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Abstract
In this work, we present sufficient conditions for oscillation of all solutions of a
second-order functional differential equation. We consider two special cases when
γ > β and γ < β . This new theorem complements and improves a number of results
reported in the literature. Finally, we provide examples illustrating our results and
state an open problem.
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1 Introduction
Delay differential equations are widely used in mathematical modeling to describe physical
and biological systems, often inducing oscillatory behavior [1–4, 8, 13, 14, 17, 18, 24–
26, 28–35].

In the literature, numerous mathematical models with different levels of complexity have
been proposed for delay differential equations in order to represent the cardiovascular
system (CVS).

The pioneering and remarkable paper of Ottesen [27] shows how to use delay differential
equations to solve a cardiovascular model that has a discontinuous derivative. Ottesen
[27] also illustrated that complex dynamic interactions between nonlinear behaviors and
delays associated with the autonomic-cardiac regulation may cause instability [5].

Moreover, a model-based approach to stability analysis of autonomic-cardiac regulation
was studied in [5]; specifically, it is important to underline that the autonomic-cardiac reg-
ulation operates by the interaction between autonomic nervous system (ANS) and cardio-
vascular system (CVS) [5].

It is clear that mathematical analysis based on physics-based models can be a versatile
tool in examining delay differential equations from the point of view of biological systems.

In this article we consider the neutral differential equation

(
r(t)

(
w′(t)

)γ )′ + q(t)xβ
(
ϑ(t)

)
= 0, t ≥ t0, (1)
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where w(t) = x(t) +
∑m

i=1 pi(t)xαi (ςi(t)), αi for i = 1, 2, . . . , m, γ and β are the quotients of
odd positive integers. Throughout this work, we suppose that:

(A1) ϑ ,ςi ∈ C([t0,∞),R+), ςi ∈ C2([t0,∞),R+), ϑ(t) < t, ςi(t) < t, limt→∞ ϑ(t) = ∞,
limt→∞ ςi(t) = ∞ for all i = 1, 2, . . . .

(A2) r ∈ C1([t0,∞),R+), q ∈ C([t0,∞),R+); 0 ≤ q(t) for all t ≥ 0; q(t) is not identically
zero in any interval [b,∞).

(A3) limt→∞ R(t) = ∞, where R(t) =
∫ t

t1
r–1/γ (s) ds.

(A4) pi : [t0,∞) → R
+ are continuous functions for i = 1, 2, . . . , m.

In 1978, Brands [11] proved that, for each bounded delay ϑ(t), the equation

x′′(t) + q(t)x
(
t – ϑ(t)

)
= 0

is oscillatory if and only if the equation

x′′(t) + q(t)x(t) = 0

is oscillatory. In [12, 15] Chatzarakis et al. considered a more general equation

(
r
(
x′)β)′(t) + q(t)xβ

(
ϑ(t)

)
= 0, (2)

and established new oscillation criteria for (2) when limt→∞ R(t) = ∞ and limt→∞ R(t) <
∞.

Wong [37] obtained the oscillation conditions of

(
x(t) + px(t – ς )

)′′ + q(t)f
(
x(t – ϑ)

)
= 0, –1 < p < 0,

in which the neutral coefficient and delays are constants. However, we have seen in [6, 16]
that the authors Bacuľikovǎ and Džurina studied

(
r(t)

(
w′(t)

)γ )′ + q(t)xβ
(
ϑ(t)

)
= 0, w(t) = x(t) + p(t)x

(
ς (t)

)
, t ≥ t0, (3)

and established the oscillation of solutions of (3) using comparison techniques when
γ = β = 1, 0 ≤ p(t) < ∞ and limt→∞ R(t) = ∞. In the same technique, Baculikova and
Džurina [7] considered (3) and obtained oscillation conditions of (3) by considering the
assumptions 0 ≤ p(t) < ∞ and limt→∞ R(t) = ∞. In [36], Tripathy et al. studied (3) and
established several conditions of the solutions of (3) by considering the assumptions
limt→∞ R(t) = ∞ and limt→∞ R(t) < ∞ for different ranges of the neutral coefficient p.
In [9], Bohner et al. obtained sufficient conditions for oscillation of solutions of (3) when
γ = β , limt→∞ R(t) < ∞, and 0 ≤ p(t) < 1. Grace et al. [19] studied the oscillation of (3)
when γ = β and by considering the assumptions limt→∞ R(t) < ∞, limt→∞ R(t) = ∞, and
0 ≤ p(t) < 1. In [22], Li et al. established sufficient conditions for the oscillation of the solu-
tions of (3) under the assumptions limt→∞ R(t) < ∞ and p(t) ≥ 0. Karpuz and Santra [21]
considered the equation

(
r(t)

(
x(t) + p(t)x

(
ς (t)

))′)′ + q(t)f
(
x
(
ϑ(t)

))
= 0
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by considering the assumptions limt→∞ R(t) < ∞ and limt→∞ R(t) = ∞ for different ranges
of p.

In fact, equation (1) (that is, half-linear/Emden–Fowler differential equation) arises in
a variety of real world problems such as in the study of non-Newtonian fluid theory, the
turbulent flow of a polytrophic gas in a porous medium [10, 23]. Neutral differential equa-
tions have several applications in the natural sciences and engineering. For example, they
often appear in models biological (see, e.g., [20]). In this paper, we restrict our attention
to studying oscillation and non-oscillation of (1).

2 Preliminary results
To simplify our notation, for any function ρ : [t0,∞) → R

+ which is positive, continuous
decreasing to zero, we set

P(t) =

(

1 –
m∑

i=1

αipi(t) –
1

ρ(t)

m∑

i=1

(1 – αi)pi(t)

)

≥ 0;

Q1(t) = q(t)Pβ
(
ϑ(t)

)
;

Q2(t) = q(t)Pβ
(
ϑ(t)

)
ρβ–1(ϑ(t)

)
;

Q3(t) = q(t)Pβ
(
ϑ(t)

)
Rβ–1(ϑ(t)

)
;

Q4(t) = q(t)Pβ
(
ϑ(t)

)
Rβ

(
ϑ(t)

)
;

U(t) =
∫ ∞

t
q(ζ )xβ

(
ϑ(ζ )

)
dζ ≥ 0.

We need the following lemmas for our work in the sequel.

Lemma 2.1 ([20]) If a and b are nonnegative, then

aαb1–α ≤ αa + (1 – α)b for 0 < α ≤ 1,

where equality holds if and only if a = b.

Lemma 2.2 Let (A1)–(A4) hold for t ≥ t0. If x is an eventually positive solution of (1), then
w satisfies

w(t) > 0, w′(t) > 0, and
(
r
(
w′)γ )′(t) ≤ 0 for t ≥ t1. (4)

Proof Let x be an eventually positive solution of (1). Hence, w(t) > 0, and there exists t0 ≥ 0
such that x(t) > 0, x(ςi(t)) > 0, and x(ϑ(t)) > 0 for all t ≥ t0 and for all i = 1, 2, . . . . From (1)
it follows that

(
r(t)

(
w′(t)

)γ )′ = –q(t)xβ
(
ϑ(t)

) ≤ 0 for t ≥ t0.

Therefore, r(t)(w′(t))γ is nonincreasing for t ≥ t0. Assume that r(t)(w′(t))γ < 0 for t ≥ t1 >
t0. Hence,

r(t)
(
w′(t)

)γ ≤ r(t1)
(
w′(t1)

)γ < 0 for all t ≥ t1,
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that is,

w′(t) ≤
(

r(t1)
r(t)

)1/γ

w′(t1) for t ≥ t1.

Using integration from t1 to t, we have

w(t) ≤ w(t1) +
(
r(t1)

)1/γ w′(t1)R(t) → –∞

as t → ∞ due to (A3), which is a contradiction to w(t) > 0.
Therefore r(t)(w′(t))γ > 0 for all t ≥ t1. From r(t)(w′(t))γ > 0 and r(t) > 0, it follows that

w′(t) > 0. This completes the proof. �

Lemma 2.3 Let (A1)–(A4) hold for t ≥ t0. If x is an eventually positive solution of (1), then
w satisfies

w(t) ≥ (
r(t)

)1/γ w′(t)R(t) for t ≥ t1

and

w(t)
R(t)

is decreasing for t ≥ t1.

Proof Proceeding as in the proof of Lemma 2.2, we obtain (4) for t ≥ t1. Since r(t)(w′(t))γ

is decreasing, we have

w(t) ≥
∫ t

t1

(
r(η)

)1/γ w′(η)
1

(r(η))1/γ dη

≥ (
r(t)

)1/γ w′(t)
∫ t

t1

1
(r(η))1/γ dη

≥ (
r(t)

)1/γ w′(t)R(t).

Again, using the previous inequality, we have

(
w(t)
R(t)

)′
=

(r(t))1/γ w′(t)R(t) – w(t)
(r(t))1/γ R2(t)

≤ 0.

We conclude that w(t)
R(t) is decreasing for t ≥ t1. This completes the proof. �

Lemma 2.4 Let (A1)–(A4) hold for t ≥ t0. If x is an eventually positive solution of (1), then
w satisfies

x(t) ≥ P(t)w(t) for t ≥ t1. (5)
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Proof Let x be an eventually positive solution of (1). Hence, w(t) > 0, and there exists t0 ≥ 0
such that

x(t) = w(t) –
m∑

i=1

pi(t)xαi
(
ςi(t)

)

≥ w(t) –
m∑

i=1

pi(t)wαi
(
ςi(t)

)

≥ w(t) –
m∑

i=1

pi(t)wαi (t)

≥ w(t) –
m∑

i=1

pi(t)
(
αiw(t) – (1 – αi)

)

=

(

1 –
m∑

i=1

αipi(t)

)

w(t) –
m∑

i=1

(1 – αi)pi(t) (6)

using Lemma 2.1. Since w(t) is positive and increasing and ρ(t) is positive and decreasing
to zero, there is t0 ≥ t1 such that

w(t) ≥ ρ(t) for t ≥ t1. (7)

Using (7) in (6), we obtain

x(t) ≥ P(t)w(t).

This completes the proof. �

Lemma 2.5 Let (A1)–(A4) hold for t ≥ t0. If x is an eventually positive solution of (1), then
there exist t1 > t0 and δ > 0 such that

0 < w(t) ≤ δR(t) and (8)

R(t)
[∫ ∞

t
q(ζ )xβ

(
ϑ(ζ )

)
dζ

]1/γ

≤ w(t) (9)

hold for all t ≥ t1.

Proof Let x be an eventually positive solution of (1). Then there exists t0 > 0 such that
x(t) > 0, x(ςi(t)) > 0, and x(ϑ(t)) > 0 for all t ≥ t0 and for all i = 1, 2, . . . . So, there exists
t1 > t0 such that Lemma 2.2 holds true and w satisfies (4) for t ≥ t1. From r(t)(w′(t))γ > 0
and being nonincreasing, we have

w′(t) ≤
(

r(t1)
r(t)

)1/γ

w′(t1) for t ≥ t1.

Integrating this inequality from t1 to t,

w(t) ≤ w(t1) +
(
r(t1)

)1/γ w′(t1)R(t).
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Since limt→∞ R(t) = ∞, there exists a positive constant δ such that (8) holds. On the other
hand, limt→∞ r(t)(w′(t))γ exists, and integrating (1) from t to a, we obtain

r(a)
(
w′(a)

)γ – r(t)
(
w′(t)

)γ = –
∫ a

t
q(η)xβ

(
ϑ(η)

)
dη.

Taking limit as a → ∞,

r(t)
(
w′(t)

)γ ≥
∫ ∞

t
q(η)xβ

(
ϑ(η)

)
dη, (10)

that is,

w′(t) ≥
[

1
r(t)

∫ ∞

t
q(η)xβ

(
ϑ(η)

)
dη

]1/γ

.

Therefore,

w(t) ≥
∫ t

t1

[
1

r(η)

∫ ∞

η

q(s)xβ
(
ϑ(s)

)
ds

]1/γ

dη

≥
∫ t

t1

[
1

r(η)

∫ ∞

t
q(s)xβ

(
ϑ(s)

)
ds

]1/γ

dη

= R(t)
[∫ ∞

t
q(s)xβ

(
ϑ(s)

)
ds

]1/γ

.

This completes the proof. �

3 Sufficient conditions for oscillations
Theorem 3.1 Let (A1)–(A4) hold for t ≥ t0. If

(A5)
∫ ∞

0 Q1(η) dη = ∞
holds, then every solution of (1) is oscillatory.

Proof Let x be an eventually positive solution of (1). Then there exists t0 > 0 such that
x(t) > 0, x(ςi(t)) > 0, and x(ϑ(t)) > 0 for all t ≥ t0 and for all i = 1, 2, . . . . Applying Lemmas
2.2 and 2.4 for t ≥ t1 > t0, we conclude that w satisfies (4), w is increasing, and x(t) ≥
P(t)w(t) for all t ≥ t1. From (1), we have

(
r(t)

(
w′(t)

)γ )′ + q(t)Pβ
(
ϑ(t)

)
wβ

(
ϑ(t)

) ≤ 0 (11)

for t ≥ t1. Applying (4), we conclude that limt→∞(r(t)(w′(t))γ ) exists, and there exist t2 > t1

and a number c > 0 such that w(t) ≥ c for t ≥ t2. Integrating (11) from t2 to t, we have

cβ

∫ t

t2

q(s)Pβ
(
ϑ(s)

)
ds ≤ –

[
r(s)

(
w′(s)

)γ ]t
t2

< ∞ as t → ∞,

which is a contradiction to (A5).
The case where x is an eventually negative solution is similar, and we omit it here. Thus,

the proof is complete. �
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Remark 3.1 Theorem 3.1 holds for any β and γ .

Next, we obtain an oscillation result for equation (1) in the case β > 1.

Theorem 3.2 Let (A1)–(A4) hold for t ≥ t0. If
(A6)

∫ ∞
0 Q2(η) dη = ∞

holds, then every solution of (1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.1, we obtain (11). Applying (7) in (11), we
have

(
r(t)

(
w′(t)

)γ )′ + q(t)Pβ
(
ϑ(t)

)
ρβ–1(ϑ(t)

)
w

(
ϑ(t)

) ≤ 0. (12)

The rest of the proof is similar to that of Theorem 3.1, and hence the details are omitted. �

Next, we obtain an oscillation result for equation (1) in the case 0 < β < 1.

Theorem 3.3 Let (A1)–(A4) hold for t ≥ t0. If
(A7)

∫ ∞
0 Q3(η) dη = ∞

holds, then every solution of (1) is oscillatory.

Proof Proceeding as in the proof of Theorem 3.1 we obtain (11). Now (11) can be written
as

(
r(t)

(
w′(t)

)γ )′ + q(t)Pβ
(
ϑ(t)

)
Rβ–1(ϑ(t)

)wβ–1(ϑ(t))
Rβ–1(ϑ(t))

w
(
ϑ(t)

) ≤ 0 (13)

for t ≥ t2 > t1. Since w(t)
R(t) is decreasing, there is a constant k such that

w(t)
R(t)

≤ k for t ≥ t2. (14)

Using (14) and β < 1 in (13), we have

(
r(t)

(
w′(t)

)γ )′ + q(t)
Pβ (ϑ(t))Rβ–1(ϑ(t))

k1–β
w

(
ϑ(t)

) ≤ 0.

The rest of the proof is similar to that of Theorem 3.2, and hence it is omitted. �

Next, we assume that there exists a constant β1, the quotient of odd positive integers
such that 0 < β < β1 < γ .

Theorem 3.4 Let (A1)–(A4) hold for t ≥ t0. If
(A8)

∫ ∞
0 Q4(η) dη = ∞

holds, then every solution of (1) is oscillatory.

Proof Let x be an eventually positive solution of (1). So, there exists t0 > 0 such that x(t) >
0, x(ςi(t)) > 0, and x(ϑ(t)) > 0 for all t ≥ t0 and for all i = 1, 2, . . . . Applying Lemmas 2.2 and
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2.5 for t ≥ t1 > t0, we conclude that w satisfies (4), (8), and (9) for all t ≥ t1. We can find
t1 > 0 such that

w(t) ≥ R(t)U1/γ (t) ≥ 0 for t ≥ t1. (15)

Using (5), (8), β – β1 < 0, and (15), we have

xβ (t) ≥ Pβ (t)wβ–β1 (t)wβ1 (t) ≥ Pβ (t)
(
δR(t)

)β–β1 wβ1 (t)

≥ Pβ (t)
(
δR(t)

)β–β1(R(t)U1/γ (t)
)β1 = Pβ (t)δβ–β1 Rβ (t)Uβ1/γ (t) for t ≥ t2.

Since U ′(t) = –q(t)xβ (ϑ(t)) ≤ 0, t ≥ t2, that is, w is nonincreasing, then the last inequality
becomes

xβ
(
ϑ(η)

) ≥ Pβ
(
ϑ(η)

)
δβ–β1 Rβ

(
ϑ(η)

)
Uβ1/γ (

ϑ(η)
)

(16)

≥ Pβ
(
ϑ(η)

)
δβ–β1 Rβ

(
ϑ(η)

)
Uβ1/γ (η).

Therefore,

(
U1–β1/γ (t)

)′ =
(

1 –
β1

γ

)
w–β1/γ (t)U ′(t). (17)

Integrating (17) from t2 to t and then using the fact that U > 0, we find

∞ > U1–β1/γ (t2) ≥
(

1 –
β1

γ

)[
–

∫ t

t2

U–β1/γ (η)U ′(η) dη

]

=
(

1 –
β1

γ

)[∫ t

t2

U–β1/γ (η)
(
q(η)xβ

(
ϑ(η)

))
dη

]

≥ (1 – β1
γ

)
δ(β1–β)

[∫ t

t2

q(η)Pβ
(
ϑ(η)

)
Rβ

(
ϑ(η)

)
dη

]
,

which contradicts (A8) as t → ∞.
This completes the proof. �

Next, we assume that there exists a constant β2, the quotient of odd positive integers
such that γ < β2 < β .

Theorem 3.5 Let (A1)–(A4) hold for t ≥ t0, ϑ ′(t) ≥ ϑ0 > 0 and r(t) is nondecreasing. If
(A9)

∫ ∞
0 [ 1

r(η)
∫ ∞
η

Q1(ζ ) dζ ]1/γ dη = ∞
holds, then every solution of (1) is oscillatory.

Proof Let x be an eventually positive solution of (1). Then there exists t0 > 0 such that
x(t) > 0, x(ςi(t)) > 0, and x(ϑ(t)) > 0 for all t ≥ t0 and i = 1, 2, . . . . Applying Lemmas 2.2 and
2.4 for t ≥ t1 > t0, we conclude that w satisfies (4), w is increasing, and x(t) ≥ P(t)w(t) for
all t ≥ t1. So,

xβ (t) ≥ Pβ (t)wβ (t) ≥ Pβ (t)wβ–β2 (t)wβ2 (t) ≥ Pβ (t)wβ–β2 (t1)wβ2 (t)
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implies that

xβ
(
ϑ(t)

) ≥ Pβ
(
ϑ(t)

)
wβ–β2 (t1)wβ2

(
ϑ(t)

)
for t ≥ t2 > t1. (18)

Using (10) and (18), we have

r(t)
(
w′(t)

)γ ≥ wβ–β2 (t1)
[∫ ∞

t
q(η)Pβ

(
ϑ(η)

)
dη

]
wβ2

(
ϑ(t)

)
(19)

for t ≥ t2. From r(t)(w′(t))γ being nonincreasing and ϑ(t) ≤ t, we have

r
(
ϑ(t)

)(
w′(ϑ(t)

))γ ≥ r(t)
(
w′(t)

)γ .

Using the last inequality in (19) and then dividing by r(ϑ(t))wβ2 (ϑ(t)) > 0, and then oper-
ating the power 1/γ on both sides, we get

w′(ϑ(t))
wβ2/γ (ϑ(t))

≥
[

wβ–β2 (t1)
r(ϑ0(t))

∫ ∞

t
q(η)Pβ

(
ϑ(η)

)
dη

]1/γ

for t ≥ t2. Multiplying the left-hand side by ϑ ′(t)/ϑ0 ≥ 1 and integrating from t2 to t, we
find

1
ϑ0

∫ t

t2

w′(ϑ(η))ϑ ′(η)
wβ2/γ (ϑ(η))

dη

≥ w(β–β2)/γ (t1)
∫ t

t2

[
1

r(ϑ(η))

∫ ∞

η

q(ζ )Pβ
(
ϑ(ζ )

)
dζ

]1/γ

dηt ≥ t2.

(20)

Since γ < β2, r(ϑ(η)) ≤ r(η) and

1
ϑ0(1 – β2/γ )

[
w1–β2/γ (

ϑ(η)
)]t

η=t2
≤ 1

ϑ0(β2/γ – 1)
w1–β2/γ (

ϑ(t2)
)
,

then (20) becomes

∫ ∞

t2

[
1

r(η)

∫ ∞

η

q(ζ )Pβ
(
ϑ(ζ )

)
dζ

]1/γ

dη < ∞,

which is a contradiction to (A9). This contradiction implies that the solution x cannot be
eventually positive. The case where x is eventually negative is very similar, and we omit it
here. �

We finalize the paper by presenting some examples to show effectiveness and feasibility
of the main results and Remark 3.3.

Example 3.1 Consider the differential equation

(
t
((

x(t) +
1
t

x
1
3

(
t
2

)
+

1
t2 x

1
5

(
t
3

))′)3)′
+ t6x3

(
t
2

)
= 0 for t ≥ 4, (21)
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where r(t) :≡ y, q(t) :≡ t6, ϑ(t) :≡ t
2 , β = γ = 3, pi(t) :≡ 1

ti , αi :≡ 1
2i+1 , and ςi(t) :≡ t

i+1 for
i = 1, 2, . . . , m, and t ≥ 4. All the assumptions of Theorem 3.1 can be verified with the index
i = 1, 2 and ρ(t) = 1

t . Hence, due to Theorem 3.1 every solution of (21) is oscillatory.

Example 3.2 Consider the differential equation

(
t
((

x(t) +
1
t

x
1
3

(
t
3

)
+

1
t2 x

1
5

(
t
4

))′)5)′
+ t

6
5 x

(
t
2

)
= 0 for t ≥ 4, (22)

where r(t) :≡ t, q(t) :≡ t
6
5 , ϑ(t) :≡ t

2 , β = 1 < γ = 5, pi(t) :≡ 1
ti , αi :≡ 1

2i+1 , and ςi(t) :≡ t
i+2

for i = 1, 2, . . . , m and t ≥ 2. All the assumptions of Theorem 3.4 (or Theorem 3.1) can be
verified with the index i = 1, 2 and ρ(t) = 1

t . Hence, due to Theorem 3.4 (or Theorem 3.1)
every solution of (22) is oscillatory.

Example 3.3 Consider the differential equation

(
(t + 1)

(
x(t) +

1
t2 x

1
3

(
t
2

)
+

1
t4 x

3
5

(
t
3

))′)′
+ t12x3

(
t
2

)
= 0 for t ≥ 2, (23)

where r(t) :≡ t + 1, q(t) :≡ t12, ϑ(t) :≡ t
2 , ϑ ′(t) > 1

3 = ϑ0, β = 3 > γ = 1, pi(t) :≡ 1
t2i , αi :≡ 2i–1

2i+1 ,
and ςi(t) :≡ t

i+1 for i = 1, 2, . . . , m and t ≥ 2. All the assumptions of Theorem 3.5 (or The-
orem 3.1) can be verified with the index i = 1, 2 and ρ(t) = 1

t2 . Hence, due to Theorem 3.4
(or Theorem 3.1), every solution of (23) is oscillatory.

4 Conclusion
In this work, we have undertaken the problem by taking a second-order nonlinear neutral
differential equation with sublinear neutral terms and established the sufficient conditions
for oscillation of (1). However, we failed to establish the necessary and sufficient condi-
tions for oscillation of all solutions of (1) by using the method adopted in the current paper.
It seems that some other method may be required to establish the necessary and sufficient
conditions for oscillation.
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