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Abstract
In this paper, we focus on the problem of synchronization for chaotic neural networks
with stochastic disturbances. Firstly, we provide a basic result that the systems
including the drive system, response system, and error system have a unique solution
on the whole time horizon. Based on this result, we design a new control law such
that the response system can be synchronized with the drive chaotic system in finite
time. Furthermore, we show that the settling time is independent of the initial data
under some proper conditions, which hints that the fixed-time synchronization of
chaotic neural networks can be realized by our proposed method. Finally, we give
simulations to verify the theoretical analysis for our main results.
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1 Introduction
In the last two decades, the chaotic systems have drawn considerable attention due to
interesting features for secure communication. It can be applied to encode a message,
which suggests that the secure message communication between sender and receiver can
be guaranteed by chaos synchronization. But an isolated chaotic system is too sensible
to tiny variations of initial data to synchronize with any other system. However, Pecora
and Carroll [16] first introduced the idea that two chaotic systems can be synchronized
even with different initial conditions. Since then, chaos synchronization has been flurry
research activity over decades. Up to now, many researchers have studied the chaos syn-
chronization and presented some interesting results [7, 11, 12, 27].

In recent years, stochastic systems have been a focal subject for research due to random
disturbances that exist in real systems. Stochastic modeling plays an important role in
many branches of science and industry. Therefore it is significant to consider stochastic
effects for the stability property of systems [14]. It is well known that stability in probability,
moment stability, and almost sure stability are three types of classical stochastic stability,
which describe the asymptotic behavior of the solutions of stochastic systems as time goes
to infinity. There are many research results on the stability of deterministic and stochastic
systems [8–10, 13, 22]. However, in many practical control problems, it is often asked
that the trajectories of the systems converge to an equilibrium state in finite time [4]. For
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deterministic systems, a Lyapunov-type theorem on finite-time stability was established
by Bhat and Bernstein [1], but for the stochastic case, similar results were provided in
[3, 23, 25]. Later, some improved results and applications were given in [17, 20, 21, 28].
Meanwhile, the synchronization of complex networks and neural networks under random
environment were intensively investigated due to their potential applications in various
fields; see [5, 18, 19, 24, 29, 30] and the references therein.

Motivated by the previous works on stability and synchronization for deterministic and
stochastic systems, we will study the finite-time synchronization for chaotic neural net-
works disturbed by noise. At the same time, we also explore some basic characteristics
with respect to the drive system, the response system, and the synchronization error sys-
tem. The rest of the paper is organized as follows. In Sect. 2, we give some notations and
preliminaries and provide a generalized definition of finite-time stability in probability. In
Sect. 3, we design a novel control law such that the synchronization of the chaotic neural
networks with stochastic disturbances can be reached in finite time. In Sect. 4, we pro-
vide simulation results to show the effectiveness and feasibility of the proposed method.
Finally, we give a conclusion in Sect. 5.

2 Notations and preliminary results
Let ‖x‖ be the Euclidean norm of x on R

n, let 1x := x/‖x‖1x �=0, x ∈ R
n, and let R+ be the

interval [0, +∞). Denote by diag(a1, a2, . . . , an) the n×n diagonal matrix with diagonal en-
tries a1, a2, . . . , an. Denote ‖z‖2 = trace(zT z) for any z ∈ R

n×d and ‖x‖T := supt0≤t≤T ‖x(t)‖
for a deterministic continuous function (x(t))t≥0. By C1,2([t0, +∞) ×R

n;R+) we denote the
set nonnegative functions that are continuously twice differentiable in x ∈ R

n and once
differentiable in t ≥ t0. Let (B(t))t≥0 be a standard d-dimensional Brownian motion de-
fined on a completed probability space (�,F ,P) endowed with natural filtration (Ft)t≥0

generated by this Brownian motion.
We first introduce the stochastic differential equation (SDE)

dx(t) = f
(
t, x(t)

)
dt + g

(
t, x(t)

)
dB(t), x(t0) = x0, t ≥ t0, (1)

where f (t, x) : [t0, +∞)×R
n →R

n and g(t, x) : [t0, +∞)×R
n →R

n×d are Borel-measurable
functions satisfying f (t, 0) = g(t, 0) ≡ 0 for t ≥ t0. For any nonnegative function V (t, x) ∈
C1,2([t0, +∞) ×R

n;R+), we put

L V (t, x) = Vt(t, x) + Vx(t, x)f (t, x) +
1
2

trace
{

gT (t, x)Vxx(t, x)g(t, x)
}

.

Set

f #
ρ (t) := sup

{∥∥f (t, x)
∥∥ | ‖x‖ ≤ ρ

}
, t ≥ t0,ρ ≥ 0.

We introduce the following assumptions for the coefficients f and g .
(H1) Continuity: for any t ≥ t0, f (t, x) is continuous in x;
(H2) Monotonicity: 〈x – y, f (t, x) – f (t, y)〉 ≤ μ(t)‖x – y‖2, x, y ∈R

n, for some functions
μ : [t0, +∞] →R

+ with
∫ T

t0
μ(s) ds < +∞ for T ≥ t0;

(H3) Boundedness:
∫ T1

t0
f #
ρ (s) ds < +∞,

∫ T2
t0

‖g(t, 0)‖2 dt < +∞ for T1, T2 ≥ t0;
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(H4) Lipschitz condition: ‖g(t, x) – g(t, y)‖ ≤ �(t)‖x – y‖, x, y ∈ R
n, for some functions

� : [t0, +∞] →R
+ with

∫ T
t0

�2(s) ds < +∞ for T ≥ t0;
To establish our main results, we present the following definition and lemmas.

Lemma 1 (Theorem 3.21 in [15]) Let assumptions (H1)–(H4) be satisfied. If x0 ∈R
n, then

the SDE (1) has a unique continuous Ft-adapted solution, which is denoted by x(t; t0, x0).

Definition 1 (See definitions in [13, 23, 25, 26]) We set τx0 := inf{t ≥ t0 | x(t; t0, x0) = 0},
which is called the stochastic settling time. The trivial solution of SDE (1) is said to be
stochastically finite-time stable if the equation admits a solution for any initial data x0 ∈R

n

and the following properties hold:
(i) Finite-time attractiveness in probability: For every initial value x0 ∈R

n and any
solution x(t; t0, x0), the first hitting time of x(t; t0, x0) is finite almost surely,
P(τx0 < +∞) = 1. Furthermore,

x(t + τx0 , t0, x0) = 0, ∀t ≥ 0,P-a.s.,

(ii) Stability in probability: For any solution x(t; t0, x0), every pair of ε ∈ (0, 1) and r > 0,
there exists δ(ε, r, t0) > 0 such that

P
(∥∥x(t; t0, x0)

∥∥ ≤ r for all t ≥ t0
) ≥ 1 – ε

whenever ‖x0‖ ≤ δ(ε, r, t0).

According to Theorem 2 in [26], we present the following lemma.

Lemma 2 (Theorem 2 in [26]) For SDE (1), suppose that there exists a positive definite
radically unbounded function V (t, x) ∈ C1,2([t0, +∞)×R

n;R+) with V (t, 0) = 0 for all t ≥ t0

and V (t, x) > 0 for t ≥ t0, x �= 0, such that

L V (t, x) ≤ 0, ∀t ≥ t0,∀x ∈R
n, (2)

and for any t ≥ t0 and x ∈R
n \ {0},

2K
(
V (t, x)

)[
λ(t)K

(
V (t, x)

)
+ L V (t, x)

] ≤ K ′(V (t, x)
)∥∥Vx(t, x)g(t, x)

∥
∥2, (3)

where λ(·) : [t0, +∞) →R
+ is a Borel-measurable function, and K(·) : R+ →R

+ is a contin-
uously differentiable function with K ′(s) ≥ 0, K(s) > 0 for any s > 0, and, moreover,

∫ c

0

1
K(s)

ds < +∞,
∫ c′

t0

λ(s) ds < +∞, ∀c > 0, c′ > t0,
∫ +∞

t0

λ(s) ds = +∞.

Then the trivial solution of SDE (1) is stochastically finite-time stable, and the stochastic
settling time τx0 satisfies

E

[∫ τx0

t0

λ(s) ds
]

≤
∫ V (t0,x0)

0

1
K(s)

ds.
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Corollary 1 If λ(t) = κ(t – t0)θ for t > t0 with λ(t0) = 0, θ ∈ (–1, 0), and κ > 0, then

E
[
(τx0 – t0)1+θ

] ≤ 1 + θ

κ

∫ V (t0,x0)

0

1
K(x)

dx.

Corollary 2 If λ(t) = κ(t – t0)θ for t ≥ t0 with θ ∈ (0, 1) and κ > 0, then

E[τx0 ] ≤
(

1 + θ

κ

∫ V (t0,x0)

0

1
K(x)

dx
)1/(1+θ )

+ t0.

Corollary 3 If

λ(t) =

⎧
⎨

⎩
0, t0 ≤ t ≤ 1 + t0,

1
t–t0

, t > t0 + 1,

then we have

E
[
log(τx0 – t0)

] ≤
∫ V (t0,x0)

0

1
K(x)

dx.

Corollary 4 If t1 > t0, c > 0, and

λ(t) =

⎧
⎨

⎩
0, t0 ≤ t ≤ t1,

c, t > t1,

then we have

E[τx0 ] ≤ 1
c

[∫ V (t0,x0)

0

1
K(x)

dx + ct1

]
.

Corollary 5 Furthermore, if we let θ = 0, that is, λ(t) ≡ κ > 0 with t ≥ t0, then

E[τx0 ] ≤ 1
κ

∫ V (t0,x0)

0

1
K(x)

dx + t0.

Corollary 6 In practical problem for finite-time control, we usually take t0 = 0 and choose
λ(s) ≡ κ > 0. If we let

K(x) = μxχ , ∀x > 0,μ > 0,χ ∈ (0, 1),

then the estimate of settling time is

E[τx0 ] ≤ V 1–χ (0, x0)
κμ(1 – χ )

.

Corollary 7 If t0 = 0, λ(s) ≡ κ > 0, and

K(x) = k1xχ1 + k2xχ2 , x ≥ 0, with k1, k2 > 0, 0 < χ1 < 1 < χ2,
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then the settling time is estimated by

E[τx0 ] ≤ 1
κ

∫ x0

0

1
k1xχ1 + k2xχ2

dx ≤ 1
κ

∫ +∞

0

1
k1xχ1 + k2xχ2

dx

=
1
κ

∫ 1

0

1
k1xχ1

dx +
1
κ

∫ +∞

1

1
k2xχ2

dx =
1

k1κ(1 – χ1)
+

1
k2κ(χ2 – 1)

,

which implies that the trivial solution of SDE (1) can achieve fixed-time stability.

3 Finite-time synchronization of chaotic neural networks
Now we consider the following drive system, which is a deterministic neural network:

dx(t) =
[
–B̄x(t) + Aψ

(
x(t)

)]
dt, x(0) = x0, (4)

where

x(t) =
[
x1(t), . . . , xn(t)

]T , B̄ = diag(b1, . . . , bn),

A = (ai,j)n×n, ψ(x) =
[
ψ1(x1), . . . ,ψn(xn)

]T .

Based on the drive-response concept for synchronization control of chaotic systems, we
suppose that the response system with stochastic perturbation depends on the synchro-
nization error. Then it can be described by the following SDE:

dy(t) =
[
–B̄y(t) + Aψ

(
y(t)

)]
dt + σ

(
t, e(t)

)
dB(t), y(0) = y0, (5)

where e(t) = y(t) – x(t).
Our aim is to make the response system synchronize with the drive system in finite time

by the designed controller

u(t) = –Γ e(t) – λ(t)
(
η1

∥
∥e(t)

∥
∥α + η2

∥
∥e(t)

∥
∥β)

1{e(t)}, (6)

where η1,η2 > 0, 0 < α < 1 < β , and λ(t) ≥ 0, t ≥ 0, with

�(t) =
∫ t

0
λ(s) ds < +∞, t ≥ 0, and �(t) −→ +∞ as t −→ +∞.

Then we consider the response system with controller u(t) in the drift term:

dy(t) =
[
–B̄y(t) + Aψ

(
y(t)

)
+ u(t)

]
dt + σ

(
t, e(t)

)
dB(t), t ≥ 0. (7)

Subtracting system (4) from (7), we obtain the following error dynamical system:

de(t) =
[
–B̄e(t) + Aψ̃(t) + u(t)

]
dt + σ

(
t, e(t)

)
dB(t), t ≥ 0, (8)

where ψ̃(t) := ψ(y(t)) – ψ(x(t)) and e(0) = y0 – x0.
We further introduce the following assumptions.
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(A1) ψ satisfies the Lipschitz condition: There exists a matrix M of proper dimension
such that

∥
∥ψ(x) – ψ(y)

∥
∥ ≤ ∥

∥M(x – y)
∥
∥, ∀x, y ∈R

n;

(A2) σ satisfies the Lipschitz condition: There exists a matrix N of proper dimension
such that

∥∥σ (t, x) – σ (t, y)
∥∥ ≤ ∥∥N(x – y)

∥∥, ∀x, y ∈R
n;

(A3) There exists a constant C > 0 such that

∥∥ψ(x)
∥∥ ≤ C

(
1 + ‖x‖), ∀x ∈R

n;

(A4) σ (t, 0) = 0, ∀t ≥ 0.
For the systems discussed, we have the following basic results.

Theorem 1 Assume that assumptions (H1)–(H4) and (A1)–(A4) hold. Then all the sys-
tems, that is, drive system (4), response system (7), and error system (8), have a unique
continuous solution.

Proof The existence and uniqueness of a solution for the drive system (4) was discussed
in [6]. Due to this reason, here we omit the discussion.

Then choosing the control law u(t) of the form (6), we can write the response system (7)
and the error dynamical system (8) as

dy(t) =
[
–B̄y(t) + Aψ

(
y(t)

)
+ û

(
t, y(t) – x(t)

)]
dt + σ

(
t, y(t) – x(t)

)
dB(t) (9)

and

de(t) =
[
–B̄e(t) + Aψ̂

(
t, e(t)

)
+ û

(
t, e(t)

)]
dt + σ

(
t, e(t)

)
dB(t), t ≥ 0, (10)

respectively, where û(t, z) := –Γ z – λ(t)(η1‖z‖α + η2‖z‖β )1z , and ψ̂(t, z) := ψ(z + x(t)) –
ψ(x(t)) for t ≥ 0 and z ∈ R

n.
Now we will prove the existence and uniqueness of solutions to systems (9) and (10). We

first consider the response systems (9), which is a stochastic system with drift term f r and
diffusion term gr . Here f r and gr are defined as follows: for any t ≥ 0 and z ∈R

n,

f r(t, z) := –B̄z + Aψ(t, z) + û
(
t, z – x(t)

)
and gr(t, z) := σ

(
t, z – x(t)

)
,

where x(t) is the state of drive system at time t. Denote f̃ (t, z) = –B̄z + Aψ(z). Then the
drift term can be rewritten as f r(t, z) = f̃ (t, z) + û(t, z – x(t)).

On the one hand, for the drift term f r , we have, for any z, z′ ∈R
n,

〈
z – z′, f r(t, z) – f r(t, z′)〉

=
〈
z – z′, f̃ (t, z) – f̃

(
t, z′)〉 +

〈
z – z′, û

(
t, z – x(t)

)
– û

(
t, z′ – x(t)

)〉

≤ 〈
z – z′, –B̄

(
z – z′) + A

(
ψ(z) – ψ

(
z′)) + û

(
t, z – x(t)

)
– û

(
t, z′ – x(t)

)〉
.

(11)
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The Lipschitz condition about ψ implies that

〈
z – z′, A

(
ψ(z) – ψ

(
z′))〉 ≤ ‖A‖‖M‖∥∥z – z′∥∥2. (12)

Since for any z, z′ ∈R
n,

〈
z – z′,‖z‖α1z –

∥
∥z′∥∥α1z′

〉

=
〈
z,‖z‖α1z

〉
–

〈
z,

∥
∥z′∥∥α1z′

〉
–

〈
z′,‖z‖α1z

〉
+

〈
z′,

∥
∥z′∥∥α1z′

〉

≥ ‖z‖α+1 – ‖z‖∥∥z′∥∥α –
∥
∥z′∥∥‖z‖α +

∥
∥z′∥∥α+1

=
(‖z‖α –

∥
∥z′∥∥α)(‖z‖ –

∥
∥z′∥∥) ≥ 0,

we can get

〈
z – z′, û

(
t, z – x(t)

)
– û

(
t, z′ – x(t)

)〉 ≤ –
(
z – z′)T

Γ
(
z – z′) ≤ ‖Γ ‖∥∥z – z′∥∥2. (13)

Combining (11), (12), and (13), we have

〈
z – z′, f r(t, z) – f r(t, z′)〉 ≤ (‖B̄‖ + ‖A‖‖M‖ + ‖Γ ‖)∥∥z – z′∥∥2.

Additionally, we observe that

∥
∥f̃ (t, z)

∥
∥ ≤ ‖B̄‖‖z‖ + C

(
1 + ‖z‖)

and

∥
∥û

(
t, z – x(t)

)∥∥ =
∥
∥–Γ

(
z – x(t)

)
– λ(t)

(
η1

∥
∥z – x(t)

∥
∥α + η2

∥
∥z – x(t)

∥
∥β)

1{z–x(t)}
∥
∥

≤ ‖Γ ‖(‖z‖ +
∥
∥x(t)

∥
∥)

+ η1λ(t)
(‖z‖α +

∥
∥x(t)

∥
∥α)

+ η2λ(t)
(‖z‖ +

∥∥x(t)
∥∥)β ,

which implies that for any t ∈ [0, T] with 0 < T < +∞,

f r,#
ρ (t) ≤ sup

‖z‖≤ρ

∥∥f̃ (t, z)
∥∥ + sup

‖z‖≤ρ

∥∥û
(
t, z – x(t)

)∥∥

≤ ρ‖B̄‖ + C(1 + ρ) + ‖Γ ‖(ρ +
∥
∥x(t)

∥
∥)

+ η1λ(t)
(
ρα +

∥
∥x(t)

∥
∥α)

+ η2λ(t)
(
ρ +

∥∥x(t)
∥∥)β

≤ ρ‖B̄‖ + C(1 + ρ) + ‖Γ ‖(ρ + ‖x‖T
)

+ η1λ(t)
(
ρα + ‖x‖α

T
)

+ η2λ(t)
(
ρ + ‖x‖T

)β

≤ Cρ,T
1 + Cρ,T

2 λ(t),

where Cρ,T
1 := ρ‖B̄‖ + C(1 + ρ)‖Γ ‖(ρ + ‖x‖T ) and Cρ,T

2 := η1(ρα + ‖x‖α
T ) + η2(ρ + ‖x‖T )β .

Therefore we can deduce that

∫ T

0
f r,#
ρ (t) dt ≤ Cρ,T

1 T + Cρ,T
2

∫ T

0
λ(t) dt < +∞, ∀ρ, T > 0.
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On the other hand, for the diffusion term gr , we have, for any z, z′ ∈R
n,

∥∥gr(t, z) – gr(t, z′)∥∥ =
∥∥σ

(
t, z – x(t)

)
– σ

(
t, z′ – x(t)

)∥∥ ≤ ‖N‖∥∥z – z′∥∥

and

∥∥gr(t, 0)
∥∥ =

∥∥σ
(
t, x(t)

)∥∥ ≤ ‖N‖∥∥x(t)
∥∥, ∀t ≥ 0,

which leads to

∫ T

0

∥∥gr(t, 0)
∥∥dt ≤ ‖N‖‖x‖T T , ∀T > 0.

Based on the above discussion and Lemma 1, we can conclude that response system (9)
has a unique solution.

To show that error dynamical system (10) also has a unique solution, we need to check
the conditions in Lemma 1 for the coefficients f e and ge of error dynamical system (10).
The procedure is even much simpler than those of response systems (9) since f e(t, 0) =
ge(t, 0) = 0. Thus we omit it. The proof is completed. �

Theorem 2 Suppose that assumptions (A1)–(A2) and the following condition hold:

–2B̄ + εAAT +
1
ε

MT M + NT N – 2Γ ≤ 0 (14)

for some ε > 0, then the error dynamical system (10) is finite-time stable under the designed
control law (6). Moreover, the settling time is estimated by

E

[∫ τx0

0
λ(t) dt

]
≤ 1

η1(1 – α)
+

1
η2(β – 1)

.

Proof Choose the Lyapunov function as V (t, x) = xT x, for t ≥ 0 and x ∈R
n and set f̂ (t, x) :=

–B̄x + Aψ̂(t, x) + û(t, x), ĝ(t, x) := σ (t, x). From condition (14) we get

L V (t, x) = Vt(t, x) + Vx(t, x)f̂ (t, x) +
1
2

trace
{

ĝT (t, x)Vxx(t, x)ĝ(t, x)
}

= –2xT B̄x + 2xT Aψ̂(t, x) + 2xT û(t, x) + trace
{
σ T (t, x)σ (t, x)

}

≤ xT
[

–2B̄ + εAAT +
1
ε

MT M + NT N – 2Γ

]
x

– 2λ(t)
[
η1

(
xT x

) α+1
2 + η2

(
xT x

) β+1
2

]

≤ –2η1λ(t)
(
xT x

) α+1
2 – 2η2λ(t)

(
xT x

) β+1
2

= –2η1λ(t)
(
V (t, x)

) α+1
2 – 2η2λ(t)(V (t, x)

β+1
2 .

Noting that η1,η2 ≥ 0, V (t, x) ≥ 0, and λ(t) ≥ 0 for any t ≥ 0 and x ∈ R
n, we can conclude

that L V (t, x) ≤ 0 and λ(t)K(V (t, x))+L V (t, x) ≤ 0 with K(s) = 2η1s α+1
2 +2η2s

β+1
2 for s ≥ 0,
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which implies that conditions (2) and (3) are satisfied. Then by Lemma 2 we get that the
error dynamical system (10) is finite-time stable, and the settling time satisfies

E

[∫ τx0

0
λ(t) dt

]
≤ 1

η1(1 – α)
+

1
η2(β – 1)

.

The proof is completed. �

Corollary 8 Furthermore, if η1 �= 0 and η2 = 0 in the controller u, then the settling time can
be estimated by

E

[∫ τx0

0
λ(t) dt

]
≤ ‖x0 – y0‖(1–α)

η1(1 – α)
.

Corollary 9 If λ(t) ≡ κ , then the estimate of the settling time is reduced to

E[τx0 ] ≤ 1
κη1(1 – α)

+
1

κη2(β – 1)
.

Furthermore, if η2 = 0, then we have

E[τx0 ] ≤ ‖x0 – y0‖(1–α)

κη1(1 – α)
.

4 Simulations
To show the effectiveness of the methods provided, we consider the following 3-D chaotic
cellular neural network as the drive system:

dx(t) =
[
–B̄x(t) + Aψ

(
x(t)

)]
dt, t ≥ 0, x(0) = x0 = [0.1, 0.1, 0.1]T . (15)

Moreover, the response system with stochastic perturbation is

dy(t) =
[
–B̄y(t) + Aψ

(
y(t)

)
+ u(t)

]
dt + σ

(
t, e(t)

)
dB(t), y(0) = y0, (16)

where e(t) = y(t) – x(t), ψi(x) = 0.5(|xi + 1| – |xi – 1|), i = 1, 2, 3, and

B̄ =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦ , A =

⎡

⎢
⎣

1.25 –3.2 –3.2
–3.2 1.1 –4.4
–3.2 4.4 1.0

⎤

⎥
⎦ , y0 = [0.8, –1.1, 1.2]T ,

σ (t, z) =

⎡

⎢
⎣

x3(t) – z3 2 sin(x1(t) – z)
2 sin(x3(t) – z3) |x2(t) – z2|
sin(x1(t) – z1)

√
2 sin(x2(t) – z2)

⎤

⎥
⎦ , ∀t ≥ 0, and z ∈R

3.

From the results in [2] we know that (15) has a double scroll chaotic attractor. We also
easily check that for any t ≥ 0 and z, z′ ∈R

3,

∥∥ψ(z) – ψ
(
z′)∥∥ ≤ ∥∥z – z′∥∥
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and

∥∥σ (t, z) – σ
(
t, z′)∥∥ ≤ ∥∥diag(

√
5,

√
3,

√
5)

(
z – z′)∥∥,

which implies that ψ and σ satisfy conditions (A1) and (A2) with M = In and N =
diag(

√
5,

√
3,

√
5).

Therefore, using the Matlab toolbox to solve LMI in (14), we obtain

Γ =

⎡

⎢
⎣

25.4913 6.5595 –21.2785
6.5595 33.2578 10.6793

–21.2785 10.6793 34.0476

⎤

⎥
⎦ .

A. Finite-time synchronization
On the one hand, if the controller u1 is designed of the form

u1(t) = –Γ e(t) – λ(t)
(
η1

∥
∥e(t)

∥
∥α + η2

∥
∥e(t)

∥
∥β)

1{e(t)}, (17)

with parameters η1 = 1, η2 = 0, α = 1/2, β = 2, and

λ(t) =

⎧
⎨

⎩
0, 0 ≤ t ≤ 1,
1
t , t > 1,

Figure 1 The phase trajectories of the drive and response systems

Figure 2 The control law of the response system
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Figure 3 The synchronization errors under the
control law of u1

Figure 4 Simulations for fixed-time case
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then the response system (16) can synchronize with the drive system (15) in finite time.
The phase trajectories of the drive system and response system are depicted in Fig. 1.
Figure 2 shows the designed control law. Additionally, we can also see from Fig. 3 that the
response system (16) and the drive system (15) are synchronized in finite time

B. Fixed-time synchronization
On the other hand, if we design the controller u2 with parameters λ(t) ≡ 1, t ≥ 0, and

η1 = 1, η2 = 3, α = 1/2, β = 2, then the response system (16) can synchronize with the drive
system (15) in fixed time. Also, we make numerical studies, and the results are displayed
in Fig. 4.

Compared with the previous simulations, the controllers u1 and u2 can greatly shorten
the settling time of the synchronization error system and make the response system dis-
turbed by noise converge quickly to the deterministic drive system. Then these types of
control laws may have a better applicability.

5 Conclusions
In this paper, we studied the problem of finite/fixed-time stability for chaotic neural net-
works with noise perturbations by a continuous controller. By using Lyapunov stability
theory and the LMI technique, we derived sufficient conditions guaranteeing the synchro-
nization of stochastically chaotic neural networks to be realized in finite or fixed time. Fi-
nally, we provided a numerical example demonstrating the usefulness of the main results.
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