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Abstract
In this article we introduce the generalized Fibonacci difference operator F(B) by the
composition of a Fibonacci band matrix F and a triple band matrix B(x, y, z) and study
the spaces �k(F(B)) and �∞(F(B)). We exhibit certain topological properties, construct a
Schauder basis and determine the Köthe–Toeplitz duals of the new spaces.
Furthermore, we characterize certain classes of matrix mappings from the spaces
�k(F(B)) and �∞(F(B)) to space Y ∈ {�∞, c0, c,�1, cs0, cs,bs} and obtain the necessary
and sufficient condition for a matrix operator to be compact from the spaces �k(F(B))
and �∞(F(B)) to Y ∈ {�∞, c, c0,�1, cs0, cs,bs} using the Hausdorff measure of
non-compactness.
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1 Introduction
Throughout this paper, the set of all real valued sequences shall be denoted by w. Any
linear subspace of w is known as a sequence space. The sets �k (k-absolutely summable
sequences), �∞ (bounded sequences), c0 (null sequences) and c (convergent sequences)
are a few examples of classical sequence spaces. Moreover, cs and bs will represent the
spaces of all convergent and bounded series, respectively. Here and in what follows 1 ≤
k < ∞, unless stated otherwise. A Banach space having continuous coordinates is known
as BK-space. The spaces �k and X = {�∞, c, c0} are BK-spaces endowed with the norms
‖s‖�k = (

∑∞
v=0 |sv|k)1/k and ‖s‖�∞ = supv∈N |sv|, respectively.

The theory of matrix mappings plays an important role in summability theory because
of its well-known property ‘a matrix mapping between BK-spaces is continuous [6, 47]’.
Let X and Y be any two sequence spaces and � = (ψrv) be an infinite matrix of real entries.
The notation �r shall mean the sequence in the rth row of the matrix � . Furthermore, the
sequence �s = {(�s)r} = {∑∞

v=0 ψrv} is called the �-transform of the sequence s = (sr) ∈ X,
provided that the series

∑∞
v=0 ψrv exists. Furthermore, if, for each sequence s in X, its �-

transform is in Y, then we say that � is a matrix mapping from X to Y. We shall denote the
family of all matrices that map from X to Y by (X : Y).
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Define the set

X� = {s ∈ w : �s ∈ X}. (1.1)

The set X� is a sequence space and is known as the domain of matrix � in the space X.
Additionally, if X is BK-space and � is a triangle, then X� is also BK-space endowed with
the norm ‖s‖X�

= ‖�s‖X [27], where the matrix � = (ψrv) is called a triangle if ψrr �= 0 for
all r ∈ N and ψrv = 0 for v > r. Using this famous result several authors [4, 29, 35, 41, 48]
in the literature constructed new BK-spaces. We also mention [22, 23, 26, 53–55, 62–64]
for some recent publications and textbooks [6, 47, 61] in this field.

1.1 Difference sequence spaces
Kızmaz [36] introduced forward difference spaces X(�) = {s = (sr) ∈ w : (�s)r = (sr – sr+1) ∈
X}, where X ∈ {�∞, c0, c}. The author proved that X(�) is a Banach space with the norm
‖s‖� = |s1| + ‖�s‖�∞ . Extending these spaces, Et [18] introduced the space X(�2) = {s =
(sr) ∈ w : (�2s)r = ((�s)r – (�s)r+1) ∈ X}, where X ∈ {�∞, c0, c}. Since then several authors
[1, 12, 20, 21, 28, 38, 39, 42, 44–46, 56] studied and generalized the notion of difference
spaces. Recently, the notion of difference spaces was further generalized by Kirişci and
Başar [35] by introducing the sequence spaces X(B(x, y)) = (X)B(x,y), where X ∈ {�∞, c0, c}
and B(x, y) = {brv(x, y)} is the difference matrix defined by

brv(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x (v = r),

y (v = r – 1),

0 (0 ≤ v ≤ r – 1 or v > r),

where x, y ∈R \ {0}.
More recently, Sönmez [57] generalized the spaces in [35] by introducing the spaces

X(B(x, y, z)) for X ∈ {�∞, c, c0,�k}, where B(x, y, z) = {brv(x, y, z)} is a triple band difference
matrix defined by

brv(x, y, z) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x (v = r),

y (v = r – 1),

z (v = r – 2),

0 (otherwise),

where x, y, z ∈ R \ {0}. Clearly B(x, y, 0) = B(x, y), B(1, –2, 1) = �(2) and B(1, –1, 0) = �(1),
where �(1) and �(2) are the transposes of � and �2, respectively. We refer to [3, 5, 8–
10, 15, 17, 43, 58, 59] for similar studies in this domain.

2 Fibonacci sequence spaces
Fibonacci numbers are also considered to be Nature’s numbers. They can be found ev-
erywhere around us, from the leaf arrangements in plants, to the pattern of the florets
of flowers, the bracts of pinecones or the scales of pineapple. The number sequence
1, 1, 2, 3, 5, 8, . . . is called the Fibonacci sequence. Note that any number in the sequence
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is the sum of the two numbers preceding it. Thus, if {fv}∞v=0 is the sequence of Fibonacci
numbers, then

f0 = f1 = 1 and fv = fv–1 + fv–2, v ≥ 2.

The ratio of the successive terms in the Fibonacci sequence approaches an irrational num-
ber 1+

√
5

2 , which is called the golden ratio. This number has great application in the field
of architecture, science and arts. Some more basic properties of Fibonacci numbers [37]
can be listed as follows:

lim
r→∞

fr+1

fr
=

1 +
√

5
2

(golden ratio),

r∑

v=0

fr = fr+2 – 1 (r ∈N),

∞∑

v=0

1
fv

converges,

fr–1fr+1 – f 2
r = (–1)r+1, r ≥ 1 (Cassini formula).

The Fibonacci double band matrix F = (frv) is defined by [29]

frv =

⎧
⎪⎪⎨

⎪⎪⎩

– fr+1
fr if v = r – 1,

fr
fr+1

if v = r,

0 if 0 ≤ v < r – 1 or v > r.

Kara [29] introduced the sequence spaces �k(F) = (�k)F and �∞(F) = (�∞)F. Later on, Başarır
et al. [7] studied Fibonacci difference spaces c0(F) = (c0)F and c(F) = (c)F. Since then many
authors studied and generalized Fibonacci difference sequence spaces. We refer to [11, 13,
14, 16, 30–34] for relevant studies.

Motivated by the above studies, we introduced generalized Fibonacci difference op-
erator by the composition of the Fibonacci band matrix F and the triple band matrix
B(x, y, z). We study the domains �k(F(B(x, y, z))) and �∞(F(B(x, y, z))) of the matrix operator
F(B(x, y, z)) in the spaces �k and �∞, respectively, investigate certain topological proper-
ties of the spaces and construct the Schauder basis of the sequence space �k(F(B(x, y, z))).
In Sect. 4, we obtain the Köthe–Toeplitz duals of the sequence spaces �k(F(B(x, y, z))). In
Sect. 5, we characterize certain classes of matrix mappings from the spaces �k(F(B(x, y, z)))
and �∞(F(B(x, y, z))) to the space Y, where Y ∈ {�∞, c, c0,�1, cs0, cs, bs}. In Sect. 6, we
characterize certain classes of compact operators on the spaces �k(F(B(x, y, z))) and
�∞(F(B(x, y, z))) using the Hausdorfff measure of non-compactness (or in short Hmnc).

3 Main results
In the present section, we introduce the product matrix F(B), where B = B(x, y, z) is the
triple band difference matrix, and obtain its inverse and introduce generalized Fibonacci
difference sequence spaces �k(F(B)) and �∞(F(B)), exhibit certain topological properties of
these spaces and obtain basis of the space �k(F(B)).
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Combining Fibonacci band matrix F and difference operator B, the product matrix F(B) =
(f (B))rv is defined by

(
f (B)

)
rv =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x fr
fr+1

(r = v),

–x fr+1
fr + y fr

fr+1
(r = v + 1),

–y fr+1
fr + z fr

fr+1
(r = v + 2),

–z fr+1
fr (r = v + 3),

0 otherwise.

(3.1)

Equivalently, F(B) can also be expressed as

F(B) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x f0
f1

0 0 0 0 . . .

–x f2
f1

+ y f1
f2

x f1
f2

0 0 0 . . .

–y f3
f2

+ z f2
f3

–x f3
f2

+ y f2
f3

x f2
f3

0 0 . . .

–z f4
f3

–y f4
f3

+ z f3
f4

–x f4
f3

+ y f3
f4

x f3
f4

0 . . .

0 –z f5
f4

–y f5
f4

+ z f4
f5

–x f5
f4

+ y f4
f5

x f4
f5

. . .

...
...

...
...

...
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One may clearly observe that (F(B))(1, 0, 0) = F, (F(B))(x, y, 0) = (F(B))(x, y).
Now we obtain the inverse of the product matrix F(B).

Lemma 3.1 ([19]) The difference operator B has the inverse B–1 = (b–1
rv ) defined by triangle

b–1
rv =

⎧
⎨

⎩

x–1∑r–v
j=0 ( –y+

√
y2–4zx

2x )r–v–j( –y–
√

y2–4zx
2x )j (0 ≤ v ≤ r),

0 (v > r).

Lemma 3.2 ([7]) The Fibonacci band matrix F has the inverse F–1 defined by

(F)–1
rv =

⎧
⎨

⎩

fr+1
fvfv+1

(0 ≤ v ≤ r),

0 (v > r).

Lemma 3.3 The inverse of the product matrix F(B) is defined by the triangle

(
F(B)

)–1
rv =

⎧
⎨

⎩

x–1∑r
i=v
∑r–v

j=0 ( –y+
√

y2–4zx
2x )r–i–j( –y–

√
y2–4zx

2x )j f 2
i+1

fvfv+1
(0 ≤ v ≤ r),

0 (v > r).

Proof The result follows from Lemma 3.1 and Lemma 3.2. �

Define the sequence t = (tv) in terms of the sequence s = (sv) by

tv = –z
fv+1

fv
sv–3 +

(

–y
fv+1

fv
+ z

fv

fv+1

)

sv–2 +
(

–x
fv+1

fv
+ y

fv

fv+1

)

sv–1

+ x
fv

fv+1
sv, v ∈N. (3.2)
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Note that the terms with negative subscripts is considered to be zero. The sequence t is
called F(B)-transform of the sequence s.

Now we define the spaces �k(F(B)) and �∞(F(B)) by

�k
(
F(B)

)
=
{

s = (sr) ∈ w : F(B)s ∈ �k
}

and �∞
(
F(B)

)
=
{

s = (sr) ∈ w : F(B)s ∈ �∞
}

.

The spaces �k(F(B)) and �∞(F(B)) may be redefined in the notation of (3.2) as

�k
(
F(B)

)
= (�k)F(B) and �∞

(
F(B)

)
= (�∞)F(B). (3.3)

We further emphasize that the spaces �k(F(B)) and �∞(F(B)) are reduced to certain
classes of sequence spaces in the special cases of x, y, z ∈R.

1. For x = 1, y = z = 0, the above sequence spaces reduce to the classes as defined by
Kara [29].

2. For x = 1, y = –1, z = 0, the above sequence spaces reduce to �k(F(�(1))) = (�k)F(�(1))

and �∞(F(�(1))) = (�∞)F(�(1)).
3. For x = 1, y = –2, z = 1, the above sequence spaces reduce to �k(F(�(2))) = (�k)F(�(2))

and �∞(F(�(2))) = (�∞)F(�(2)).
4. For z = 0, the above sequence spaces reduce to the classes �k(F(B(x, y))) = (�k)F(B(x,y))

and �∞(F(B(x, y))) = (�∞)F(B(x,y)).
We start with the following basic theorem.

Theorem 3.4 The spaces �k(F(B)) and �∞(F(B)) are BK-spaces endowed with the norms
defined by

‖s‖�k (F(B)) =
∥
∥F(B)s

∥
∥

�k
=

( ∞∑

v=0

∣
∣
(
F(B)s

)
v

∣
∣k
)1/k

, (3.4)

and

‖s‖�∞(F(B)) =
∥
∥F(B)s

∥
∥

�∞ = sup
v∈N

∣
∣
(
F(B)s

)
v

∣
∣, (3.5)

respectively.

Proof The proof is a routine exercise and hence is omitted. �

Theorem 3.5 �k(F(B)) ∼= �k and �∞(F(B)) ∼= �∞.

Proof We present the proof for the space �k(F(B)). It is clear that the mapping T :
�k(F(B)) → �k defined by s �→ t = Ts = F(B)s is linear and one-one. Let t = (tr) ∈ �k define
the sequence s = (sr) by

sv = x–1
v∑

i=0

v∑

j=i

v–j∑

m=0

(
–y +

√
y2 – 4zx

2x

)v–j–m(–y –
√

y2 – 4zx
2x

)m

× f 2
j+1

fifi+1
ti, (v ∈ N). (3.6)
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Then we have

‖s‖�k (F(B)) =
∥
∥F(B)s

∥
∥

�k

=

( ∞∑

v=0

∣
∣
∣
∣–z

fv+1

fv
sv–3 +

(

–y
fv+1

fv
+ z

fv

fv+1

)

sv–2

+
(

–x
fv+1

fv
+ y

fv

fv+1

)

sv–1 + x
fv

fv+1
sv

∣
∣
∣
∣

k
)1/k

=

( ∞∑

v=0

|tv|k
)1/k

= ‖t‖�k < ∞.

This implies that s ∈ �k(F(B)). Thus we realize that T is onto and norm preserving. Thus
�k(F(B)) ∼= �k . �

To end this section, we construct a sequence that forms a Schauder basis for the space
�k(F(B)). We recall that a Schauder basis in a normed space X is a sequence s = (sr) such
that to every element u in X there corresponds a unique sequence of scalars (ar) satisfying

lim
r→∞

∥
∥
∥
∥
∥

u –
r∑

v=0

avsv

∥
∥
∥
∥
∥

= 0.

Let e(v) denote the sequence with 1 in the vth position and 0 elsewhere. We are well
aware that the set {e(v) : v ∈N} is a Schauder basis of the space �k . Moreover, the mapping
T defined in Theorem 3.5 is onto, therefore the inverse image of the set {e(v)} forms the
basis of the space �k(F(B)). This statement gives us the following result.

Theorem 3.6 Define the sequence c(v) = (c(v)
r ) for every fixed v ∈N by

c(v)
r =

⎧
⎨

⎩

x–1∑r
j=v
∑r–j

m=0( –y+
√

y2–4zx
2x )r–j–m( –y–

√
y2–4zx

2x )m f 2
j+1

fvfv+1
(0 ≤ v ≤ r),

0 (v > r),
(3.7)

for each r ∈N. Then the sequence (c(v)) is a Schauder basis for the space �k(F(B)) and every
s ∈ �k(F(B)) can be uniquely expressed in the form s =

∑r
v=0 λvc(v), where λv = (F(B)s)v for

each v ∈ N.

Corollary 3.7 The sequence space �k(F(B)) is separable.

Proof The result follows from Theorems 3.4 and 3.6. �

4 Köthe–Toeplitz duals (or α-, β- and γ -duals)
In present section, we determine Köthe–Toeplitz duals of the space �k(F(B)) and �∞(F(B)).
It is to mention that we have not provided the proof for the case k = 1 as the proof is similar
to the case 1 < k ≤ ∞. The proofs are provided only for the latter case.

The α-, β- and γ -duals of the space X ⊂ w are defined by

[X]α =
{
ς = (ςr) ∈ w : ςs = (ςrsr) ∈ �1,∀s = (sr) ∈ X

}
,
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[X]β =
{
ς = (ςr) ∈ w : ςs = (ςrsr) ∈ cs,∀s = (sr) ∈ X

}
,

[X]γ =
{
ς = (ςr) ∈ w : ςs = (ςrsr) ∈ bs,∀s = (sr) ∈ X

}
,

respectively.
Before proceeding further, we list celebrated results of Stielglitz and Tietz [60] that are

essential for our investigation. In the rest of the paper, 1
k + 1

k′ = 1 and R is the family of all
finite subsets of N.

Lemma 4.1 � = (ψrv) ∈ (�k : �1) if and only if

sup
R∈R

∞∑

v=0

∣
∣
∣
∣

∑

r∈R

ψrv

∣
∣
∣
∣ < ∞, 1 < k ≤ ∞.

Lemma 4.2 � = (ψrv) ∈ (�k : c) if and only if

lim
r→∞ψrv exists for all v ∈N, (4.1)

sup
r∈N

∞∑

v=0

|ψrv|k′
< ∞, 1 < k < ∞. (4.2)

Lemma 4.3 � = (ψrv) ∈ (�∞ : c) if and only if (4.1) holds and

lim
r→∞

r∑

v=0

|ψrv| =
∞∑

v=0

∣
∣
∣ lim
r→∞ψrv

∣
∣
∣. (4.3)

Lemma 4.4 � = (ψrv) ∈ (�k : �∞) if and only if (4.2) holds with 1 < k ≤ ∞.

Theorem 4.5 Define the sets δ(k′) and δ∞ by

δ(k′) =

{

ς = (ςr) ∈ w : sup
R∈R

∞∑

v=0

∣
∣
∣
∣

∑

r∈R

drv

∣
∣
∣
∣

k′

< ∞
}

,

δ∞ =

{

ς = (ςr) ∈ w : sup
v∈N

∞∑

r=0

|drv| < ∞
}

,

where the matrix D = (drv) is defined by

drv =

⎧
⎨

⎩
x–1∑r

j=v
∑r–j

m=0( –y+
√

y2–4zx
2x )r–j–m( –y–

√
y2–4zx

2x )m f 2
j+1

fvfv+1
ςr (0 ≤ v ≤ r),

0 (v > r),

for all r, v ∈ N. Then [�1(F(B))]α = δ∞, [�k(F(B))]α = δ(k′) and [�∞(F(B))]α = δ(1).

Proof Let 1 < k ≤ ∞. Let ς = (ςr) ∈ w and s = (sr) be defined in (3.6), then we have

ςrsr = x–1
r∑

i=0

r∑

j=i

r–j∑

m=0

(
–y +

√
y2 – 4zx

2x

)r–j–m(–y –
√

y2 – 4zx
2x

)m f 2
j+1

fifi+1
ςrti

= (Dt)r , for each r ∈N. (4.4)



Yaying et al. Advances in Difference Equations        (2020) 2020:639 Page 8 of 19

Thus we deduce from (4.4) that ςs = (ςrsr) ∈ �1 whenever s = (sr) ∈ �k(F(B)) if only if Dt ∈
�1 whenever t = (tr) ∈ �k , which implies that ς = (ςr) ∈ [�k(F(B))]α if and only if D ∈ (�k : �1).

Thus by using Lemma 4.1, we conclude that

[
�k
(
F(B)

)]α = δ(k′) and
[
�∞
(
F(B)

)]α = δ(1). �

Theorem 4.6 Define the sets δ1, δ2 and δ3 by

δ1 =
{
ς = (ςr) ∈ w : lim

r→∞ grv exists for all v ∈N

}
;

δ2 =
{
ς = (ςr) ∈ w : sup

r,v∈N
|grv| < ∞

}
;

δ3 =

{

ς = (ςr) ∈ w : lim
r→∞

r∑

v=0

|grv| =
∞∑

v=0

∣
∣
∣ lim
r→∞ grv

∣
∣
∣ < ∞

}

;

δ[k′] =

{

ς = (ςr) ∈ w : sup
r∈N

r∑

v=0

|grv|k′
< ∞

}

;

where the matrix G = (grv) is defined by

grv =

⎧
⎨

⎩

∑r
i=v
∑i

j=v
∑i–j

m=0( –y+
√

y2–4zx
2x )i–j–m( –y–

√
y2–4zx

2x )m f 2
j+1

fvfv+1
ςr (0 ≤ v ≤ r),

0 (v > r).

Then [�1(F(B))]β = δ1 ∩ δ2, [�k(F(B))]β = δ1 ∩ δ[k′] and [�∞(F(B))]β = δ1 ∩ δ3.

Proof Let ς = (ςr) ∈ w and s = (sr) be defined in (3.6). Consider the equality

r∑

v=0

ςvsv =
r∑

v=0

ςv

[

x–1
v∑

i=0

v∑

j=i

v–j∑

m=0

(
–y +

√
y2 – 4zx

2x

)v–j–m(–y –
√

y2 – 4zx
2x

)m f 2
j+1

fifi+1
ti

]

=
r∑

v=0

[

x–1
r∑

i=v

i∑

j=v

i–j∑

m=0

(
–y +

√
y2 – 4zx

2x

)i–j–m(–y –
√

y2 – 4zx
2x

)m f 2
j+1

fvfv+1
ςi

]

tv

= (Et)r , for each r ∈N.

Thus ςs = (ςvsv) ∈ cs whenever s = (sr) ∈ �k(F(B)) if only if Et ∈ c whenever t = (tv) ∈ �k .
Thus ς = (ςv) ∈ [�k(F(B))]β if and only if E ∈ (�k : c).

Thus we conclude from Lemma 4.2 that [�k(F(B))]β = δ1 ∩ δ[k′].
Similar proof can be written for the case p = ∞ by replacing Lemma 4.2 with Lem-

ma 4.3. �

Theorem 4.7 [�1(F(B))]γ = δ2, [�k(F(B))]γ = δ[k′] and [�∞(F(B))]γ = δ[1].

Proof The proof is analogous to the proof of previous theorem except that Lemma 4.4 is
employed instead of Lemma 4.2. �
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5 Matrix mappings
In the present section, we characterize certain class of matrix mappings from the spaces
�k(F(B)) and �∞(F(B)) to the space Y ∈ {�∞, c, c0,�1, bs, cs, cs0}. The following theorem is
fundamental in our investigation.

Theorem 5.1 Let 1 ≤ k ≤ ∞ and X be any arbitrary subset of w. Then � = (ψrv) ∈
(�k(F(B)) : X) if and only if �(r) = (φ(r)

mv) ∈ (�k : c) for each r ∈ N, and � = (ψrv) ∈ (�k : X),
where

φ(r)
mv =

⎧
⎨

⎩

0 (v > m),
∑m

j=v x–1∑r–j
l=0( –y+

√
y2–4zx

2x )r–j–l( –y–
√

y2–4zx
2x )l f 2

j+1
fvfv+1

ψrj (0 ≤ v ≤ m),

and

φrv =
∞∑

j=v

x–1
r–j∑

l=0

(
–y +

√
y2 – 4zx

2x

)r–j–l(–y –
√

y2 – 4zx
2x

)l f 2
j+1

fvfv+1
ψrj (5.1)

for all r, v ∈ N.

Proof The result immediately follows from the proof of Theorem 4.1 of [35]. Hence we
omit the details. �

Now, using the results presented in Stielglitz and Tietz [60] together with Theorem 5.1,
we obtain the following results.

Corollary 5.2 The following statements hold:
1. � ∈ (�1(F(B)) : �∞) if and only if

lim
m→∞φ(r)

mv exists for all r, v ∈N, (5.2)

sup
r,v∈N

∣
∣φ(r)

mv
∣
∣ < ∞, (5.3)

sup
r,v∈N

|φrv| < ∞, (5.4)

2. � ∈ (�1(F(B)) : c) if and only if (5.2) and (5.3) hold, and (5.4) and

lim
r→∞φrv exists for all v ∈N, (5.5)

also hold.
3. � ∈ (�1(F(B)) : c0) if and only if (5.2) and (5.3) hold, and (5.4) and

lim
r→∞φrv = 0 for all v ∈N (5.6)

also hold.
4. � ∈ (�1(F(B)) : �1) if and only if (5.2) and (5.3) hold, and

sup
v∈N

∞∑

r=0

|φrv| < ∞ (5.7)

also holds.
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5. � ∈ (�1(F(B)) : bs) if and only if (5.2) and (5.3) hold, and (5.4) also holds with �(r, v)
instead of φrv, where �(r, v) =

∑r
l=0 φlv.

6. � ∈ (�1(F(B)) : cs) if and only if (5.2) and (5.3) hold, and (5.4) and (5.5) also hold with
�(r, v) instead of φrv, where �(r, v) =

∑r
l=0 φlv.

7. � ∈ (�1(F(B)) : cs0) if and only if (5.2) and (5.3) hold, and (5.4) and (5.6) also hold with
�(r, v) instead of φrv, where �(r, v) =

∑r
l=0 φlv.

Corollary 5.3 The following statements hold:
1. � ∈ (�k(F(B)) : �∞) if and only if (5.2) holds, and

sup
m∈N

m∑

v=0

∣
∣φ(r)

mv
∣
∣k

′
< ∞, (5.8)

sup
r∈N

r∑

v=0

|φrv|k′
< ∞, (5.9)

also hold.
2. � ∈ (�k(F(B)) : c) if and only if (5.2) and (5.8) hold, and (5.5) and (5.9) also hold.
3. � ∈ (�k(F(B)) : c0) if and only if (5.2) and (5.8) hold, (5.6) and (5.9) also hold.
4. � ∈ (�k(F(B)) : �1) if and only if (5.2) and (5.8) hold, and

sup
R∈R

∞∑

v=0

∣
∣
∣
∣

∑

r∈R

φrv

∣
∣
∣
∣

k′

< ∞ (5.10)

also holds.
5. � ∈ (�k(F(B)) : bs) if and only if (5.2) and (5.8) hold, and (5.9) also holds with �(r, v)

instead of φrv, where �(r, v) =
∑r

l=0 φlv.
6. � ∈ (�k(F(B)) : cs) if and only if (5.2) and (5.8) hold, and (5.5) and (5.9) also hold.
7. � ∈ (�k(F(B)) : cs0) if and only if (5.2) and (5.8) hold, and (5.6) and (5.9) also hold with

�(r, v) instead of φrv, where �(r, v) =
∑r

l=0 φlv.

Corollary 5.4 The following statements hold:
1. � ∈ (�∞(F(B)) : �∞) if and only if (5.2) and

lim
m→∞

m∑

v=0

∣
∣φ(r)

mv
∣
∣ =

m∑

v=0

∣
∣
∣ lim
m→∞φ(r)

mv

∣
∣
∣ for each r ∈ N (5.11)

hold, and (5.9) also holds with k′ = 1.
2. � ∈ (�∞(F(B)) : c) if and only if (5.2) and (5.11) hold, and (5.5) and

lim
r→∞

r∑

v=0

|φrv| =
r∑

v=0

∣
∣
∣ lim
r→∞φrv

∣
∣
∣ (5.12)

also hold.
3. � ∈ (�∞(F(B)) : c0) if and only if (5.2) and (5.11) hold, and

lim
r→∞

r∑

v=0

φrv = 0 (5.13)

also holds.
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4. � ∈ (�∞(F(B)) : �1) if and only if (5.2) and (5.11) hold, and (5.10) also holds with k′ = 1.
5. � ∈ (�∞(F(B)) : bs) if and only if (5.2) and (5.11) hold, and (5.9) also hold with k′ = 1,

and �(r, v) instead of φrv, where �(r, v) =
∑r

l=0 φlv.
6. � ∈ (�∞(F(B)) : cs) if and only if (5.2) and (5.11) hold, and (5.12) also holds with

�(r, v) instead of φrv, where �(r, v) =
∑r

l=0 φlv.
7. � ∈ (�∞(F(B)) : cs0) if and only if (5.2) and (5.11) hold, and (5.13) also holds with

�(r, v) instead of φrv, where �(r, v) =
∑r

l=0 φlv.

6 Hausdorff measure of non-compactness (Hmnc)
In the current section, B(X) shall denote the unit ball in X. The notation B(X : Y) represents
the family of all bounded linear operators acting from Banach spaces X to Y, which itself
is a Banach space endowed with the operator norm ‖C‖ = sups∈B(X) ‖Cs‖. We denote

‖ς‖∗
X = sup

s∈B(X)

∣
∣
∣
∣
∣

∞∑

v=0

ςvsv

∣
∣
∣
∣
∣

(6.1)

for ς ∈ w, provided that the series on the right hand side of (6.1) exists. One may clearly
observe that ς ∈ Xβ . Furthermore, the operator C is said to be compact if the domain of X
is all of X and for every bounded sequence (sr) in X, the sequence ((Cs)r) has a convergent
subsequence in Y.

The Hmnc of a bounded set J in a metric space X is defined by

χ (J) = inf

{

ε > 0 : J ⊂
r⋃

l=0

B(sl, nl), sl ∈ X, nl < ε (l = 0, 1, 2, . . . , r), r ∈N

}

,

where B(sl, nl) represents unit ball with centre sl and radius nl and l = 0, 1, 2, . . . , r.
Hmnc is an important tool that determines the compactness of an operator between BK-

spaces. An operator C : X → Y is compact if and only if ‖C‖χ = 0, where ‖C‖χ represents
Hmnc of the operator C and is defined by ‖C‖χ = χ (C(B(X))). Using Hmnc, several authors
obtained necessary and sufficient conditions for matrix operators to be compact between
well-known BK-spaces. For relevant literature, one may refer to [2, 13, 40, 49–52]. The
reader may also consult the recent publications [22, 24, 25, 53, 62], which are related to
compact operators and Hmnc in BK-spaces.

Before proceeding to the main results of this section, we list certain well-known results
that are crucial in finding our result below.

Lemma 6.1 �
β
1 = �∞, �

β

k = �k′ and �
β
∞ = �1. Furthermore, if X ∈ {�1,�k ,�∞}, then ‖ς‖∗

X =
‖ς‖Xβ holds for all ς ∈ Xβ , where ‖ · ‖Xβ is the natural norm on Xβ .

Lemma 6.2 ([61, Theorem 4.2.8]) Let X and Y be two BK-spaces. Then we have (X : Y) ⊂
B(X : Y), that is, every � ∈ (X : Y) defines a linear operator C� ∈ B(X : Y), where C�s = �s
for all s ∈ X.

Lemma 6.3 ([40, Theorem 1.23]) Let X ⊃ ϑ be a BK space. If � ∈ (X : Y) then

‖C�‖ = ‖�‖(X:Y) = sup
r∈N

‖�r‖∗
X < ∞.
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Lemma 6.4 ([40, Theorem 2.15]) Let J be a bounded subset of �k . If Pr : �k → �k is the
operator defined by Pr(s0, s1, s2, . . .) = (s0, s1, s2, . . . , sr , 0, 0, . . .) for all s = (sr) ∈ X, then

χ (Q) = lim
r→∞

(
sup
s∈J

∥
∥(IX – Pr)s

∥
∥
)

,

where IX is the identity operator on X.

Lemma 6.5 ([50, Theorem 3.7]) Let X ⊃ ϑ be a BK-space. Then the following statements
hold:

(a) If � ∈ (X : c0), then ‖C�‖χ = lim supr→∞ ‖�r‖∗
X and C� is compact if and only if

limr→∞ ‖�r‖∗
X = 0.

(b) If X has AK and � ∈ (X : c), then

1
2

lim sup
r→∞

‖�r – α‖∗
x ≤ ‖C�‖χ ≤ lim sup

r→∞
‖�r – α‖∗

X

and C� is compact if and only if limr→∞ ‖�r – α‖∗
X = 0, where α = (αv) with

αv = limr→∞ ψrv for all v ∈N.
(c) If � ∈ (X : �∞), then 0 ≤ ‖C�‖χ ≤ lim supr→∞ ‖�r‖∗

X and C� is compact if and only if
limr→∞ ‖�r‖∗

X = 0.

Lemma 6.6 ([50, Theorem 3.11]) Let X ⊃ ϑ be a BK-space. If � ∈ (X : �1), then

lim
m→∞

(

sup
R∈Rm

∥
∥
∥
∥

∑

r∈R

�r

∥
∥
∥
∥

∗

X

)

≤ ‖C�‖χ ≤ 4 · lim
m→∞

(

sup
R∈Rm

∥
∥
∥
∥

∑

r∈R

�r

∥
∥
∥
∥

∗

X

)

and C� is compact if and only if limm→∞(supR∈Rm ‖∑r∈R �r‖∗
X) = 0, where Rm is the sub-

family of R consisting of subsets of N with elements that are greater than m.

Lemma 6.7 ([50, Theorem 4.4, Corollary 4.5]) Let X ⊃ ϑ be a BK-space and let

‖�‖[r]
bs =

∥
∥
∥
∥
∥

r∑

v=0

�v

∥
∥
∥
∥
∥

∗

X

.

Then we have the following results:
(a) If � ∈ (X : cs0), then ‖C�‖χ = lim supr→∞ ‖�‖[r]

(X:bs) and C� is compact if and only if
limr→∞ ‖�‖[r]

(X:bs) = 0.
(b) If X has AK and � ∈ (X : cs), then

1
2

lim sup
r→∞

∥
∥
∥
∥
∥

r∑

v=0

�v – β

∥
∥
∥
∥
∥

∗

X

≤ ‖C�‖χ ≤ lim sup
r→∞

∥
∥
∥
∥
∥

r∑

v=0

�r – β

∥
∥
∥
∥
∥

∗

X

.

Furthermore, C� is compact if and only if limr→∞ ‖∑r
v=0 �r – β‖∗

X = 0, where
β = (βv) with βv = limr→∞

∑r
l=0 ψlv for all v ∈N0.

(c) If � ∈ (X : bs), then 0 ≤ ‖C�‖χ ≤ lim supr→∞ ‖�‖[r]
(X:bs) and C� is compact if and only

if limr→∞ ‖�‖[r]
(X:bs) = 0.
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Lemma 6.8 Let X be a sequence space and � = (ψrv) be an infinite matrix. If � ∈ (�k(F(B)) :
X), then � ∈ (�k : X) and �s = �t for all s ∈ �k(F(B)), 1 ≤ k ≤ ∞, where � = (φrv) is as
defined in (5.1) and the sequence t is a F(B)-transform of the sequence s.

Proof Let � ∈ (�k(F(B)) : X) and s ∈ �k(F(B)). Then �r = (ψrv)v∈N ∈ [�k(F(B))]β for all r ∈N.
Let the sequence t be the F(B)-transform of the sequence s, then we have

(�t)r =
∞∑

v=0

φrvtv

=
∞∑

v=0

( ∞∑

j=v

x–1
r–j∑

l=0

(
–y +

√
y2 – 4zx

2x

)r–j–l(–y –
√

y2 – 4zx
2x

)l f 2
j+1

fvfv+1
ψrj

)

×
(

–z
fv+1

fv
sv–3 +

(

–y
fv+1

fv
+ z

fv

fv+1

)

sv–2 +
(

–x
fv+1

fv
+ y

fv

fv+1

)

sv–1 + x
fv

fv+1
sv

)

=
∞∑

v=0

ψrvsv

= (�s)r

for all v ∈ N. This gives �r ∈ �1 for each r ∈ N and �t ∈ X. Thus we conclude that � ∈
(�k : X). �

Theorem 6.9 Let 1 < k < ∞. Then we have:
(a) If � ∈ (�k(F(B)) : c0), then ‖C�‖χ = lim supr→∞(

∑∞
v=0 |φrv|k′ )1/k′ .

(b) If � ∈ (�k(F(B)) : c), then

1
2

lim sup
r→∞

( ∞∑

v=0

|φrv – φv|k′
)1/k′

≤ ‖C�‖χ ≤ lim sup
r→∞

( ∞∑

v=0

|φrv – φv|k′
)1/k′

,

where φ = (φv) and φv = limr→∞ φrv for each v ∈ N.
(c) If � ∈ (�k(F(B)) : �∞), then 0 ≤ ‖C�‖χ ≤ lim supr→∞(

∑∞
v=0 |φrv|k′ )1/k′ .

(d) If � ∈ (�k(F(B)) : �1), then
limm→∞ ‖�‖[m]

(�k (F(B)),�1) ≤ ‖C�‖χ ≤ 4 limm→∞ ‖�‖[m]
(�k (F(B)),�1), where

‖�‖[m]
(�k (F(B)),�1) = supR∈Rm (

∑∞
v=0 |∑r∈R φrv|k′ )1/k′ , m ∈N.

(e) If � ∈ (�k(F(B)) : cs0), then ‖C�‖χ = lim supr→∞(
∑∞

v=0 |∑r
m=0 φmv|k′ )1/k′ .

(f ) If � ∈ (�k(F(B)) : cs), then

1
2

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

k′)1/k′

≤ ‖C�‖χ ≤ lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

k′)1/k′

,

where φ̃ = (φ̃v) with φ̃v = limr→∞(
∑r

m=0 φmv) for each v ∈N.
(g) If � ∈ (�k(F(B)) : bs), then 0 ≤ ‖C�‖χ ≤ lim supr→∞(

∑∞
v=0 |∑r

m=0 φmv|k′ )1/k′ .

Proof
(a) We observe by Lemma 6.1 that

‖�r‖∗
�k (F(B)) = ‖�r‖∗

�k
= ‖�r‖�k′ =

( ∞∑

v=0

|φrv|k′
)1/k′
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for r ∈N. Thus by applying Part (a) of Lemma 6.5, we immediately get the desired
result.

(b) Observe that

‖�r – φ‖∗
�k

= ‖�r – φ‖�k′ =

( ∞∑

v=0

|φrv – φv|k′
)1/k′

for each r ∈N. Now, let � ∈ (�k(F(B)) : c), then using Lemma 6.1, we have
� ∈ (�k : c). Then applying Part (b) of Lemma 6.5, we get

1
2

lim sup
r→∞

‖�r – φ‖∗
�k

≤ ‖C�‖χ ≤ lim sup
r→∞

‖�r – φ‖∗
�k

.

Thus, we realize that

1
2

lim sup
r→∞

( ∞∑

v=0

|φrv – φv|k′
)1/k′

≤ ‖C�‖χ ≤ lim sup
r→∞

( ∞∑

v=0

|φrv – φv|k′
)1/k′

.

(c) The proof is analogous to the proof of Part (a) of Theorem 6.9 except that we
employ Part (c) of Lemma 6.5 instead of Part (a) of Lemma 6.5.

(d) Clearly

∥
∥
∥
∥

∑

r∈N
�r

∥
∥
∥
∥

∗

�k

=
∥
∥
∥
∥

∑

r∈N
�r

∥
∥
∥
∥

�k′
=

( ∞∑

v=0

∣
∣
∣
∣

∑

r∈N
φrv

∣
∣
∣
∣

k′)1/k′

.

Let � ∈ (�k(F(B)) : �1), then � ∈ (�k : �1) by Lemma 6.8. Hence, using Lemma 6.6, we
get

lim
m→∞

(

sup
R∈Rm

∥
∥
∥
∥

∑

r∈R

�r

∥
∥
∥
∥

∗

�k

)

≤ ‖C�‖χ ≤ 4 · lim
m→∞

(

sup
R∈Rm

∥
∥
∥
∥

∑

r∈R

�r

∥
∥
∥
∥

∗

�k

)

.

This implies

lim
m→∞

(

sup
R∈Rm

( ∞∑

v=0

∣
∣
∣
∣

∑

r∈R

φrv

∣
∣
∣
∣

k′)1/k′)

≤ ‖C�‖ ≤ 4 · lim
m→∞

(

sup
R∈Rm

( ∞∑

v=0

∣
∣
∣
∣

∑

r∈R

φrv

∣
∣
∣
∣

k′)1/k′)

as desired.
(e) It is clear that

∥
∥
∥
∥
∥

r∑

m=0

�m

∥
∥
∥
∥
∥

∗

�k (F(B))

=

∥
∥
∥
∥
∥

r∑

m=0

�m

∥
∥
∥
∥
∥

∗

�k

=

∥
∥
∥
∥
∥

r∑

m=0

�m

∥
∥
∥
∥
∥

�k′
=

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

k′)1/k′

.

Hence by using Part (a) of Lemma 6.7, we get the desired result.
(f ) The proof is analogous to the proof of Part (e) of Theorem 6.9 except that we

employ Part (b) of Lemma 6.7 instead of Part (a) of Lemma 6.7.
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(g) The proof is analogous to the proof of Part (e) of Theorem 6.9 except that we
employ Part (c) of Lemma 6.7 instead of Part (a) of Lemma 6.7. �

Corollary 6.10 Let 1 < k < ∞. Then the following results hold:
(a) Let � ∈ (�k(F(B)) : c0), then C� is compact if and only if limr→∞(

∑∞
v=0 |φrv|k′ )1/k′ = 0.

(b) Let � ∈ (�k(F(B)) : c), then C� is compact if and only if
limr→∞(

∑∞
v=0 |φrv – φv|k′ )1/k′ = 0.

(c) Let � ∈ (�k(F(B)) : �∞), then C� is compact if and only if limr→∞(
∑∞

v=0 |φrv|k′ )1/k′ = 0.
(d) Let � ∈ (�k(F(B)) : �∞), then C� is compact if and only if

lim
m→∞

(

sup
R∈Rm

( ∞∑

v=0

∣
∣
∣
∣

∑

r∈R

φrv

∣
∣
∣
∣

k′)1/k′)

= 0.

(e) Let � ∈ (�k(F(B)) : cs0), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

k′)1/k′

= 0.

(f ) Let � ∈ (�k(F(B)) : cs), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃

∣
∣
∣
∣
∣

k′)1/k′

= 0.

(g) Let � ∈ (�k(F(B)) : bs), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

k′)1/k′

= 0.

Theorem 6.11 The following results hold:
(a) If � ∈ (�∞(F(B)) : c0), then ‖C�‖χ = lim supr→∞

∑∞
v=0 |φrv|.

(b) If � ∈ (�∞(F(B)) : c), then

1
2

lim sup
r→∞

( ∞∑

v=0

|φrv – φv|
)

≤ ‖C�‖χ ≤ lim sup
r→∞

( ∞∑

v=0

|φrv – φv|
)

,

where φ = (φv) and φv = limr→∞ φrv for each v ∈ N.
(c) If � ∈ (�∞(F(B)) : �∞), then 0 ≤ ‖C�‖χ ≤ lim supr→∞

∑∞
v=0 |φrv|.

(d) If � ∈ (�∞(F(B)) : �1), then

lim
m→∞‖�‖[m]

(�k (F(B)),�1) ≤ ‖C�‖χ ≤ 4 lim
m→∞‖�‖[m]

(�k (F(B)),�1),

where ‖�‖[m]
(�k (F(B)):�1) = supR∈Rm (

∑∞
v=0 |∑r∈R φrv|), m ∈N.

(e) If � ∈ (�∞(F(B)) : cs0), then ‖C�‖χ = lim supr→∞(
∑∞

v=0 |∑r
m=0 φmv|).
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(f ) If � ∈ (�∞(F(B)) : cs), then

1
2

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

)

≤ ‖C�‖χ ≤ lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

v∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

)

,

where φ̃ = (φ̃v) with φ̃v = limr→∞(
∑r

m=0 φmv) for each v ∈N.
(g) If � ∈ (�∞(F(B)) : bs), then 0 ≤ ‖C�‖χ ≤ lim supr→∞(

∑∞
v=0 |∑r

m=0 φmv|).

Proof The proof is analogous to the proof of Theorem 6.9. �

Corollary 6.12 The following results hold:
(a) Let � ∈ (�∞(F(B)) : c0), then C� is compact if and only if limr→∞

∑∞
v=0 |φrv| = 0.

(b) Let � ∈ (�∞(F(B)) : c), then C� is compact if and only if

lim
r→∞

( ∞∑

v=0

|φrv – φv|
)

= 0.

(c) Let � ∈ (�∞(F(B)) : �∞), then C� is compact if and only if limr→∞
∑∞

v=0 |φrv| = 0.
(d) Let � ∈ (�∞(F(B)) : �1), then C� is compact if and only if

lim
m→∞

(

sup
R∈Rm

( ∞∑

v=0

∣
∣
∣
∣

∑

r∈R

φrv

∣
∣
∣
∣

))

= 0.

(e) Let � ∈ (�∞(F(B)) : cs0), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

)

= 0.

(f ) Let � ∈ (�∞(F(B)) : cs), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃

∣
∣
∣
∣
∣

)

= 0.

(g) Let � ∈ (�∞(F(B)) : bs), then C� is compact if and only if

lim sup
r→∞

( ∞∑

v=0

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

)

= 0.

Theorem 6.13 The following statements hold:
(a) If � ∈ (�1(F(B)) : c0), then ‖C�‖χ = lim supr→∞(supv∈N |φrv|).
(b) If � ∈ (�1(F(B)) : c), then

1
2

lim sup
r→∞

(
sup
v∈N

|φrv – φv|
)

≤ ‖C�‖χ ≤ lim sup
r→∞

(
sup
v∈N

|φrv – φv|
)

,

where φ = (φv) and φv = limr→∞ φrv for each v ∈ N.
(c) If � ∈ (�1(F(B)) : �∞), then 0 ≤ ‖C�‖χ ≤ lim supr→∞(supv∈N |φrv|).
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(d) If � ∈ (�1(F(B)) : �1), then ‖C�‖χ = limm→∞(supv∈N
∑∞

r=m |φrv|).
(e) if � ∈ (�1(F(B)) : cs0), then ‖C�‖χ = lim supr→∞(supv∈N |∑r

m=0 φmv|).
(f ) If � ∈ (�1(F(B)) : cs), then

1
2

lim sup
r→∞

(

sup
v∈N

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

)

≤ ‖C�‖χ ≤ lim sup
r→∞

(

sup
v∈N

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃v

∣
∣
∣
∣
∣

)

,

where φ̃ = (φ̃v) with φ̃v = limr→∞(
∑r

m=0 φmv) for each v ∈N.
(g) If � ∈ (�1(F(B)) : bs), then 0 ≤ ‖C�‖χ ≤ lim supr→∞(supv∈N |∑r

m=0 φmv|).

Proof The proof is analogous to the proof of Theorem 6.9. �

Corollary 6.14 The following results hold:
(a) Let � ∈ (�1(F(B)) : c0), then C� is compact if and only if limr→∞(supv∈N |φrv|) = 0.
(b) Let � ∈ (�1(F(B)) : c), then C� is compact if and only if limr→∞(supv∈N |φrv – φv|) = 0.
(c) Let � ∈ (�1(F(B)) : �∞), then C� is compact if and only if limr→∞(supv∈N |φrv|) = 0.
(d) Let � ∈ (�1(F(B)) : �1), then C� is compact if and only if

limm→∞(supv∈N
∑∞

r=m |φrv|) = 0.
(e) Let � ∈ (�1(F(B)) : cs0), then C� is compact if and only if

lim sup
r→∞

(

sup
v∈N

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

)

= 0.

(f ) Let � ∈ (�1(F(B)) : cs), then C� is compact if and only if

lim sup
r→∞

(

sup
v∈N

∣
∣
∣
∣
∣

r∑

m=0

φmv – φ̃

∣
∣
∣
∣
∣

)

= 0.

(g) Let � ∈ (�1(F(B)) : bs), then C� is compact if and only if

lim sup
r→∞

(

sup
v∈N

∣
∣
∣
∣
∣

r∑

m=0

φmv

∣
∣
∣
∣
∣

)

= 0.

7 Conclusion
Recently, several authors constructed interesting Banach sequence spaces using the do-
main of special triangles, for instance İlkhan [26], İlkhan and Kara [24], Roopaei [54, 55],
Roopaei et al. [53], and Yaying et al. [64]. We followed this approach and introduced BK
spaces �k(F(B)) and �∞(F(B)) defined as the domain of the product matrix F(B(x, y, z)) in
the spaces �k and �∞, respectively. The Fibonacci difference matrix F(B) is a generalized
form of operators like F(�(2)), F(�(1)) and F. Thus the results related to the matrix domain
of the Fibonacci difference operator F(B) are more general and comprehensive than the
consequences on the matrix domain of operators F(B)(x, y), F(�(2)), F(�(1)) and F.
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19. Furkan, H., Bilgiç, H., Başar, F.: On the fine spectrum of the operator B(r, s, t) over the sequence spaces �p and bvp .

Comput. Math. Appl. 60(5), 2141–2152 (2010)
20. Gaur, A.K., Mursaleen, M.: Difference sequence spaces. Int. J. Math. Math. Sci. 21(4), 275–298 (1998)
21. Gnanaseelan, C., Srivastava, P.D.: The α-, β -, γ -duals of some generalized difference sequence spaces. Indian J. Math.

38(2), 111–120 (1996)
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