t).

Hence, we have

dV (t) = –
1

S(t)
[(

π + δR(t) – αS(t)I(t) – μS(t)
)

dt + β1S(t) dB1(t)
]

–
1

I(t)
[(

αS(t)I(t) – (μ + τ + σ )I(t)
)

dt + β2I(t) dB2(t)
]

–
1

T(t)
[[

σ I(t) – (μ + γ + g)T(t)
]

dt + β3T(t) dB3(t)
]

–
1

R(t)
[[

γ T(t) – (μ + δ)R(t)
]

dt + β4R(t) dB4(t)
]

+
1

s2(t)
[(

π + δR(t) – αS(t)I(t) – μS(t)
)

dt + β1S(t) dB1(t)
]2

+
1

I2(t)
[(

αS(t)I(t) – (μ + τ + σ )I(t)
)

dt + β2I(t) dB2(t)
]2.

(7)

Let a = π + δR(t) – αS(t)I(t) – μS(t), b = β1S(t), d = αS(t)I(t) – (μ + d + σ )I(t), and f =
βS(t)I(t), then equation (7) becomes

dV (t) = –
1

S(t)
[(

π + δR(t) – αS(t)I(t) – μS(t)
)

dt + β1S(t) dB1(t)
]

–
1

I(t)
[(

αS(t)I(t) – (μ + τ + σ )I(t)
)

dt + β2I(t) dB2(t)
]

–
1

T(t)
[[

σ I(t) – (μ + γ + g)T(t)
]

dt + β3T(t) dB3(t)
]
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–
1

R(t)
[[

γ T(t) – (μ + δ)R(t)
]

dt + β4R(t) dB4(t)
]

+
1

s2(t)
[
a2d2t + ab dt dB1(t) + b2d2B1(t)

]

+
1

I2(t)
[
e2I(t))et + fe dt dB2(t) + f 2 dB2(t)

]
,

dV (t) =
[(

–
π

S(t)
–

δR(t)
S(t)

+ αI(t) + μ

)

dt – βI(t) dB(t)
]

+
[(

–αS(t) + (μ + τ + σ )
)

dt – β2 dB2(t)
]

+
[(

–
σ I(t)
T(t)

+ (μ + γ + g)
)

dt – β3 dB3(t)
]

+
[(

–
γ T(t)
R(t)

)

+ (μ + δ)) dt – β4 dB4(t)
]

+
[
β2

1 + β2
2 + β2

3 + β2
4
]

dt

–
[
β1 dB1(t) + β2 dB2(t) + β3 dB3(t) + β4 dB4(t)

]
.

(8)

Now, rearranging equation (8), we get

dV (t) =
[

–
π

S(t)
–

δR(t)
S(t)

– σ
I(t)
T(t)

– γ
T(t)
R(t)

+ αI(t) – αS(t)

+ 4μ + τ + σ + δ + γ + g + β2
1 + β2

2 + β2
3 + β2

4

]

dt

–
[
β1 dB1(t) + β2 dB2(t) + β3 dB3(t) + β4 dB4(t)

]
.

(9)

Let LV = [– π
S(t) – δR(t)

S(t) –σ
I(t)
T(t) –γ

T(t)
R(t) +αI(t)–αS(t)+4μ+τ +σ +δ+γ +g +β2

1 +β2
2 +β2

3 +β2
4 ].

Then dV (t) = LVdt – [β1 dB1(t) + β2 dB2(t) + β3 dB3(t) + β4 dB4(t)].
We have LV = αI(t) + 4μ + τ + σ + δ + γ + g + β2

1 + β2
2 + β2

3 + β2
4 = C, and we get dV (t) ≤

C dt – [β1 dB1(t) + β2 dB2(t) + β3 dB3(t) + β4 dB4(t)].
Then, by integrating both sides from 0 → τk ∧ M implies that

∫ τk∧M

0
dV

(
X(t)

)
=

∫ τk∧M

0
C dt –

∫ τk∧M

0
β1 dB1(t) –

∫ τk∧M

0
β2 dB2(t)

–
∫ τk∧M

0
β3 dB3(t) –

∫ τk∧M

0
β4 dB4(t),

(10)

where τk ∧ M = min{τn, t}. Taking expectation of the above inequalities yields

⇒ V
(
X(τk ∧ M)

) ≤ V
(
X(0)

)
+ C

∫ τk∧M

0
dt – β1

∫ τk∧M

0
dB1(t)

– β2

∫ τk∧M

0
dB2(t) – β3

∫ τk∧M

0
dB3(t)

– β4

∫ τk∧M

0
dB4(t),

(11)

EV
(
X(τk ∧ M)

) ≤ V
(
X(0)

)
+ CE

∫ τk∧M

0
dt ≤ V

(
X(0)

)
+ CM. (12)
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Since V (X(τk ∧ M)) > 0, then

EV
(
X(τk ∧ M)

)
= E

[
V

(
X(τk ∧ M)

)

x(τk≤M)

]
+ E

[
V

(
X(τk ∧ M)

)

x(τk >T)

]

≥ E
[
V

(
X(τk ∧ M)

)

x(τk≤M)

]
.

(13)

Now, for τk , there are some components of X(τk), say S(τk), such that 0 < S(τk) ≤ 1
k < 1.

Therefore, V (X(τk)) ≥ – ln( 1
k ), this comes from

V
(
X(τk)

)
= ln

(
S(τk)

) ≤ ln

(
1
k

)

⇒ V
(
X(τk)

) ≤ ln

(
1
k

)

⇒ V
(
X(τk)

) ≥ – ln

(
1
k

)

.

Thus, from equation (13) and the above equation, we get

EV
(
X(τk ∧ M)

) ≥ E
[
V

(
X(τk ∧ M)

)

x(τk≤M)

] ≥ E
[

– ln

(
1
k

)]

. (14)

From (12)–(14) it follows that

EV
(
X(τk ∧ M)

) ≥ – ln

(
1
k

)

P(τk ∧ M)

⇒ EV
(
X(τk ∧ M)

) ≥ ln(k)P(τk < M) (15)

⇒ P(τk < M) ≤ EV (X(τk ∧ M))
ln(k)

≤ V (X(0)) + CM
ln(k)

⇒ P(τk < M) ≤ V (X(0)) + CM
ln(k)

. (16)

Letting k → ∞ and by taking limit sup to equation (16), for all M > 0, we obtain that

P(τk < M) ≤ 0.

Therefore, limt→∞ sup P(τk < M) = 0, this completes the proof of the theorem. �

3.2 Positivity of the solutions
In this subsection, we obtain nonnegative solutions for future time with their respective
initial conditions.

Theorem 2 If our initial values are S(0) ≥ 0, I(0) ≥ 0, T(0) ≥ 0, R(0) ≥ 0 then the solutions
of (S, I, T , R) are positive for all t ≥ 0.
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Proof To prove Theorem 2, let us take the first equation of model (1):

dS
dt

= π + δR – (αI + μ)S

⇒ dS
dt

≥ –(αI + μ)S

⇒ dS
(αI + μ)S

≥ –dt. (17)

Then, after solving equation (17) by using the separation of variables and applying the
initial conditions, we get

⇒ S(t) ≥ eCe–(αI+μ)t . (18)

After some steps, we get S(t) ≥ S(0)e–(αI+μ)t .
Therefore, S(t) ≥ S(0)e–(αI+μ)t ≥ 0.
Next, let us take the second equation of model (1):

dI
dt

= αIS – (μ + τ + σ )I

⇒ dI
dt

≥ –(μ + τ + σ )I

⇒ dI
(μ + τ + σ )I

≥ –dt. (19)

Then, solving equation (19) by using the separation of variables and applying the initial
condition, we obtain

∫ dI
(μ + τ + σ )I

≥ –
∫

dt

⇒ I(t) ≥ eCe–(μ+τ+σ )t (20)

⇒ I(t) ≥ De–(μ+d+θ+τ )t since D = eC .

As t → 0, then e–(μ+d+θ+τ )t → 1, this implies I(0) = D.
Therefore, I(t) ≥ I(0)e–(μ+d+θ+τ )t ≥ 0.
Similarly, we took the third and fourth equations of model (1).
Now, taking similar steps to the above gives

T(t) ≥ T(0)e–(μ+γ +g)t ≥ 0,

R(t) ≥ R(0)e–(μ+δ)t ≥ 0.

This completes the proof of the theorem. �

Therefore, our model solutions of equations (1) and (2) are positive for future time.

3.3 Disease-free equilibrium point
To obtain a disease-free equilibrium point, set model equation (1) to zero and there are
no infectious individuals in the population, which means I = 0, T = 0, R = 0.
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Then the system of equations (1) and (2) is simplified, which gives

π + δR – (αI + μ)S = 0.

Since I = T = R = 0, then π – μS = 0, which implies S = π
μ

.
Therefore, our disease-free equilibrium point is E0 = ( π

μ
, 0, 0, 0).

3.4 Basic reproduction number
To determine the basic reproduction number (R0) of equations (1) and (2), we use the next
generation matrix method by Beryl et al. [2]. We have two basic reproduction numbers
(deterministic and stochastic).

3.4.1 Basic reproduction number for deterministic model
In view of that, first let us take the newly infectious class

dI
dt

= αIS – (μ + τ + σ )I.

Now, by the principle of next generation matrix approach, we obtain

f = αIS,

v = (μ + τ + σ )I.

The next step is obtaining the Jacobian matrix of f and v with respect to I at E0 = ( π
μ

, 0, 0, 0).
Let F and V be the Jacobian matrix of f and v, respectively, then

F =
∂f
∂I

= αS, (21)

V =
∂v
∂I

= (μ + τ + σ ). (22)

Then, evaluating F and V at a disease-free equilibrium point (E0 = ( π
μ

, 0, 0, 0)), we obtain

F =
απ

μ
,

V = (μ + τ + σ ), V –1 =
1

μ + τ + σ
.

Then FV –1 becomes

FV –1 =
απ

μ(μ + τ + σ )
.

The eigenvalue of FV –1 can be obtained by

∣
∣
∣
∣

απ

μ(μ + τ + σ )
– λ

∣
∣
∣
∣ = 0. (23)

Here, by the next generation matrix principle, the largest eigenvalue is the basic reproduc-
tion number.
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Therefore, our basic reproduction number for the deterministic model is

RD
0 =

απ

μ(μ + τ + σ )
. (24)

3.4.2 Basic reproduction number for stochastic model
By taking the infected class of (2), we obtain the basic reproductive number of stochastic
approach:

dI =
[
αS(t)I(t) – (μ + d + σ )I(t)

]
dt + β2I(t) dB2(t). (25)

Using twice differentiable function of Ito’s formula, we can derive our stochastic basic
reproduction number. Let us take f (t, I(t)) = ln(I(t)), then its Taylor series expression be-
comes

df
(
t, I(t)

)
=

∂f
∂t

dt +
∂f

∂I(t)
dI(t) +

1
2

∂2f
∂I2(t)

(
dI(t)

)2

+
∂2f
∂t∂I

dt dI(t) +
1
2

∂2f
∂t2 (dt)2,

(26)

where ∂f
∂t = 0, ∂f

∂I(t) = 1
I(t) , ∂2f

∂I2(t) = – 1
I2(t) , ∂2f

∂t∂I = 0, ∂2f
∂t2 = 0.

Then equation (26) becomes

df
(
t, I(t)

)
=

1
I(t)

dI(t) –
1

2I2(t)
dI2(t)

=
1

I(t)
[(

αS(t)I(t) – (μ + τ + σ )I(t)
)

dt + β2I(t) dB2(t)
]

–
1

2I2(t)
[(

αS(t)I(t) – (μ + τ + σ )I(t)
)

dt + β2I(t) dB2(t)
]2.

Let a = αS(t)I(t) – (μ + τ + σ )I(t) and b = β2I(t), then

df
(
t, I(t)

)
=

[
αS(t) – (μ + τ + σ )

]
dt + β2 dB2(t)

–
1

2I2(t)
[
a dt + b dB2(t)

]2

=
[
αS(t) – (μ + τ + σ )

]
dt + β2 dB2(t)

–
1

2I2(t)
[
a2 d2t + 2ab dt dB2(t) + b2 d2B2(t)

]

=
[
αS(t) – (μ + τ + σ )

]
dt + β2 dB2(t) –

1
2I2(t)

[
b2 d2B2(t)

]
.

By applying the chain rule, we get

dt.dt = 0,

dt.dB(t) = 0,

dB(t).dB(t) = d2B(t) = dt.
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Then

df
(
t, I(t)

)
=

[
αS(t) – (μ + τ + σ )

]
dt + β2 dB2(t) –

1
2I2(t)

[
β2

2I2(t) d2B(t)
]

=
[
αS(t) – (μ + τ + σ )

]
dt + β2 dB2(t) –

1
2
[
β2

2 dt
]

=
[

αS(t) –
1
2
β2

2 – (μ + τ + σ )
]

dt + β2 dB(t).

By using the next generation matrix, let

f =
[

αS(t) –
1
2
β2

2
]

,

v = (μ + τ + σ ).

Now f and v at DFEP become

f =
[

α
π

μ
–

1
2
β2

2

]

,

v = (μ + τ + σ ),

v–1 =
1

(μ + τ + σ )
.

Then fv–1 =
α π

μ – 1
2 β22

(μ+τ+σ )

fv–1 =
απ

μ(μ + τ + σ )
–

β2
2

2(μ + τ + σ )
, (27)

where RD
0 = απ

μ(μ+τ+σ ) .
Therefore, our basic reproduction number for stochastic model is

RS
0 = RD

0 –
β2

2

2(μ + τ + σ )
. (28)

From equation (28) we see that RS
0 < RD

0 , which means the stochastic approach is more
realistic than the deterministic approach.

3.5 Local stability of disease-free equilibrium
In this subsection we show the local stability of disease-free equilibrium in the case of
deterministic as well as stochastic models.

3.5.1 Local stability of disease-free equilibrium in the case of deterministic model
Theorem 3 The disease-free equilibrium point of system (1) is locally asymptotically stable
if and only if RD

0 < 1, unstable if RD
0 > 1.

Proof To prove Theorem 3, first we construct a Jacobian matrix of model equation (1).
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Then the Jacobian matrix is obtained by

J =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂U1
∂S

∂U1
∂I

∂U1
∂T

∂U1
∂R

∂U2
∂S

∂U2
∂I

∂U2
∂T

∂U2
∂R

∂U3
∂S

∂U3
∂I

∂U3
∂T

∂U3
∂R

∂U4
∂S

∂U4
∂I

∂U4
∂T

∂U4
∂R

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (29)

where

U1 = π + δR – (αI + μ)S,

U2 = αIS – (μ + τ + σ )I,

U3 = σ I – (μ + γ + g)T ,

U4 = γ T – (μ + δ)R.

Then the Jacobian matrix is given by equation (30).

J =

⎡

⎢
⎢
⎢
⎣

–(αI + μ) –αS 0 δ

αI αS – (μ + τ + σ ) 0 0
0 σ –(μ + γ + g) 0
0 0 γ –(μ + δ)

⎤

⎥
⎥
⎥
⎦

. (30)

Then the Jacobian matrix evaluated at E0 becomes

J(E0) =

⎡

⎢
⎢
⎢
⎣

–μ – απ
μ

0 δ

0 απ
μ

– (μ + τ + σ ) 0 0
0 σ –(μ + γ + g) 0
0 0 γ –(μ + δ)

⎤

⎥
⎥
⎥
⎦

. (31)

From equation (31) the eigenvalues are evaluated as follows:

J(E0) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

–μ – λ – απ
μ

0 δ

0 απ
μ

– (μ + τ + σ ) – λ 0 0
0 σ –(μ + γ + g) – λ 0
0 0 γ –(μ + δ) – λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

. (32)

The characteristic polynomial of equation (32) becomes

(–μ – λ)
(
–(μ + δ) – λ

)
(

(
–(μ + γ + g) – λ

)
(

απ

μ
– (μ + τ + σ ) – λ

))

= 0. (33)

By factorizing the characteristic polynomial equation, eigenvalues are as follows:

λ1 = –μ,

λ2 = –(μ + δ),

λ3 = –(μ + γ + g),
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λ4 =
απ

μ
– (μ + τ + σ ).

Since λ1 < 0, λ2 < 0, and λ3 < 0, but we do not know the sign of λ4. However, to be stable
all the eigenvalues have to be negative and λ4 has to be less than zero. This means

απ

μ
– (μ + τ + σ ) < 0

⇒ απ

μ
< (μ + τ + σ )

⇒ απ

μ((μ + τ + σ ))
< 1. (34)

We know that from equation (24) we have RD
0 = απ

μ(μ+τ+σ ) .
Hence, equation (34) becomes

RD
0 < 1.

Therefore, our disease-free equilibrium point is locally asymptotically stable if and only if
RD

0 < 1. �

3.5.2 Local stability of disease-free equilibrium in the case of stochastic model
Theorem 4 If RS

0 < 1, then for any initial values of (S0, I0, T0, R0) ∈ R3
+, I(t) obeys

limt→∞ sup 1
t ln I(t) ≤ (μ + τ + σ )(RS

0 – 1) < 0.

Proof Let us take F(t, I(t)) = ln I(t), by Ito’s formula

df
(
t, I(t)

)
=

[

αS(t) –
1
2
β2

2 – (μ + τ + σ )
]

dt + β2 dB(t),

d ln I(t) =
[

αS(t) –
1
2
β2

2 – (μ + τ + σ )
]

dt + β2 dB(t). (35)

Integrating equation (35) on both sides, we have

ln I(t) – ln I(0) =
∫ t

0

[

αS(t) –
1
2
β2

2 – (μ + τ + σ )
]

dt +
∫ t

0
β2 dB(t). (36)

Then evaluating equation (36) at E0, we obtain

ln I(t) = ln I(0) +
∫ t

0
(α

π

μ
–

1
2
β2

2 – (μ + τ + σ ) dt +
∫ t

0
β2 dB(t)

⇒ ln I(t) ≤ ln I(0) + (α
π

μ
–

1
2
β2

2 – (μ + τ + σ )t + G(t), (37)

where a martingale G(t) =
∫ t

0 β2 dB(t).
By the strong law of large numbers of martingale, we have limt→∞ sup G(t)

t = 0 almost
surely.

Then divide both sides of equation (37) by t. By letting t → ∞, we get

⇒ ln I(t)
t

≤ ln I(0)
t

+
(

α
π

μ
–

1
2
β2

2 – (μ + τ + σ )
)

+
G(t)

t
. (38)
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Taking limt→∞ sup on both sides of equation (38), we obtain

lim
t→∞ sup

ln I(t)
t

≤ lim
t→∞ sup

ln I(0)
t

+
(

α
π

μ
–

1
2
β2

2 – (μ + τ + σ )
)

+ lim
t→∞ sup

G(t)
t

, (39)

lim
t→∞ sup

ln I(t)
t

≤
(

α
π

μ
–

1
2
β2

2 – (μ + τ + σ )
)

< 0

= (μ + τ + σ )
[

απ

μ(μ + d + σ )
–

β2
2

2(μ + τ + σ )
– 1

]

< 0

= (μ + τ + σ )
[
RS

0 – 1
]

< 0.

Obviously (μ + τ + σ ) > 0, therefore RS
0 – 1 less than zero:

⇒ RS
0 – 1 < 0

RS
0 < 1. (40)

Therefore, our disease-free equilibrium point is locally asymptotically stable if and only if
RS

0 < 1. �

3.6 Global stability of disease-free equilibrium
Theorem 5 If RD

0 < 1, then E0 is globally asymptotically stable in 	.

Proof Now let us construct a Lyapunov function technically as follows:

L(t) =
[

π + ασ +
π

μ

]

I. (41)

Differentiating equation (41), we obtain

dL
dt

=
[

π + ασ +
π

μ

]
dI
dt

=
[

π + ασ +
π

μ

]
(
αIS – (μ + τ + σ )I

)

=
[

π + ασ +
π

μ

]
(
αS – (μ + τ + σ )

)
I

=
[

π + ασ +
π

μ

]

(μ + τ + σ )
(

αS
(μ + τ + σ )

– 1
)

I.

(42)

Evaluating equation (42) at S = S0 = π
μ

, we obtain

dL
dt

≤
[

π + ασ +
π

μ

]

(μ + τ + σ )
(

απ

μ(μ + τ + σ )
– 1

)

I

=
[

π + ασ +
π

μ

]

(μ + τ + σ )
[
RD

0 – 1
]
.

(43)

So that dL
dt ≤ 0 if RD

0 – 1 < 0.
Obviously, we know that [π + ασ + π

μ
](μ + τ + σ ) > 0,which means to be dL

dt ≤ 0, must be
RD

0 – 1 < 0.
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Therefore, by LaSalle’s invariance principle, every solution of model equation (1) with a
given initial conditions in 	 approaches to E0 at t and goes to infinity whenever RD

0 ≤ 0.
Hence, disease-free equilibrium is globally asymptotically stable in the region 	. �

3.7 Endemic equilibrium point
In this subsection, we obtain the equilibrium point at which no disease is present in the
population.

The endemic equilibrium point of our model is denoted by E1 = (S∗, I∗, T∗R∗). The en-
demic equilibrium can be obtained by equating all the expressions of model equation (1)
to zero:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

π + δR – (αI + μ)S = 0,

αIS – (μ + τ + σ )I = 0,

σ I – (μ + γ + g)T = 0,

γ T – (μ + δ)R = 0.

(44)

Let us take the second equation of system (44), we get

αIS – (μ + τ + σ )I = 0.

Then, solving for S∗, we have

S∗ =
(μ + τ + σ )

α
. (45)

From the third equation in (44), we solve for I∗:

I∗ =
(μ + γ + g)

σ
T∗. (46)

Now, solving for R∗ and T∗ by substituting equation (45) and (46) into the first equation
of (33), we obtain

π + δR –
(μ + τ + σ )(μ + γ + g)T

σ
–

μ(μ + τ + σ )
α

= 0. (47)

Then, by taking simultaneously the fourth equation of (44) and equation (47), we get

⎧
⎨

⎩

π + δR – (μ+τ+σ )(μ+γ +g)T
σ

– μ(μ+τ+σ )
α

= 0,

γ T – (μ + δ)R = 0.
(48)

Finally, from equation (48), we obtain

R∗ =
(

π

μ
–

(μ + τ + σ )
α

–
(μ + τ + σ )(μ + γ + g)

σμ
T∗

)

. (49)

Then substituting equation (49) into the second equation of (48), we have

T∗ =
σ (μ + δ)(απ – μ(μ + τ + σ ))

αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )
. (50)
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Now substituting equation (50) into equations (46) and (49), we obtain

I∗ =
(μ + γ + g)

σ

(
σ (μ + δ)(απ – μ(μ + τ + σ ))

αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )

)

R∗ =
(

π

μ
–

(μ + τ + σ )
α

–
(μ + τ + σ )(μ + γ + g)

σμ

)

×
(

σ (μ + δ)(απ – μ(μ + τ + σ ))
αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )

)

.

Therefore, endemic equilibrium point of the model is

E1 =
(

(μ + τ + σ )
α

,
(μ + γ + g)

σ

(
σ (μ + δ)(απ – μ(μ + τ + σ ))

αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )

)

,

σ (μ + δ)(απ – μ(μ + τ + σ ))
αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )

,

(
π

μ
–

(μ + τ + σ )
α

–
(μ + τ + σ )(μ + γ + g)

σμ

)

×
(

σ (μ + δ)(απ – μ(μ + τ + σ ))
αγσμ + α(μ + δ)(μ + γ + g)(μ + τ + σ )

))

.

3.8 Stability of endemic equilibrium point
In this subsection, we discuss the stability of endemic equilibrium E0 by considering a
Lyapunov function L technically as follows:

L
(
S∗, I∗, T∗, R∗) =

(
S – S∗ – S∗ ln S

)
+

(
I – I∗ – I∗ ln I

)

+
(
T – T∗ – T∗ ln T

)
+

(
R – R∗ – R∗ ln R

)
.

(51)

Now, differentiating both sides of equation (51) with respect to t, we get

dL
dt

=
dS
dt

(
S – S∗

S

)

+
dI
dt

(
I – I∗

I

)

+
dT
dt

(
T – T∗

T

)

+
dR
dt

(
R – R∗

R

)

=
(

1 –
S∗

S

)
[
π + δR – (αI + μ)S

]

+
(

1 –
I∗

I

)
[
αIS – (μ + τ + σ )I

]

+
(

1 –
T∗

T

)
[
σ I – (μ + γ + g)T

]

+
(

1 –
R∗

R

)
[
γ T – (μ + δ)R

]
.

(52)

Then, simplifying equation (52), we obtain the following equation:

dL
dt

= π –
πS∗

S
+ δR –

δRS∗

S
+ αIS∗ – αIS – μS + μS∗

+ αIS – αI∗S – (μ + τ + σ )I + (μ + τ + σ )I∗ (53)
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+ σ I –
δIT∗

T
– (μ + γ + g)T + (μ + γ + g)T∗

+ γ T –
γ TR∗

R
– (μ + δ)R + (μ + δ)R∗.

Now, by simplifying and rearranging (the positive part on one side and the negative part
on the other side) equation (53), we have

dL
dt

= π + αIS∗ + μS∗ + αIS + (μ + τ + σ )I∗ + (μ + γ + g)T∗ + (μ + δ)R∗

–
(

πS∗

S
+

δRS∗

S
+ μS + αI∗S + (μ + σ )I

+
δIT∗

T
+ (μ + g)T +

γ TR∗

R
+ μR

)

.

(54)

Now, replacing U for the positive terms and V for the negative terms of equation (54), we
obtain

U = π + αIS∗ + μS∗ + αIS + (μ + τ + σ )I∗ + (μ + γ + g)T∗ + (μ + δ)R∗,

and

V =
(

πS∗

S
+

δRS∗

S
+ μS + αI∗S + (μ + σ )I +

δIT∗

T
+ (μ + g)T +

γ TR∗

R
+ μR

)

.

Then, equation (54) is replaced by U and V, and we have

dL
dt

= U – V .

If U < V , then dL
dt ≤ 0 and dL

dt = 0 if and only if our equilibrium points are (S = S∗, I = I∗, T =
T∗, R = R∗).

From this, we observe that E0 is the largest set of compact invariant singletons in {(S =
S∗, I = I∗, T = T∗, R = R∗) ∈ 	 : dL

dt = 0}.
Therefore, E0 (endemic equilibrium) is globally asymptotically stable in 	 if U < V .

3.9 Sensitivity analysis
In this subsection, we obtain sensitivity analysis of the model to determine the effect of
each parameter on basic reproduction number (R0). To perform the sensitivity analysis of
(R0), we use the following formula:

PR0
ni

=
∂R0

∂ni

ni

R0
,

where ni is the parameters of R0 (Tilahun [13]).
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For n = π :

PR0
π =

∂R0

∂π

π

R0

=
(

α

μ(μ + τ + σ )

)(
μ(μ + τ + σ )

α

)

= 1 > 0.

(55)

For n = α:

PR0
α =

∂R0

∂α

α

R0

=
(

π

μ(μ + τ + σ )

)(
μ(μ + τ + σ )

π

)

= 1 > 0.

(56)

For n = μ:

PR0
μ =

∂R0

∂μ

μ

R0

=
(

–απ (2μ + τ + +σ )
μ2(μ + τ + σ )2

)(
μ2(μ + τ + σ )

απ

)

= –
(2μ + τ + +σ )
(μ + τ + +σ )

< 0.

(57)

For n = τ :

PR0
τ =

∂R0

∂τ

τ

R0

=
(

–απμ

μ2(μ + τ + σ )2

)(
μτ (μ + τ + σ )

απ

)

= –
τ

(μ + τ + +σ )
< 0.

(58)

Finally, for n = σ :

PR0
σ =

∂R0

∂σ

σ

R0

=
(

–απμ

μ2(μ + τ + σ )2

)(
μσ (μ + τ + σ )

απ

)

= –
σ

(μ + τ + +σ )
< 0.

(59)

3.10 Interpretation of sensitivity analysis
The interpretation of the sensitivity indices given in Table 1 is as follows. Those parameters
that have positive sensitivity indices (π ,α) have a big contribution to the expansion of
cholera disease in the human population if their values are increased by keeping the rest of
parameters constant. And those parameters that have negative sensitivity indices (μ, τ ,σ )
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Table 1 Sensitivity indices table

Parameter symbol Description Sensitivity indices

π recruitment rate + ve
α contact rate + ve
μ natural causing death rate – ve
τ cholera causing death rate – ve
σ treatment rate of infected individuals – ve

Table 2 Parameter values for cholera disease model

Parameter Symbol Description Value Source

π recruitment rate 0.0013 estimated
α contact rate 0.011 Kamuhanda et al. [9]
μ natural death rate 0.000025 Beryl et al. [2]
δ immunity loss rate by the recovered one 0.003 Fatima et al. [7]
σ treatment rate of I(t) 0.115 Lemos et al. [10]
τ disease causing death rate of I(t) 0.015 Lemos et al. [10]
g disease causing death rate of T (t) 0.04 estimated
γ recovered rate of treated individuals 0.2 Lemos et al. [10]

show a great effect in bringing down the disease from the population if their values are
decreased by keeping the rest of parameters constant. Due to the reason that R0 (basic
reproductive number) increases as its parameter value increases, the average number of
secondary infection increases in the population; and R0 decreases as its parameter value
decreases, which means that the average number of secondary infection decreases in the
human population.

4 Numerical results and discussion
In this section, some numerical results are presented to demonstrate how change in pa-
rameters of the model influences various performance measures of the system. Models
(1) and (2) were simulated using MAT LAB software to obtain the following graphs. Ad-
ditionally, we used S(0) = 12, I(0) = 8, T(0) = 5, and R(0) = 3 as initial values, where the
initial values are estimated. In Table 2, the listed parameter values are used for numerical
simulation purposes.

4.1 Comparison of deterministic and stochastic trends of the model
In Fig. 2, the numerical results of the comparison of deterministic and stochastic trends of
the model in the community are displayed by keeping all parameters unchanged. By tak-
ing the whole compartments of the model for deterministic figure and by adding a white
noise to a deterministic equation, we illustrate a stochastic figure. Now, from this figure,
we see that running the simulation results for the stochastic model is slower than for the
deterministic model, this is due to environmental factors. The amount of infectious popu-
lation decreases and the number of individuals who get treatment increases after a certain
point of time due to treating the infected people in the community with the rate (σ ) in the
stochastic case as well as in the deterministic one. Moreover, the stochastic behavior of the
curves shows the real life behavior compared to the deterministic approach. We conclude
from this figure that the stochastic solution is closer to the real solution of the cholera
model than the deterministic approach. So, using the stochastic model is better than the
deterministic one because the stochastic model considers a white noise or stochastic en-
vironmental factors.
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Figure 2 Graph of deterministic and stochastic cholera endemic models, respectively

Figure 3 Effects of contact rate on cholera disease expansion

4.2 Effect of contact rate on cholera infected population
In this subsection, we obtain the numerical simulation results of the impact of contact rate
(α) on the number of infectious individuals I(t). The simulation results that are displayed
in Fig. 3 are obtained by different values of contact rate (α) from α = 0.001 to α = 0.017
and keeping the rest of parameters constant. From Fig. 3, we see that as the contact rate
increases the number of infectious individuals in the community increases, which means
if the susceptible individuals contact with infected individuals either by shaking hands
or eating foods with the same materials this would increase the infectious population.
In addition, we observe that the stochastic curves show a sound wave property due to
environmental factors or random behavior of the disease, but in the deterministic model
the curve looks like a smooth line, which implies it does not consider any factors in the
environment for cholera disease. Hence, the disease persists in the community when there
is an increase in the contact rate, even though the rest of the parameters are kept constant.
Due to this, healthy workers must control this parameter.

4.3 Effect of treatment rate on cholera infected population
We investigated the effects of treatment rate on the number of infectious population. In
Fig. 4, the experimental results are obtained by taking different values of treatment rate σ

and by keeping the rest of the parameters constant. The simulation results in Fig. 4 reveal
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Figure 4 Effects of treatment rate on cholera disease expansion

Figure 5 Effects of treatment rate on cholera disease expansion

that increasing the values of treatment rate leads to increase in the infectious individuals.
We also observe in Fig. 4 that in the case of deterministic approach as well as stochastic
approach the decrements of infectious population are obtained as the treatment rate in
the population increases. Therefore, increasing the treatment rate σ plays a vital role in
the reduction of cholera disease dynamics in the community.

4.4 Effects of recovery rate on recovered individuals
In this subsection, we use the impact of recovery rate γ on the size of recovered individ-
uals to display Fig. 5 by varying γ (recovery rate) from γ = 0.03 to γ = 0.7 and keeping
the rest of the parameter values fixed. In the case of deterministic approach, Fig. 5 shows
that the graph goes up smoothly as the recovery rate γ increases, which means that if the
infectious individuals get treatment and recover more with the recovery rate γ , the num-
ber of recovered individuals increases in the community. Also, in the stochastic case, it
displays that the number of recovered individuals increases as the value of recovery rate
increases, with the graph going up and down. These ups and downs show the random be-
havior of the model. From this, we conclude that the recovered population becomes bigger
by increasing the recovery rate (γ ), and the stochastic approach is more advisable than the
deterministic one because the stochastic approach considers environmental white noise.
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5 Discussions and conclusions
In Sect. 2, we proposed and described briefly an SITRS cholera disease dynamics model
with two approaches: deterministic and stochastic. In Sect. 3, we analyzed the qualitative
behavior of the model by obtaining the invariant region, existence of a positive invari-
ant solution set, equilibrium points, the basic reproduction number for deterministic as
well as stochastic model; local stability of disease-free equilibrium for both models was
checked; the global stability, which is obtained by a Lyapunov function, sensitivity analy-
sis, and their interpretation were studied. In Sect. 3, the two reproduction numbers were
obtained by using the next generation matrix method and by using twice differentiable Ito’s
formula for stochastic reproduction number. Out of these two reproduction numbers the
stochastic reproduction number is much smaller than the deterministic one. This implies
that the stochastic approach is more realistic (close to the accurate solution) than the de-
terministic approach, because the stochastic model considers stochastic environmental
factors or takes the randomness process. In Sect. 4, the numerical simulation results were
discussed and analyzed by using MATLAB software by comparing the deterministic ap-
proach with the stochastic one. From our simulation results in Sect. 4, we conclude that
increasing cholera treatment rate has a big contribution to eliminating cholera disease
from the community, and increasing the recovery rate contributes to the reduction of the
infection. Other results that were obtained in this section are as follows: decreasing the
contact rate has a big influence on controlling cholera disease dynamics in the community.
Therefore, for healthy workers as well as policy makers we recommend improvement of
the treatment: by decreasing the contact rate and by increasing the recovery rate we can
eradicate the disease from the community.
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