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Abstract

A comprehensive study about the spread of COVID-19 cases in Turkey and South
Africa has been presented in this paper. An exhaustive statistical analysis was
performed using data collected from Turkey and South Africa within the period of 11
March 2020 to 3 May 2020 and 05 March and 3 of May, respectively. It was observed
that in the case of Turkey, a negative Spearman correlation for the number of infected
class and a positive Spearman correlation for both the number of deaths and
recoveries were obtained. This implied that the daily infections could decrease, while
the daily deaths and number of recovered people could increase under current
conditions. In the case of South Africa, a negative Spearman correlation for both daily
deaths and daily infected people were obtained, indicating that these numbers may
decrease if the current conditions are maintained. The utilization of a statistical
technique predicted the daily number of infected, recovered, and dead people for
each country; and three results were obtained for Turkey, namely an upper boundary,
a prediction from current situation and lower boundary. The histograms of the daily
number of newly infected, recovered and death showed a sign of lognormal and
normal distribution, which is presented using the Bell curving method parameters
estimation. A new mathematical model COVID-19 comprised of nine classes was
suggested; of which a formula of the reproductive number, well-poseness of the
solutions and the stability analysis were presented in detail. The suggested model
was further extended to the scope of nonlocal operators for each case; whereby a
numerical method was used to provide numerical solutions, and simulations were
performed for different non-integer numbers. Additionally, sections devoted to
control optimal and others dedicated to compare cases between Turkey and South
Africa with the aim to comprehend why there are less numbers of deaths and
infected people in South Africa than Turkey were presented in detail.

Keywords: Statistical analysis; Bell curve; Prediction; New COVID-19 model; Nonlocal
operators; Optimal control; Turkey vs South Africa

1 Introduction

It was a Thursday morning, March 5, 2020, in South Africa, everybody was busy with his
daily routine, when the National Institute for Communicable Diseases confirmed the first
positive case of Covid-19. A situation that was known for other countries now has become
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true and real in South Africa. How did we get here? The outbreak of Covid-19 started in
China, Wuhan City, around December 2019, but within a short period the spread crossed
over to some countries in Europe like the United Kingdom, Italy, Spain, and France. The
first confirmed patient was a 38-year old male who visited Italy and arrived back in South
Africa on March 1, 2020. The patient, after noticing symptoms of fever, malaise, a sore
throat, cough, and headache consulted a private general practitioner on March 3. From
5 March 2020 to 15 March 2020 the number of infected people increased significantly,
as a result on 15 March 2020 a national state of disaster was declared by the President
of South Africa to mitigate the spread of Covid-19. This announcement was followed by
measures including immediate travel restrictions and closure of schools from 18 March
2020. On 23 March 2020, the South African government announced a country-wide lock-
down taking effect on 26 March 2020. By the end of April, South Africa officially had 5647
confirmed cases. To date, South Africa has officially confirmed to be an African country
with most confirmed cases, with 3471 active confirmed cases, 2073 recovered, and 103
deaths due to Covid-19. In the case of Turkey, the first case of Covid-19 was confirmed
and recorded on 11 March 2020. Four days later, Turkey registered its first death caused
by Covid-19 which spread like wildfire in Turkey; by 21 April 2020 the country had con-
firmed approximately 95591 cases of infected people, with 14918 recovered people, and
2259 deaths recorded. The rapid spreading of Covid-19 has raised the total number of
confirmed cases to 120200, of which 48900 have recovered and 3200 have died by the end
of April 2020. In comparison to other countries such as Iran, it is recorded that the total
number of confirmed cases in Turkey surpassed it exceedingly, resulting in Turkey being
categorized as the most affected country in terms of confirmed cases within the the Mid-
dle East. Furthermore, Turkey’s total number of confirmed cases by 20 April 2020 was
also recorded to exceed that of China, even though there were some concerns that the to-
tal confirmed cases in China could have been underestimated. The consideration of these
statistics prompted researchers from Turkey and South Africa to undertake research in
different fields of science, technology, and engineering in the last 3 months, since their
future is left uncertain. As the virologists are focusing their attention on developing a vac-
cine that could be used to prevent the spread of the deadly virus, mathematicians rely on
modeling techniques to produce multi-scenario models that could be utilized to foresee
the future [1-9]. Therefore, as mathematicians our role is to use and apply mathemati-
cal tools, particularly mathematical models, on suggested scenarios that could be helpful
in predicting the future. In this paper, we present a detailed analysis of the spread in both
countries and structured the paper as follows: Sect. 2 presents a detailed statistical analysis
of Covid-19 spread in Turkey. Then we present a detailed statistical analysis of Covid-19
spread in South Africa. Also after using the inverse problem and bell curve approaches, we
present the parameter estimation, followed by a comparative analysis between Turkey and
South Africa. In Sect. 3, we suggest a new mathematical model of Covid-19 that takes into
account nine classes, including susceptible, infected with 5 subclasses, recovered, dead,
and vaccinated. Then we present the positivity of solutions of the model, as well as the
reproduction number, and also deal with local and global asymptotic stability of disease-
free equilibrium and endemic points. In Sect. 4 we present an analysis of the suggested
model with nonlocal operators [10, 11]. In Sect. 5, we present numerical computations of

the suggested mathematical model for Covid-19 using a numerical scheme for fractional
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and fractal-fractional operators. In Sect. 6, we present the optimal control of the disease.
Finally, we present a discussion, recommendations, and conclusions, respectively.

2 Statistical analysis of Covid-19 spread in Turkey and South Africa

To understand the impact of Covid-19, the numbers of daily new infected, recovered, and
dead are collected all over the globe, and such a process follows a discrete approach. Thus,
to understand and predict the impact of the Covid-19 on humans, statistics is associated
with such collection, analysis, interpretation, organization, and presentation. We shall
recall that this mathematical branch is widely applicable in numerous academic fields,
for example, natural and social sciences, business, and government. Some important and
useful statistical formulas are various means, variance, skewness, correlation, linear re-
gression, Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, and
many orders. In this section, we present some formulas that will be used in this work
for interpretation and prediction purposes. We define a dataset whose values can be cho-
sen as x1,%y,...,%,. We start with the arithmetic mean, ¥, which provides the mean of

X1,%2,...,%,. The formula of the arithmetic mean

1 n
- le (2.1)

The formula of the geometric mean is

n 1/n
(]_[ x,'> ) (2.2)
i=1

The formula of the harmonic mean is
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The formula of the standard deviation is
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The formula of the skewness is
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The formula of the variance is
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The formula of the covariance is
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Figure 1 Number of infected people in Turkey from 11 March 2020 to 3 May 2020
The formula of the Pearson correlation is
n ( bvs =
i = %) - )
El . (2.8)
xy
The formula of the Spearman correlation is
6> 7 (rankx; — ranky;)?
j (2.9)

n(n?-1) ’

where rank enables to compare a numeric value with other values in the same list.

2.1 Statistical analysis for Turkey
In this section, we aim to provide a detailed statistical analysis of the collected data from
Turkey. These data include the daily numbers of new infected, dead, recovered, and finally,
tested individuals. The collected data are from 11 March 2020 to 3 May 2020. The main
aim of this section is to predict what could possibly happen in the near future using the
reliability level method, additionally, to find which distribution each class follows. With
the collected data, we will first present a histogram, pie chart, and nonlinear graphs for
each class. The histograms will help identify the density of probability associated to each
set of collected data. Additionally, we provide a polynomial fitting against collected. The
results are presented in Figs. 1 to 16. For each case, we present arithmetic, geometric,
and harmonic means, as well as skewness, variance, covariance, Pearson correlation and
Spearman correlation, and these are presented in Table 1.

In Figs. 1, 2, and 3, we present some statistical simulation of the number of infected
people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020.

In Figs. 4, 5, and 6, we present some statistical simulation of the number of recovered
people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020.
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Figure 2 Number of infected people in Turkey from 11 March 2020 to 3 May 2020
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Figure 3 Number of infected people in Turkey from 11 March 2020 to 3 May 2020

In Figs. 7, 8, and 9, we present some statistical simulation of the number of dead people
due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020.

In Figs. 10, 11, and 12, we present some statistical simulation about number of tested
people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020.
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Figure 4 Number of recovered people in Turkey from 11 March 2020 to 3 May 2020
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Figure 5 Number of recovered people in Turkey from 11 March 2020 to 3 May 2020
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2.1.1 Regression analysis

Regression analysis which is also used in epidemiologic research enables us to examine

relationships among a set of variables. Here the aim is to estimate outcomes benefitting

from this set of variables. To do this, we find a prediction model in which we obtain a
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Figure 6 Number of recovered people in Turkey from 11 March 2020 to 3 May 2020
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Figure 7 Number of dead people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020

model that best fits the considered data and explains the response variable. We can utilize
all possible independent variables, interactions, and transformations of these models. To
evaluate goodness of fit for the obtained model, we can utilize R?> measure which is one of

the different techniques used in regression diagnostics.
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Figure 8 Number of dead people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020
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Figure 9 Number of dead people due to Covid-19 in Turkey from 11 March 2020 to 3 May 2020

Linear regression models are given by
y=Bo+ Pixi +e;, (2.10)

where Sy, B; are the unknown constants, x; are the independent variables, y is the depen-
dent variable, and e; are the error terms in given data. If the value of R? is close to zero, this

Page 8 of 89
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Figure 10 Number of tested people in Turkey from 11 March 2020 to 3 May 2020
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Figure 11 Number of tested people in Turkey from 11 March 2020 to 3 May 2020
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means that the significance of fit for the model is unsuitable to predict outcomes. In other

words, the obtained model is not suitable for the given data and it should be discarded in

favor of another model that should be found.
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Figure 12 Number of tested people in Turkey from 11 March 2020 to 3 May 2020

If the value of R? is close to one, this means that the significance of fit for the model is
suitable to predict outcomes. In this case, it can be passed to the following step of control
analysis.

We first present a predictive analysis for infected people. According to the results ob-
tained, we obtain a linear regression which is calculated as

y =-29772.4 + 2786.833x. (2.11)
The F-test statistic was calculated as 1.94 x 10732, while R? was calculated as 0.93445. We
can conclude from these values that the significance of fit for the obtained model is suitable
for the considered data. Also we present a polynomial regression which is calculated as

y=—-0.0551x* + 9682.6x° — 0.6 x 1078x% + 0.2 x 1073x - 0.2 x 1077, (2.12)
For this polynomial, R? was calculated to be 0.9993. We present polynomial fitting data
for infected people from 11 March 2020 to 3 May 2020.

We present a predictive analysis for recovered people. According to the results obtained,
we get a linear regression, which can be calculated as

y =-13029.8 + 845.9233x. (2.13)

The F-test statistic was calculated to be 1.39 x 10712, while R? was calculated as 0.622381.

We can say that the significance of fit for this model is not good enough for the considered

Page 10 of 89
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Figure 13 Polynomial fitting for infected people in Turkey from 11 March 2020 to 3 May 2020

FITTING DATA FOR RECOVERED

70000
60000
50000
40000
30000
20000
10000
0
3853393338888 38338 RR 88 RNRRSRS
S 353 3 383838388 s§csssosoooocoocossss s
0000 2 2222222222337 TTTTTs
R E-E NN R R R R
Figure 14 Polynomial fitting for recovered people in Turkey from 11 March 2020 to 3 May 2020
data. To overcome this issue, we suggest another regression model
y=0.028x* —4922x% + 0.3 x 1078x* = 0.9 x 107 2% + 0.1 x 107, (2.14)

which is polynomial. For this polynomial, R? was calculated to be 0.9987. We present a
simulation using polynomial fitting for the data of recovered people from 11 March 2020
to 3 May 2020.
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Figure 15 Polynomial fitting for dead people in Turkey from 11 March 2020 to 3 May 2020

We present a predictive analysis for dead people. According to the results obtained, we

get a linear regression which can be calculated as
y =—822.246 + 70.72746x. (2.15)

The F-test statistic was calculated to be 1.75 x 1072, while R? was calculated as 0.907007.
We can say that the significance of fit for model is suitable for the considered data. Also,

we can present the following regression model:
y=-0.0266x> + 3512.1x* — 0.2 x 1078x + 0.2 x 107'2, (2.16)

which is polynomial of third order. For this polynomial, R? was calculated to be 0.9971.
We present a simulation of the polynomial fitting for dead people from 11 March 2020 to
3 May 2020.

We now present a predictive analysis for tested people. According to the results ob-

tained, we get a linear regression which can be calculated as

y =-257388 + 22572.98x. (2.17)
The F-test statistic was calculated to be 5.17 x 10728, while R? was calculated as 0.903051.
We can say that the significance of fit for model is suitable for the considered data. Also,

we give a polynomial regression model

y=520.26x> — 0.5 x 107x + 0.1 x 10712, (2.18)
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Figure 16 Polynomial fitting for tested people in Turkey from 11 March 2020 to 3 May 2020
Table 1 Some data about coronavirus cases in Turkey
Infected Recovered Dead
Arithmetic mean 2334.166667 1169.462963 56.63636364
Geometric mean 1029.876948 592.2822821 41.57620243
Harmonic mean 21.75203938 142.4039454 8182426471
Standard deviation 1641461139 1701.397957 48.05766445
Skewness -0.07519891 1416616957 0.100241163
Variance 2644498472 2841148434 2045.624143
Covariance 1732410185 2192712037 607.7037037
Pearson Correlation 0683518717 0.834653045 0.862085432
Spearman Correlation -17.9276729 0.188679245 -8.39622641

Table 2 Some data for coronavirus cases in Turkey

Infected—Recovered

Recovered-Dead

Infected-Dead

Covariance 622993.071
Pearson Correlation 022728176
Spearman Correlation 0.64139508

38856,60837
0.509688703
0.817762531

66660.3642
0.90632320
0.88601105

which is polynomial of second order. For this polynomial, R? was calculated as 0.9962. We

present a simulation of polynomial fitting for tested people from 11 March 2020 to 3 May

2020.

We present some statistical data about coronavirus cases in Turkey in Table 1.

Table 2 presents the covariance, Pearson and Spearman correlation coefficients between

daily cases—recovered, recovered—dead, and infected—dead related to Covid-19 in Turkey.

We now fit a lognormal distribution for all cases in Turkey from 11 March 2020 to 03

May 2020 in Fig. 17.

Page 13 of 89
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Figure 18 Prediction of daily number of infected in Turkey using forecast sheet with reliability level of 97%

2.1.2 Prediction for coronavirus data in Turkey

In this section, we aim at performing prediction using existing data and reliability level
method. The collected data will be considered from 11 March 2020 to 3 May 2020 [12].
The future prediction will start from 3 May 2020 to 15 June 2020. This will help us give
a prediction on the daily numbers of new infected, recovered, and dead in Turkey within
this period. The prediction will consist of three different graphs comprising upper bound-
aries, middle lines, and low boundaries. The upper boundaries represent the worse case
scenario, of course, a scenario that is not needed for the classes of dead and infected, but
an ideal one for the recovered class, and the lower boundaries represent the perfect sce-
nario (a scenario that is needed) for Turkey to get rid of the infection. These results of
prediction for future daily new infected, recovered, and dead are represented graphically
in Figs. 18, 19, and 20, respectively.
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Figure 19 Prediction of daily number of recovered in Turkey using forecast sheet with reliability level of 97%
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Figure 20 Prediction of daily number of dead in Turkey using Forecast Sheet with reliability level of 97%

2.2 Detailed statistical analysis for South Africa

In this section, we aim to provide a detailed statistical analysis of the collected data repre-
senting the evolution of Covid-19 spread within the Republic of South Africa. These data
include the daily numbers of new infected and dead. The collected data are from 5 March
2020 to 3 May 2020 [13]. The main aim of this section is to predict what could possibly
happen in the near future using the reliability level method, additionally, to find which dis-
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Figure 21 Number of infected people in South Africa from 5 March 2020 to 3 May 2020

tribution each class follows. With the collected data, we will first present a histogram, pie
chart, and nonlinear graphs for each class. The histograms will help identify the density of
probability associated to each set of collected data. Additionally, we provide a polynomial
fitting against collected data. The results are presented in Figs. 21 to 30. For each case,
we present arithmetic, geometric, and harmonic means, respectively, as well as skewness,
variance, covariance, Pearson correlation and Spearman correlation, and these results are
presented in Table 2.

In Figs. 21, 22, and 23, we present some statistical simulation of the number of infected
people due to Covid-19 in South Africa from 5 March 2020 to 3 May 2020.

In Figs. 24, 25, and 26, we present some statistical simulation of the number of dead
people due to Covid-19 in South Africa from 15 March 2020 to 3 May 2020.

Now we present regression analysis of Covid-19 data in South Africa from 5 March 2020
to 3 May 2020. We first present a predictive analysis for infected people. According to the

results obtained, we get a linear regression which can be calculated as
y = —4488415 + 102.2293x. (2.19)

The F-test statistics was calculated to be 4.84 x 1073}, while R? was calculated as 0.902781.
We can say that the significance of fit for model is suitable for the considered data. We can

give another regression model

y=—-0.4x 107%° + 0.9253x° — 101611x* + 0.6 x 107%x% — 0.2 x 1074

+0.3x1078x-0.3 x 1072, (2.20)
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Figure 23 Number of infected people in South Africa from 5 March 2020 to 3 May 2020

which is polynomial of sixth order. For this polynomial, R? was calculated as 0.9978. We
present a simulation of the polynomial fitting for infected people from 5 March 2020 to 3
May 2020.
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Figure 24 Number of dead people due to Covid-19 in South Africa from 15 March 2020 to 3 May 2020
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Now we present a predictive analysis for dead people. According to the results obtained,

we get a linear regression which can be calculated as

(2.21)

—29.2547 + 2.51587x.

y:



Atangana and igret Araz Advances in Difference Equations (2020) 2020:659 Page 19 of 89

M 15-Mar-20

NUMBER OF DEATH W 15-Mar-20

W 26-Mar-20
M 28-Mar-20
M 31-Mar-20

‘26 -Mar-20 | 3-Apr-20| M 1-Apr-20

M 2-Apr-20
0%
1-May-20 =
b

1% M 7-Apr-20
M 8-Apr-20
M 10-Apr-20
M11-Apr-20

\15 -Apr-28 13-40r-20
5% 4-Apr-20
5-Apr-20

M 16-Apr-20
M 17-Apr-20
W 18-Apr-20

N 19-Apr-20
16-Apr-20420-Apr-20
11% 21-Apr-20
22-Apr-20

17-Apr-20 M 23-Apr-20
M 24-Apr-20
2% M 25-Apr-20

T24-Apr-20 B 26-Ape-20
3% M 27-Apr-20
- | M 25-Apr-20

M 30-Apr-20
W 1-May-20
M 2-May-20
M 3-May-20

3% J 7-Apr- 20‘ W 3-Apr-20
10%

30-Apr-20 \
0%

29-Apr-20
8%

Figure 26 Number of dead people due to Covid-19 in South Africa from 15 March 2020 to 3 May 2020

The F-test statistic was calculated to be 5.36 x 10722, while R? was calculated as 0.858225.
We can say that the significance of fit for this model is high enough for the considered
data. We can suggest another regression model

y=-0.2 x 107°x* + 3.7609x> — 247847x* + 0.7 x 10°x — 0.8 x 1073, (2.22)

which is polynomial of fourth order. For this polynomial, R* was calculated as 0.9958. We
present a simulation of polynomial fitting for dead people from 15 March 2020 to 3 May
2020.

2.2.1 Prediction for coronavirus data in South Africa

In this section, we aim at performing prediction using existing collected data represent-
ing daily numbers of new infected, dead, and reliability level method. The collected data
will be considered from 5 March 2020, corresponding to the first day of confirmed case of
Covid-19 in South Africa, to 3 May 2020. The future prediction will start from 3 May 2020
to 15 June 2020. This will help us give a prediction on the numbers of new daily infected,
recovered, and dead in South Africa within this period. The prediction will consist of three
different graphs comprising upper boundaries, middle lines, and low boundaries. The up-
per boundaries represent the worse case scenario, of course, a scenario that is not needed
for the classes of dead and infected, but an ideal one for the recovered class, and the lower
boundaries representing the perfect scenario (a scenario that is needed) for South Africa
to get rid of the infection. These results of prediction for future daily new infected, recov-
ered and dead are represented graphically in Figs. 29 and 30, respectively. The prediction
of daily new infected in the case of South Africa seems to follow the upper boundaries and

low boundary for daily number of dead.
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Figure 27 Polynomial fitting for infected in South Africa from 5 March 2020 to 3 May 2020
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Figure 28 Polynomial fitting data dead people from Covid-19 in South Africa from 15 March 2020 to 3 May
2020

We now give some statistics for the coronavirus data in South Africa in Table 3.

Table 4 presents the covariance, Pearson and Spearman correlation coefficients between
daily cases—recovered, recovered—dead, and infected—dead for Covid-19 data in South
Africa. We present a lognormal distribution for infected and dead for Covid-19 data in
Fig. 31.
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Figure 30 Prediction of daily number of dead in South Africa using forecast sheet with reliability level of 90%

2.3 Parameter estimation using the bell curve approach
In the previous section, we presented the graph of a day-to-day evolution of Covid-19
spread including infected, recovered, and dead for South Africa and Turkey. To be hon-
est, one cannot for sure tell if those curves follow the normal or lognormal distribution.
Therefore in this section, two cases are considered. In the first case, we assume a lognor-
mal curve and then we assume the normal distribution curve.
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Table 3 Some data about coronavirus cases in South Africa

Infected Dead
Arithmetic mean 113.05000 2.62000
Geometric mean 57.35444 3.184267
Harmonic mean 11.569120 2.260659
Standard deviation 109.71834 3613410
Skewness 1.1222456 1.594677
Variance 11837.4808 12.79560

Table 4 Some data for coronavirus cases in South Africa

Infected-Dead

Covariance 209.4908333
Pearson Correlation 0.564936726
Spearman Correlation 0.607349264
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Figure 31 Lognormal distribution for all cases in South Africa

Case 1. We consider the lognormal density of probability

1 1 1 (Inx — p)?
L)X ! 2.23
o L = 223)
We now define a function § that captures daily occurrences
1 (Inx — p)?
B =Opexp|—=———"|. (2.24)
2 o2

We aim to estimate Oy, o, and p. To achieve this, we consider the first four different days
di <dy <ds <dy whered; =1Inx;. (2.25)

We first start by estimating i, by assuming a proportion

B d
E j; = exp ——1 5 {(dz - M)Z - (dl - M)z} (2'26)
and
B d / 2.27
E :; = exXp —_12 {(dé} M)Z ( 3 :U“)z} . ( : )
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To proceed, we apply on both sides the In function

1n[ﬁ(d2)} -y o= 0 (e~ )

—){(d2 —M) —(di - M)2},

ln[ﬁ(d4)] = (e - 1) (ds - ?)

— s (da— )~ (ds - w?}.

Due to the equality, we can now have

{(da — 10)? — (e~ 2} = — = { (s~ ) — (da — ).

1
B(d2)

Thus

d.
(GG  (da +ds —201) ~ (ds ~ )
n[E@)] ~ (dy+dy —211) — (dy — dy)’
Bld1)

The solution for the above is

n[ﬂ(d4)]
3(dy + d3)(ds — ds) - — 5By (dy + dy ) (dy — dy)
5@
)
)

o (52
1

2 (dy —ds) - ﬂ(di)

Inlzay]

(dy —dy)

Having u, we can determine

o =
\/ZIn[

2]

{-(da = ) + (dy — w)?}.

m‘m =

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Alternatively, we consider 8 days to capture more facts x;, i = 1,2,3,4,5,6,7,8, where we

putd; = Inx;. We assume a proportionality A of {d1, d», ds, ds} and {ds, ds, d7, dg}. Therefore

(da +d3 —2p) — (dy — ds)

P =
YT (dy +dy —20) — (dy — dy)

and

(ds +d7 —2pn) — (dg — dy)
(de +ds —2u) — (de — d5)

h =

We now assume that P; is proportional to P, thus

(da+ds —21) — (da — d3) :)L(ds +dy; - 2u) - (ds — dy)
(dy+dy—2u) = (dy—d1) ~ (dg +ds—2u) — (de —ds)

(2.33)

(2.34)

(2.35)
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For simplicity, we put d; + d; = A;; = Aj; and then

dy—d dg —d
d14:—4 3, d53:d8 d7'
6 — U5

Therefore, the above can be reformulated as

Ay -2 Ag7 -2
43 Md =) e I

14= dss.
Ax —2un Ags — 21

Also we write

dis
(AusAes — 2u(Asz + Ags) +4pu )Ad
58

and

d dia
4IL2{ — _ 1} -2 { — (A3 +Ags) +(An +As7)} +ApAgs e —AnAg; =0.
58

Adsg Adsg

Thus we have

= (An1As7 — 21u(Ag1 + Agy) +441°)

Adsg

(A2 (A3 + Ags) + (A1 + Ag7)) £
hdsg —4{ = d14 — 1}(Ag3A65 2% v

(A2 (A5 + Ags) + (A21 + Ag7))?

M2 = 7
4 M}:ez -1

Thus for Case I, we get

Y1 Blnz,)

4 1 1 (nxj-p)2°
2 % expl—3 =1

0o =

In the second case, we get

8
0o = Z,‘:1 ﬂ(lnxj)
8 (Inaj—p)2
Zj:l xll exp[—% ;—2]

B(dy) B(ds)
In[gay]  Inlggy]

Bd2) Bdg)
Inlgay]  Inlzgs]

For each case, the cumulative distribution function can be calculated by

D(x) = %[1 + erf(%)}

Case II. We assume that the curve follows the normal distribution, thus

D(x) = ! ex |:_l<x—,u)21|
x—am P31 .

(2.36)

(2.37)

(2.38)

(2.39)

. (2.40)

(2.41)

(2.42)

(2.43)

(2.44)
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However, we consider the following function:

2
(%) =A0exp[—%<x;“) } (2.45)

We aim to determine Ag,0, and u. Here we choose three points dy, ds, ds such that A(ds)

corresponds to the maximum point. Following the procedure presented earlier, we have

3)
ln[x(@)] _ (ds +dy—2p) — (ds — db) (2.46)
ln[W;] (dy+dy —2u) — (dr — dy)’ '
Thus
Il 53
3(ds + do)(ds — dy) - 1 —iy (o + dh)(dy — dh)
@)
W= 0 Z;)J (2.47)
%(dg +dy) - ln[ﬁ‘é;] (dy —dh)
Ady)
With w in hand, we determine
1
o= |————1(d 2 _(dy — p)? 2.48
\/zw )]{(1 w2 — (ds - 1)?) (2.48)
and
3
— 1 A(d)
Ao = 2 (2.49)

Z] le p[__ ] M) ]

In particular, if we consider the case where dy — dy = d3 — d, that is, A(d;) = A(d3) due to
symmetry of normal distribution, then we get

_ 3(ds + do)(ds3 — db) + (da + d1)(da — )
%(ds +da) + (dy — )

(2.50)

2.4 Comparison: Turkey vs South Africa
In this subsection, we present a comparison between Turkey and South Africa regarding
Covid-19 as edicated in Table 5.

The analysis presented in this section does not aim at praising or criticizing any country,
it is just to assess the effect of lockdown and its regulations, and to perceive if this con-
cept can help save humans before the vaccine. The fundamental question to answer here

Table 5 Comparison between Turkey and South Africa updated on Covid-19

Country South Africa, 5 March to 2 May 2020 Turkey, 11 March to 2 May 2020

Number of infected 6336 124375

Number of death 123 3336

Number of recovered 2549 58259

Total tested 230686 1,033,617

Lockdown date 26 March 2020 (Total lockdown) April 2020 (Partial lockdown, Less
than 20 and older than 65)

Donations NA +1,865,799,782 up to 28 April 2020
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is why South Africa has fewer dead and infected people than Turkey, if it recorded its first
confirmed case six days earlier before Turkey. The answer may rely on two fundamental
facts which include the period lockdown was implemented and the type of lockdown put
in place. The South African government publicized on 23 March 2020 a 21-day of national
lockdown which started effectively from midnight 27 March 2020. This was announced 22
days after the first confirmed case was recorded in the country. The lockdown came with
strict measures encompassing immediate deployment of South African National Defence
force to ensure that all people living within the territory of South Africa obey the lockdown
rules. Only workers considered necessary to operative response to the pandemic were ex-
empted, namely health caregivers, security service providers, essential service providers
that are fundamental to the rudimentary functioning of economy, as well as other work-
ers in industries that cannot be economically shut down. This implies that the mentioned
categories were permitted to go to their places of work during the lockdown. On the other
hand, the number of people at gatherings apart from funerals was limited to 50 people;
while restaurants, taverns, bottle stores, and shops that are not selling indispensable goods
were forced to close. Thus, a large population was not allowed to leave their houses except
for essential needs. Consequently, the movement between provinces, metropolitan, and
districts was also restricted except for essential reasons that cannot be catered for within
provincial boundaries. The South African government further closed all of its national
borders and only allowed the transportation for indispensable reasons. Likewise, all inter-
national and domestics passenger flights were prohibited, except those assigned to evacu-
ate citizens from foreign countries and certain repatriations due to Covid-19. However, the
measures taken by Turkey were not implemented swiftly upon the confirmation of its first
Covid-19 case. It is recorded that the Turkish government announced a partial lockdown
on 11 April 2020, a month after the country registered it first confirmed case of Covid-
19. Prior to the announcement of the partial lockdown, mosques, cafes, night clubs, and
all universities within the country were already closed on 11 March 2020. The restriction
measures applied only to people younger than 20 year old and older than 65 year old, who
were not allowed to leave their homes except for indispensable reasons. In addition, the
government ordered a ban on movement between 30 major cities with metropolitan sta-
tus as well as Zonguldak; whereby the lockdown was applied every weekend from 11 April
2020 and also 21-23 April 2020. Punishment (money) was applied for people who went
out. Very importantly the government has totally banned the sale of masks, but provided
free masks to its people to be compulsorily utilized in public places. However, the newly
placed order exempted health care assistance, funerals, military and passenger transport
from the ban, provided that certain conditions were met. Although both countries have
put severe measures to protect their citizens from the deadly disease, there are still records
of the rising number of infected and dead people in both Turkey and South Africa. Does
that mean that the lockdown regulations are worthless? Absolutely not! It is only that sev-
eral citizens in respective countries were not adhering to the rules and regulations put
in place by their respective government authorities. This results from the concept of so-
cial distancing being largely misunderstood, as it is not clearly defined to mean whether
persons should stay one meter away from one another or only from any infected humans,
contaminated air, and other objects because of the nature in which Covid-19 can be spread.
Nevertheless, due to a long incubation period of Covid-19, approximately 14 days maxi-
mum, which renders ordinary citizens not to differentiate an infected person from others,
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then it is crucial that stringent measures be implemented, which will prohibit people from
leaving their homes, and in case they go out, they should maintain the one meter distance
away from each other and frequently wash their hands upon touching any object.

3 Mathematical model of Covid-19 in South Africa and Turkey

Mathematical models of infected diseases are deemed not that useful by some people who
feel that they cannot be utilized to develop a vaccine or cure any given disease. How-
ever, it is important to note that the principal aim of these mathematical models is to
describe a system using mathematical tools, concepts, and language. Hence, throughout
the history of human beings, researchers working within the field of mathematics have
developed more accurate and efficient mathematical models. For instance, history has
made reference to one of the well-known Newtonian laws which described very accu-
rately many problems in our daily lives, although they are coupled with some limits. In
instances where these laws failed, two other well-known concepts, namely the theory of
relativity and quantum mechanics, using mathematical formulas can be utilized instead.
Generally, these concepts are of great importance in all fields of science such as in natural
sciences including chemistry, biology, physics, and earth science, in engineering such as
computer science, and electrical engineering, as well as in social science where their ap-
plicability to economics, sociology, psychology, and political science can be relevant. In
other words, mathematical models can help provide a clear explanation of a system and
investigate the effect of several components, and later make accurate predictions based
on the observed facts. In the current situation under study, due to the magnitude of fear
imposed by Covid-19 on humans, it is therefore paramount for mathematicians to provide
conceptual models, using mathematical tools called differential and integral operators, to
suggest well-constructed mathematical models that will be used to understand and predict
the spread of Covid-19.

In this section, a mathematical model that takes into account nine classes (susceptible,
infected which has 5 subclasses, recovered, dead, and vaccinated classes), the dynamic is
presented and explained with the subsequent diagrams, but the class of dead is omitted
because it can produce a complex model. The created model incorporates the lockdown
effect, represented by a coefficient that takes into account the social distancing and a con-
tact coefficient:

S=A- (a(x) +y1+ ul)S,

j:a(x)S—(s+§+)\+u1)1,

Li=E1— 0+ p+ x + )la,

Ip=el—(n+¢+m)lp,

In=nlp+ 04— (v+ £ + u)lp, (3.1)
Iy = ply +vig — (o + T + )y,

R=x+ olp + xIy + &g + ol — (D + w1)R,

D = ‘L’IT,
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V=mS+dR- 11V,

where
N=A-wN,
_ (3.2)
k X
Ol(x) = 1pe (1 + W(,BID + )/IA + 811R))

Here S(¢) is the class of individuals that are susceptible to contact Covid-19 at time ¢; I(z)
is the class of individuals that are susceptible to contacted Covid-19, but have no symp-
toms and have not been tested; 4(¢) is the class of individuals that have some symptoms
but were not tested yet; Ip(2) is the class of individuals that have contacted Covid-19, have
been tested positive, but show no symptoms; Iz(¢) is the class of individuals that have
contacted Covid-19, have been tested positive, and have symptoms; Ir(t) is the class of
individuals that have contacted Covid-19 and are in critical condition; R(¢) is the class of
recovered individuals at time ¢; D(¢) is the number of dead at time ¢; V(¢) is the class of
individuals that have been vaccinated, Table 6.

The initial conditions are given as:

N(O) = NO: S(O) = SO: 1(0) = 10: IA(O) = [21 [D(O) = [1(:)): ( )
3.3
[R(O) = IO) IT(O) = 19"; R(O) = RO» D(O) = DO’ V(O) = VO'

We present a diagram which summarizes Covid-19 model which is described by the sys-
tem (3.1) in Fig. 21. The diagram summarizing Covid-19 spread model is presented in
Fig. 32.

Table 6 Parameters of the suggested Covid-19 model

®: The rate at which recovered and were vaccinated

1: Turkish natural mortality rate

a(x): The infection force

B: Transmission rate of Ip(t) class

y: Transmission rate of /4(t) class

§1: Transmission rate of /z(t) class

&: Proportion rate of detection relative to asymptomatic class
6 Proportion rate of detection relative to symptomatic class
&: Rate that infected are not aware of their status

n: Rate that infected are aware of their status

u: Rate that nontested join class /7(t)

v: Rate that tested join class /7 (t)

7: The mortality rate due to Covid-19

A: Recovery rate of class /(t)
Kk: Recovery rate of class /4(t)

&: Recovery rate of class Iz(t)

@: Recovery rate of class Ip(t)

o: Recovery rate of class I7(t)

kq: Contact rate

p: Proportion that a contact is sufficient enough to lead to transmission
w: Transmission coefficient for the infected classes

A: Recruitment rate into class S(t)

y1: Rate of vaccination
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Figure 32 Diagram summarizing Covid-19 model given by the suggested system

3.1 Boundedness and positivity of the solutions
In this section, we show that V¢ > 0, the system solution is positive, so that the model is
well-posed and biologically feasible. We define the norm

Il = sup|f(2)]. (3.4)

t eDf

We assume that all the class
Sl@+y1)>0, V>0 (3.5)
due to the model under this assumption. We write

f(t):aS—(8+§+A+u1)I
>—(e+&+1+u)Q)

> [Peetbthrnlt - yp >, (3.6)

Since I(t) > 0,Vt > 0, then

Lu(e) = E1(8) = (0 + 11 + x + pa)a(0)

>—(O0+p+x +p1)la(t), VE=0, (3.7)
thus

Iy(t) > e Crmxrndt -y >, (3.8)
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The same holds for the Ip(#) class:
Ip(t) = I3eme+mt v >,
Also I(t) and Ip(t) are positive V£ > 0 and 1,6 > 0 and then

IR(t) > IO V+E+[/.1)
Ir(e) = e T,
R(t) Z R067(¢+H1)t;

D(t) > Dy, Vt=>O0.

Also

V() >~ V),

V(t) > Voe ™, VE>0.
With S(¢), we have to assume that
lelloo <00 = Hlloo + Wlliplloo + ¥ Halloo + 81 R llco < 00

so that

() = A - (@) +y1 + 11)S
> —(a(®) + y1 + 11)S
’a(x ’ +y1+ /Ll)S

> —(
> — (sup {oz(x + 1+ ,u1>S

x€Dy

> —(lelloo + y1 + p1)S,  Ve=0.
This implies that
S(2) > Spe Ulelloctri+nt e >
Now in the absence of the Covid-19, we have

A
N(t) < —.
M1

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

The above inequality is called the threshold population level. This is obtained because we

assume that the total population size must be increased or be constant

dN(2)

>0 = A-uN>0,
dr - M1 =

(3.16)
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therefore N(t) < % It is therefore biologically feasible that

Q = {(S’]:IA)ID)IIOIT,R;D, V) S RZ

A
0<S+I1+1y +ID+IR+1T+R+D+V=N§—}.
M1

The disease-free equilibrium point is

A ]/1
,0,0,0,0,0,0,0, —— ).
Y1+ wi(yr + (1)

(3.17)

(3.18)

We now derive the reproduction number using the next generation operator technique
[14]. We have five infected classes I(¢),14(¢), Ip(t), Iz(t), and I7(t). The matrices F and V

will be obtained from

f:a(x)S—(8+§+)»+u1)1,
Lo=€1—(0+p+x + 1)l
Ip=¢l—(n+¢+m)p,
Ie=nlp + 6Ly — (v+ £ + u)l,

I} =puly +vig — (o + T+ py)Ir.

We obtain the following matrices:

3x) ydxw BSx)w Sx)ws; 0
0 0 0 0 0
F=] 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
and
(e+&E+X+pu1) 0 0 0
-£ O +p+x+mum) 0 0
V= - 0 (m+e+um) 0
0 -0 -1 (v+E&+p1)
0 - 0 -v
For simplicity, write
h 0 0O 0 O
£ I 0 0 O
V=|l- 0 I3 0 0
0 -0 -n l4 0

[=NeNe)

(0 +7+pu1)

(3.19)

(3.20)

(3.21)

(3.22)
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where

Lh=e+&E+A+u,
bL=0+p+x+m,
L=n+¢+um,
ly=v+&+p1,

Is=0+1T+ 1.

Then we have

F 0 0
1
£ 1
hip I 0
-1 _ & 1
Vo= hb 0 A
nlye+&£130 0 o
A bla Blg
nlaev+&l3lapu+EIl3v0 Iy ju+v0 vy
l11p131415 Iylals5 131415

So we write the following:

S(x) yéx)w Bsx)w Sx)ws; 0

0 0 0
Fv'=1] 0 0 0
0 0 0
0 0 0
1
n 0
£ 1
) Iy
&
X m 0
nlae+&130 0
Lilyl3ly iy
nloev+Ellapu+El3vo Iy ju+v0
l1lpl3lyls Iolals

Therefore, using Ry = p(FV '), the basic reproductive number is given as

8(x)
l1lyl31y

Ro = {— (121314 + Elg(ywl4 + W951) + WSlz(,Blz; + 7]51)) }

We now present disease equilibrium points. We achieve this by solving

A - (a(x) + 1 +u1)S:O,
a(x)S—-(e+&+A+u)l=0,
El—(O+p+x+p1)la=0,
el-(n+¢+u)lp=0,

nlp + 014 —(v+& + pni)lr =0,

plg +vig — (o + 1T+ u)Ir =0,

0 0
0 0
0 0
1
I 0
12 1
ls s
0 0
0 0
0 0
0 0
0 0
0 0
1
B 0
n 1
Bly Iy
v v
l3lals  lals

M+olp+ xIlga+EIr + ol — (P + u1)R =0,

S O O O

=

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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‘L'IT = 0,

)/15+ CDR—/,L1V=O.

This implies that
L-—*
O+p+x+m
e
ID = 71;
n+e+i

< ne o0& ) I
Ir= + )
n+te+pr O+p+x+pu)v+E+

] ué Xne vo& I
T = + + )
O+p+x+pur n+o+pr O+pu+x+ur)o+t+u

(o}
V= ﬁS + —R.
M“1 M1

Thus

Bew véw 81new

S* = () (1+ n+@+u1 t e T (n+e+p1)(v+E+m1)

N §10Ew 4
O+p+x+p1)(v+E+u1)

A = (8()(I* + wBI) + ywl; + woiI) + (1 + 1)) S* =0,

and
A+(n+p)st
A )
where
Bew yEw S1new
A= @ 1+ gt T Grnexan T Orgra) ke
N + 810Ew .
O+t x+u1)(v+E+p1)
That is,
po M m)Ere+iyp)
= 5 ,
. _ § AA+(y1+ p1)E +e+ A+ )
AT 0 utx +m A2 ’
- € AA+ (1 +pa)E +e+ A+ )
P nrorm A? '
I e, 0§ AA+ (1 +pa)E +&+ A+ )
B \n+o+m 0+pu+x+m A2 ’

e CAA+ ()€ e+ A+ )
r Ao + T + 1)

( ué Xne vo& )
X + + .
O+p+x+pr n+e+pr O+ p+x+u
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Also we get
o MO+ p)(E e it )
A + uy)
P x&

nr@+py Ot x+un

X+E(n8+9é)

VHE+IL S @1 O+t

(O+p+x+p1)(o+T+11)
vneo ovoE

+ +
(m+e+ur)(o+T+py) * (O+p+x+p1)lo+T+u)

and

Vv

510w
(O+p+x+p1)(v+E+11)

*_ﬁ@ 1+ Bew + yEw
u1 N

. P AA+ (i +u)E e+ A+ )
M1 A% + )
A ne x&

x {45 (1

N+l O+pt X+l

nte+pr - O+ptx+ur o (@) (vE+n)

v+E+ug

+ +
NtQ+Uu1 O+t X+ ) (O+p+x+p1)o+T+p1)
vneo ovhE

Yoo T GG o)

For the Covid-19 endemic with this model, we need to have

16)>0, L(t)>0, Ip(t)>0, Ixt)>0 and I(f)>0.

This implies

a(x)S—(e+E+A+u)l>0,

EI-O+u+x+pu)ly>0,

el-m+¢@+u)lp>0,

nlp+6I4 —(v+& + p1)lg >0,

uly +vig— (o + 1+ pu)Ir >0, Vi=>O0.
Thus

a(x)S
E+E+A+ U
S )
O+up+x+m
e
Ip<——I,
n+e¢+
n I 6
D+
v+&+u) ~ (v+E+ )
I 14

IT< 1A+ IR.
(o +7T+u) (0 +T+pu)

I<

1y

IR<

Ly,

We use the fact that % <1, to get

8(x)

—————— (I +wBIp + ywly + wIg) > 1,
e+E+ A+

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

Page 34 of 89



Atangana and igret Araz Advances in Difference Equations (2020) 2020:659

noting that
he—F 1
O+u+x+p
&
Ip<———1,
n+e+u
n 0
Ip < Ip+ Iy
v+E+ v+§+ Uy

ne §0

I 1.
SWrEr )t tm) @+t x )W EE + )

wn&l

wyly < —————.
O+pn+x+um

Therefore we have the following inequalities in terms of I

N+@+u1 O+p+x+p1

8(x) [+ Mbe gy e
Bl

)>I
)I

wnedy wd1£6
E+E At v+E+p1)(n+@+ie1) (O+p+x+p1)(v+E -+
and
wpe wy1é
() < Lt i * T ) o1
wned w3166 :
E+E+ht i \+ (v+E+u1)n+o+pr) O+t x+pn)(v+E+u)
Therefore
Ro > 1,
where
wBe wy1§
0= 8(x) < 1+ e | e )
- wnedy w8166 :
E+E+htn \+ (v+E+p1)+o+p1) O+t x+p1)(v+E+ua)

This shows that we have a unique endemic equilibrium when Ry > 1.

3.2 Local and global stability of the disease-free equilibrium

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Lemma 3.1 The disease-free equilibrium Ey of the Covid-19 system is locally asymptot-

ically stable when Ry < 1 and unstable when Ry > 1. The Jacobian matrix for Covid-19

system is given by

=(r1 +11) 0 0 0
0 —(e+E+r+puy) 0 0
0 & =0+ p+x + 1) 0
0 e 0 - +e+n1)
0 0 0 n
0 0 w 0
0 A X 2
0 0 0 0

L
<
+

ow < VYo o OO

o o oo

0

—(o +7+pu1)
o
0

A
(<)
B+ O o oo oo

coocoo oo
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It is known that the disease-free equilibrium E, is asymptotically stable if and only if
tr(J(Ep)) < 0 and det(J(Ey)) > 0. For the suggested Covid-19, the trace of J(Ey) is

tr(J(Eo)) =—(r1 +8u1 +26 +e+A+0+ P+ T+ pu+@+n+v+x)<O0. (3.45)
The determinant of J(Ey) is

det(J(Eo)) = (1 + )& + & + A+ 1) (O + o+ X + 1) (0 + @ + ju1)

X (V+E+u)(o + 1+ ) (P + py)ug > 0. (3.46)

In this case, we can conclude that the disease-free equilibrium of the suggested model for

Covid-19 under vaccination and treatment is locally asymptotically stable.

Theorem 3.2 The Covid-19 model disease-free equilibrium is globally asymptotically sta-
ble within the feasible interval if Ry < 1 and unstable if Ry > 1.

Proof We use the Lyapunov function defined by

1 1 1 1 1
L=—I+—Iy+—Ip+—Ip+—

Ir. 3.47
[ A e A (847)

Therefore its derivative along the solutions of the Covid-19 model is

dL 1dl 1dly 1dIp 1dlx 1ldir

el Pl i Sl 3.48
dt “hdt hode Ldt  lade I de (3.48)
where
h=e+&E+A+u,
L=0+p+x+pn,
L=n+g¢+um, (3.49)
ly=v+E&+py,
ls=0+71+ 1.
Then we write
dL 1 1 1
— = — S—ULI)+ —(EI-11 —(el = 131
7 ll(a(x) 1)+12(§ 2A)+13(8 3Ip)
1 1
+ l—(ﬂID + GIA - 14112) + l—(,bLIA + V[R — l5IT). (350)
4 5

We have, on the other hand, that

alx) = %(I +w(BIp + yIa + 811r)), (3.51)
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and we get

dL 1 1
s (8(x)U + wBIp + wyls + wéiIg) — L) + 1—(51 — L)
1 2

1 1 1
+ 1—(81— lg]D) + l—(nID +91A - l4IR) + l—(/LIA + VIR - lg[T),
3 4 5

dL {%‘)(l+wﬁID+wylA+W511R)+%§I+%81}

dt +i(nID+(91A)+ %(M[A +vIR)
(3.52)
- (1+ID +IA +1R +IT),
il %(1 + wlﬁlD +wyly + MI/(SIIR) + %51 + %8[
pria +E(nID+91A3+ E(,uIA+vIR)
X Gl Terdy) ~ L
X (I +1Ip+1y+1Ip+1I7).
We now divide by I to obtain
L %C)(I+W,BITD+W)/ITA+W81ITR)+%+%
aL _ oL (IptOLe) | 1 (uly+vip)
dt N 1 . Is 1
Uy +Ixeln)
X (I +1Ip+14+1Ip+1I7).
However, since [ is greater than Ip, I4, Iz, I classes, one gets
dL |8 L4 Moo WE
= i% ( A T o 9 ~1¢U+Ip+1Iy+ Iz +Ir) (3.53)
t U\t Eroru)ortrm) T Grrmn)@+pexrin)

5(1+ID+IA +IR+]T)(R0—1)§0 lfRofl,

since [ + Ip + I4 + Ig + IT > 0,Vt. Therefore Covid-19 will be eliminated according to the
suggested model if and only if Ry < 1. In particular, since all parameters in the Covid-19
model are positive, then Lyapunov function decreases, i.e., % <0, if Ry < 1 and increases
if Ro > 1, finally, L = 0 if

I=Ip=14=Ip=1r=0. (3.54)

Therefore L is a Lyapunov function within the feasible biological interval and the big-
ger compact invariant set in {S, 1, Ip, 14, I, I7,R, D,V € Q: % < 0} is the point Ey. By the
well-known Lasalle’s invariance principle [15], each solution of the Covid-19 model sug-
gested in this work with initial condition in 2 leads to Ey when ¢ — ocoonly if Ry < 1. In
conclusion, the disease-free equilibrium Ej of the Covid-19 model suggested here, which

includes treatment and vaccination, is globally asymptotically stable. O
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3.3 Local and global stability of the endemic equilibrium

We compute first the Jacobian matrix of the Covid-19 model for the endemic equilibrium

case:
—a*(x) - (1 +p1) -8x)  —ys)w  —-BSx)w  —S(x)ws 0 0 0
a*(x) Sx)-0L1  ysx)w Bd(x)w S(x)wdy 0 0 0
0 & I 0 0 0 0 0
0 e 0 —l3 0 0 0 0
JE. = o 5 p ; S o o o 65
0 0 n 0 v -lIs 0 0
0 A X 1) £ o -l 0
7 0 0 0 0 0 O -
We now construct a characteristic equation associated to this model
P =det|Iyh —JE.| = 0, (3.56)
where Iy is the 8 x 8 unit matrix. Then we have
(A +1 —5(x) —y8x)w —BS(x)w —S(x)ws, 0 0 0 |
af  A=-86x)+1; ysxw  BSx)w  S(x)wd; 0 0 0
0 £ A+l 0 0 0 0 0
0 & 0 A+l 0 0 0 0
det
0 0 0 n Aty 0 0 0
0 0 M 0 v A+ls 0 0
0 A X [0 & o A+l 0
7 0 0 0 0 0 @ A+p]
(3.57)
From the above, we obtain the following characteristic polynomial
P =28+ a )7 + ap)® + asA® + aadt + asA® + agh? + azh + as. (3.58)
The square Hurwitz matrix associated to the above polynomial P(1) is given as
_ﬂl az as a; 0O 0 0 0 ]
1 ay) d4 de¢ dg 0 0 0
0 a4 a3 as a; 0 0 O
0 1 0 O
H-= a2 g fde s (3.59)
0 0 ay di3 ds day 0 0
0 0 1 ay ays a¢ ag O
0 0 0 a a3 as a; O
|0 0 0 1 a a4 as asg|
Then we have
Hl =d) > 0,

H2 =dad1dy —as >O,
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Hj = —a%a;; +a1aaz + a1das — a% >0,
_ 2 2 2 2
Hy = ajasae — aja; — a1a5das + a1a243d4 — 14247 — 414306 + 2414405
2 2
+ ardzds — azas + aza; —az > 0,
Hs = afamg - a?a% - ﬂ%ﬂzﬂgﬂg - a%a2a4a7 + Ea%azas% + a%a3a4a6
2 2 2 2 2 2
tai1a,a3a; —a1a,ay — d1drdzde + d1a24340405 — d1ds5dg + 26116l66l7
— d1G2a5a7 — 3d143a05d6 — d1420 + Zalawg - aza§a7 + ﬂz&lgﬂg (3.60)
+ ﬂlﬂgdg - a%aias + a§a6 - a%awg - alag + 2asasa; — ag >0,
_ 3 3.3 2 2 2
Hg = —alasaz +2a3 1d4aeag — ajdg + 2a1a2a7a8 aja»azdeds + aazd;
2 2 2 22 2 2 2 3 2 2
- 3aiasasasay + 2aia2asa; — a1d,a3a3 + A1AgA3a4 + A1A,07 — A]0,A506

- 61161361% - ﬂ1ﬂ§ﬂ3ﬂ8ﬂ5 + 26l161%6l36l66l7 + ﬂlﬂ%ﬂ4ﬂ5ﬂ7 - 61161%61%616 + 61461%617

+ ﬂ1ﬂ2ﬂ§ﬂ4ﬂ8 — ﬂlﬂzﬂéﬂé — ﬂ1d243ﬂ7ﬂi + di1draszasdsde + ﬂ%ﬂgﬂ%
- Zafawmg - 2ﬂ%ﬂ5(l6618 + Safagm - 3a1arasa;ag + aﬁaiw - 3a1a6a§
3 2 2 2
—adsde t 3611&12(14617 —a1a2d5a746 + A1030608 + 2611614613615618 —azagas
2 2 2 2
+ A2d3d6a5 + A144A30607 — 30103450 — 2a414,d507 + 241444506
+ 612@%615618 - 2612&1%6[66!7 — asasasdsd; — agamg + (l%(lé + ﬂ;
2 2 2 2
— a3a4dsde + 241474508 — 20505 + d30708 — 2444345 + 3dsdzdaear > 0,
Ho = d*ad - 343 2 3 9 3 3
7 =ddg —oaard7;dg3 — ad ﬂg&l6ﬂ8 61 618614,ﬂ5 + ﬂ 1440648047 — A3d506038
+ (li’&lgﬂé(lg a6a7 + 3a2a§a§ag + Safagagamé - d%ﬂzﬂgd647ﬂg + agag
+ (1%612(15(14(17(18 - 361%612(14(16(13 - 2a%d2d8ﬂ661§ - d2d3d4d5d% + ﬂgﬂé&b
+ 2aayasaia; + arasaia; — 2alasazazag — a:azadsasag — 2asasd;dg
+ afaéagmm + a%aia% + a%aia%as - a%aia5a6a7 - a1a§a7 + 4a1a5a§u8
- 3ﬂ1ﬂ%ﬂ3ﬂ5ﬂ7ﬂ8 + 261161%613@6@% + um%umm% + ﬂlﬂ%ﬂgﬂg + 3613@561661%
— ﬂ1ﬂ§ﬂ§ﬂ6ﬂ7 — ﬂlﬂzﬂgﬂg + 261161261%614617618 + 61161261%615616618 - ﬂ1ﬂ2ﬂ§a2ﬂ7
2 2 2 3 2
—a1a2030,0,; — A10203040548 + A1024304050607 — A2A30508 + ArA3050607
+datazaral — 3aiasaiag + 2aiaial + asazas + 3ayajasasas + asasas
2 3 2
— 542 1as5a6a7as + 3a? a6zz7 —Sayarazazag + 3a142a4a; + A14245a743
2 2 2 2 2
—a1aasaed,; — 4~ﬂ1ﬂ3ﬂ5ﬂ8 + di1dzded7ag + 4&1&3614615617613 t a1a3a4a6a;
3 2 2 3 2
+ 3a1azazacag — 3a1azasaga; — 2a1u4u5a7 2a1a4azag + 2a1a4a5aed7
) 2, 22 2 _3 3 2
d2ﬂ3ﬂ6d7 t d3dsaqsag — d3dadsded; a1ded,; — ﬂ2ﬂ5ﬂ7 + 6{3617618
3 4
- 2a3a4a7 4a3a5a7a8 + a4a5a7 + ﬂsﬂg asdedy; +a, >0,
Hg = a3H7 > 0.
Theorem 3.3 IfRy > 1, the endemic equilibrium point E, of the Covid-19 system is globally
asymptotically stable.
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Proof We prove this using the Lyapunov function
L(S5 1", 1, I}, I}, I, R, D*, V*)
S-8*-S§*1 s I-1"-1"1 r
=(S-8"-S*log— |+ |(I-I"-I"log—
s &7
I I
(1A I; - I} log A) + <1D — I}y - I} log —D)
Is Ip
+ (-1 -log R ) + ( Iy - I — IFlog = (3.61)
Iz Ir
+|R-R*-R'log— | +|{D-D*-D"log —
R D
V*
+|V-V*~V*log— |.
Vv
Therefore taking the derivative with respect to ¢ on both sides gives
dL . (S=S*\. [(I-T*\: (Li-L\- [(Ip-I)\;
—=L= S 1 I I
dt <S>+(1)+(1A )“(ID g
IR—-I%\ - It —I7\ - R-R*\: D-D*\ -
(2R s (2T ) s R+ D (3.62)
Iz I R D
()
+ v,
14

where replacing S, f, IA,Ib,I}g,I},R, D, and V by their values, we obtain

daL - (S_ S*) (A = (a@) +y1 +11)S) + <1_I*>(a(x)S— L)
dt S
D3 er- i + ( ’5)(81 )
Ir—1If
)(7710 + 014 —Iydp) + ( P )(MIA +vIg - IsI7) (3.63)
T

D - D*
(M +@Ip + xIs + EIp + oIr — [gR) + 5 (tI7)

V*

(%
(%
(%
(22 Yons 08

Then we have

a(5)

(oc(x)(S S*) + 91 (S S*) + ,ul(S S*)))

(A

( )a(x)S §*) = L(I-I7))

ey e AT R = T )
(%5

D
Ip—1I}

) (Ip—Ij) + 6 (Ia - I}) — la(Ir - I})) (3.64)
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) (a1 1) + U= 1) = (1 1)

+o (I —1I}) — (R — R*)

(R—R*) (A(I—I*) +o(p—I3) + x(Ia — I) + E(Ig —1;>>

222 wlr-13)

()55 0l (v - ).

The latter expression can be separated in two parts as follows:

dL (S-S*)? S* —I*)?
- = %(—a(x) —m)+A- ?A - ll( ) +a(x)S —a(x)S*
I* I* (Ia - 1})? L I
—ax)—=S$ S A TAL e g g AL EAD
@) S+ @) 18"~ eI g A e
T _I* 2 I* ]* T _I* 2
—lgM +el—el* —81—D1+81—D[* —l;LM +nlp —nl}
D D D R

I* I* * I* ] _I* 2
—nIp R+ R 01, - oI - 91A—R or; R —15M + uly — pult
I I I I

R T
I I L I (R-R*)?
_MIAE+M1;E+VIR—VI;—VIRE IRI——lgT + AL = AT
)JR* )J*R 1 I 1 K I*R* 1 I
—M— + M —+ - —+ -
R R @ip—@lp—@ DR + @ DR XA — Xy
* * * *
_XIAE'{'XIA R +&Ip — “;‘I;—SIR + &0 R tolr-ol;

* * * *

—olr—+oli—+tlr—tlh —tlr— + 11—
TR T T Iy T

(V- V"> v v
- ———— =1 S =S - S— S*— + ®R - OR*
M1 v Y1 "1 V1 V+)’1 V+
V* *
- ®R— + PR —.
|4 Vv
This can be simplified as
L 0_r
dt ’
where

*

I I I
Im=A +a(x)S+(x(x)75* +€I+§]i1* +81+81—DI* +nlp

I I I; I;
+n—+0[A+91* +MIA+/LI*—+VIR+VI*—+)J
I 1 IT IT
+ A — + @lp + I — + xIg + xI;— + Elg + El—
R @ip ‘ﬂDR X1A XAR &lp ERR

+olr+ UI;? + 1l + II;B + 1S+ y18*7 + OR*—

+ ®R

(3.65)

(3.66)

(3.67)
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and
S S* 2 S* I 2
ro8=57 < ) (a(x)+V1+M1)+?A+11( ) +a(x)S*
* I - I)? Lo Up-1Ip)?
+ax)—S+ ZZM +EF+EAT+ lgM + el
1 Iy D
]* T _I* 2 1* [*
+e 21+ l;;u +nly+nlp R + 00 + 0L, R +
Ip I I IR
I* I* R—R* 2 I —I* 2
+/J«1A_T+V1;+VIR_T+Z6¥+AI*+[5M (3.68)
It It R It
R* R* R* R*
H M2+ @l + @lp— 4 XL+ Xla— + 8L+ Elx e + 0
PN N U 0
+olr—+tlh+tlp— + 1 ———
T R T T D M1 v
v* V*
+ S  +y1S— + OR* + PR—.
V1 V1 v v
Therefore, having IT < I, this implies % < 0, however,
0=M-r = aL 0 (3.69)
- dt ’
if
§=8* I=I*", Iu=I; Ip=I), I=I; Ir=I;,
(3.70)

R=R", D=D" and V=V

We can now conclude that the largest compact invariant set for Covid-19 model in
dL
(S50, I3, I, Iy, I3, RY, DA, V) € Q: - =0 (3.71)

is the point {E,}, the endemic equilibrium of the Covid-19 model. Therefore, using the
Lasalle’s invariance principle, we conclude that E, is globally asymptotically stable in €2 if
M<T. g

4 Modeling with nonlocal operators

Due to complexities around the spread of Covid-19, it is really hard to produce predictions,
especially when multi-scenarios are requested. Indeed, it has been reported that includ-
ing local operators cannot provide nonlocal processes, for example, change in processes.
In this section, we present an analysis of Covid-19 model with local operators including
Caputo, Caputo—Fabrizio, Atangana—Baleanu, and the new introduced fractal-fractional
operators. We first present the definition of each operator. We start with the definition of

the Caputo fractional derivative

o 1 td u
S8 = s | G- @)

—a)
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The Caputo—Fabrizio fractional derivative is

gFD‘Zf(t)=]1V[_(02 \ %f(t)exp[—%(t—r)] dr

The Atangana—Baleanu fractional derivative is

AB(x)

0 DHO=1",

td o

—f(0)Ey| ———(t —1)* | dz.
Al
The fractal-fractional derivative with a power-law kernel is

D0 = s o / f@e -7y dr,

where

ae _ . SO-ft)

dtf t—m e

2-8).

The fractal-fractional derivative with an exponential decay kernel is

AG
gFEDl:’ﬂf(t)— dt;l/ff)exp[——(t ‘L’):| dr.

The fractal-fractional derivative with a Mittag-Leftler kernel is

A AGd t
EEM D@ (p) = lB_(z)—/of(r)Ea[—&(t—f)a} dr.

dtP

The associated integral operators of the last three operators are given as

) = % [,

FFE o,p 1-8 1-8
TPf(e) = ( )t £(0) + / () dr,

M M()

FPM ot f(t) _ )tl—ﬁf(t) + (l’—‘l,')a_l‘l.’l_ﬂf(t)d‘[,

o
AB(a)l' () /o

4.1 Positive solutions with nonlocal operators

(4.2)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

In this subsection, we present a detailed analysis of positiveness of the solutions for Covid-

19 model with nonlocal operators. We start with ABC derivative case:

65DES = A~ (ax) + 11 + 1),
ABCDAT = a(x)S — (e + & + A+ 1),
SBCDYLy = EL— (0 + o+ X + 1),
ABCDAL, = e — (i + @ + u1)p,

ABCDY Iy = p + 0Ly — (v + & + 1),

(4.9)
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gBCD‘:[T = /.L[A + V[R — (O' + 7T+ MI)IT:
ABCDOR = M + @lp + xIa + EIR + oIy — (@ + j11)R,
“BDeD =1y,

ABCDOY = 1S+ DR — 1, V.
The norm and all hypotheses of the classical results are valid here also

‘SBCD‘Z‘I:a(x)S—(e+§ + A+ u)l (4.10)

>—(e+&+ A+ )l

This produces
ale + &+ A+ pp)t®
1(t) > I(0)E, |: AB(a) - (1- a)(8+g+x+u1)]
a(lla@)lloo + y1 + p1)t*
S(¢) = S(0)E, [ AB(@)-(1- a)(||a(x)||oo+V1+M1):|

t)>IA Ea

o0+ o+ x + pa)t”

AB(a) - (1 - ot)(0+,u+x+u1):|’
a(n + @+ pn)t” }

AB(a) = (1 —a)(n + ¢ + p1)

§
-
[ a+&+u)t* ]
0|

ID(t > ID(O)Ea

(4.11)

]R(t) >IR(O)Eoz AB _(1 a)(V+§ +M1)

oo + T+ )t
AB(a) - (1 - a)(a+t+u1):|'
(D + )t
AB(a) - (1 - a)(d + m)]’

ot :|
AB() - (1 - o)1

0)Eq

R(t) = R(O)E, [—

D(t) = D(0)E, [—

ot
AB(a) — (1 —a)ps

V(t) > V(0)E, [— ] Ve > 0.

This shows that if all the initial conditions are positive then all solutions are positive when
using the Atangana—Baleanu derivative. With Caputo—Fabrizio derivative, we have

1(2) zl(o)exp[— ale+§+h+pm)t ]

M)-(1-a)e+E+r+um1) |
a(lloc(®)loo + y1 + 1)t :|

(@) = (1 =) (le®)llos + 11 + p1) |’
alf +u+ x+ u)t

M) = (L—a)(0 +pu+ x + m)]'
a(n+e¢+p)t

M(a)—(l—a)(n+¢+u1)}’
a(v+E+ )t

M@)-(1-a)(v+§ +u1)]’

S(t) > S(0) exp [_M

I4(t) = 14(0) exp [—

Ip(t) = Ip(0) exp |:—

(4.12)

Ix(t) = Iz(0) exp |:—
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IT(t)ZIT(O)exp[— oo + T+ )t ]

M@)—=(1-a)o +1+m) ]
a(D + )t ]
M) = (1—a)(® + 1) |

apt :|
M) - (1 -a)u |

R(t) = R(0) exp [—

D(t) > D(0) exp[—

apurt

V=vo exp[‘M(a) “ (-

:|, vVt > 0.

This shows that all solutions are positive if all the initial conditions are positive using the
Caputo—Fabrizio derivative. With Caputo derivative, we have

1(6) = I(0)Eo [—(& + & + A + pu1)t*],

S(8) = SO Ea [~ (|la®) | o, + 71+ p1)2%],

14(8) = L4 (0)E,[—(0 + p + x + p1)t* ],

Ip(t) = Ip(0)Eq [—(n + ¢ + pu1)t*],

Ir(£) = IR(O)Eq [-(v + & + p1)t*], (4.13)

Ir(t) = IT(0)Eq [—(0 + T + ju1)t%],

R(£) = R(O)E, [—(® + p1)t*],

D(t) = D(0)Eq[-p1t"],

V(t) = V(0)Eq[-p1t*],  VE>0.
This shows that all solutions are positive if all the initial conditions are positive when using
the Caputo derivative.

For fractal-fractional case, without loss of generality, we present the proof for the I class
and the rest can be deduced similarly. We start with the power-law case:

FEPDYPT = a(x)S — (& + & + A + uy)] (4.14)

—(e+&E+A+u)l, Vte>0.
and

RIDYFL > —f'P(e + & + A+ uy)l (4.15)

> —bl’ﬁ(s +E+A+u)l, Vi=0.
Thus, we have

[(t) = IO)Ea[-b"P(e + & + 4 + na)t"],
S(t) = S(0)E, [—bl_ﬁ(”a(x) ||Oo +y+ ,ul)t"‘],
L4(0) = It O)Eo [0 P (0 + p + x + 11)e*],

Ip(t) > Ip(0)Ee[-b" P (n + ¢ + p1)],
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Ix(t) = IR(O)Eo[-b" P (v + & + uy)t*], (4.16)
Ir(8) = It (0)E, [-b" P (o + T + p1)e*],

R(t) = RO)Ey[-b"P(® + 1)),

D(t) = DO)E,[-b" ],

V() = VOE [-b' P uit®], ve=o.

With the exponential kernel, we have

P Pale +E+ 1+ )t
M(a)—(l—a)(£+“§+k+ul):|’
b Pa(fla(®)llo + 1 + m1)t }
M) - 1 =a)(la@)lloo + y1 + 1) |
b1 Bo(@ + o+ x + pa)t
M) - (1 - a9+u+x+,u1)]
b1 Pa(n + ¢ + )t }
M(a) - (1 -a)n + @+ p1)

I(t) > I(0) exp [—

S(t) > S(0) exp |:—

L14(t) > I4(0) exp| —

Ip(t) > Ip(0 exp|:

Ip(t) > Ir(0) exp| — M b)l_ﬁg(v ;)&‘(: +M$1 )j m)] 7
Ir(t) > I(0) exp[ M( b)l ﬁg 0;)(ra++ﬂrl)+ m)]
R(t) = R(0) exp [- M(ab)l_ﬁ(oi(ib o:)(ueb1 )+t (1) ]
D(t) = D(0) exp[—;\%}
V() = V(0) exp[_#‘%} Ve > 0.
With the Mittag-Leffler kernel, we obtain
)
S(¢) = S(0)E, [— 2 B(bl)iozin_a S)('hﬁ (;))ﬁ:f;f tj 1) ]
14(t) = 14(0)E, [ AB(bl) ioéle +al;(;f; f;()fj m)}
Ip(t) > ID(O)Ea[ AB(a i ﬁain +o:0 ; fitj ul)}
. b1 ﬂa(v+g + ()t } (4.18)
AB(@) — (1—a)(v +& + ju1)
210 B{;;i“i“ .

P Po(d + )t
R(t) z RO, [‘AB(a) (- @+ m)}
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D(t)zD(O)Ea[ b P ]
)Ml

CAB(@)-(1-«a
bl—/S o
- ety ], vt > 0.
AB(a) - (1 - )

V() = V(O)Ea[

5 Numerical analysis of Covid-19 models from classical to nonlocal operators:
application of Atangana-Seda numerical scheme

While analytical methods are adequate to provide the exact solution of a giving equation,
or systems of equations, it is important to note that when dealing with nonlinear equa-
tions, analytical methods cannot be used. In particular, the model of Covid-19 suggested in
this work either with classical or nonlocal operators contains nonlinear components and
therefore analytical methods are ineffective. Very recently, Atangana and Seda [16] made
use of Newton polynomial to introduce an alternative numerical scheme that can be used
to solving nonlinear equations arising in many fields of science, technology, and engineer-
ing. The method has been recognized to be very efficient and accurate. In this section, we
will make use of the Atangana—Seda scheme to solve the suggested mathematical model
for Covid-19 for different differential operators.

We start with the classical case for numerical solution of Covid-19 model:

S=A- () +y1 +11)S,

f:a(x)S—(8+.§+k+u1)1,

Lo=E1— 0 +p+x +n)la,

Ip=el—(n+¢+u)ip,

In=nlp+ 0Ly — (v +& +u)lp, (5.1)
It = ply +vig - (0 + T + pa)lr,

R=2M+@lp+ xls +Elg + oIy — (® + )R,

D: 7,

V: 1S+ PR— V.
For simplicity, we write the above equations as follows:

S=3(t,8,1,14,Ip, Iz, I7,R, D, V),

1=TtS, 1,14, Ip, Iz, I, R, D, V),

Lo = I4(t,S,1, 1s, Ip, I, I, R, D, V'),

Ip = In(t, S, 1,14, Ip, Iz, Ir, R, D, V'),

Ip = Ia(t, S, 1, 1, Ip, I, I, R, D, V), (5.2)

IT = E‘(t,S,I,IA,ID,IR,IT,R,D, V)7
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R = Te(t;S;I;IA»ID»IR)[TxR»D; V)y
D =D(t,5,1,14,Ip, I, I, R, D, V),

V = V(t,S,I,IA,ID,IR,IT,R,D, V)1

where

St S, 1, 1a, Ip, Ix, I, R, D, V) = A — (a(%) + 71 + 1S,

1,8, 1,14, Ip, Ip, I, R, D, V) = a(%)S — (€ + & + A + 1)1,

Li(t, S, 1,1y, Ip, Iy I, R,D, V) = E1 — (0 + ju + x + 1)L,

IB(t,S,I,IA,ID,IR,IT,R,D, V)=el-(n+¢+u)lp,

I, S, 1,14, Ip, Ip, I7, R, D, V) = nlpy + 014 — (v + € + 1), (5.3)
I7(6, 8,1, Ly, Ip, In, I7, R, D, V) = g +vIg — (0 + T + )7,

R(t,S,1,14,Ip,Ip, I, R, D, V) = Al + @Ip + xIa + EIg + oI — (® + )R,
D(t,S,1,14,Ip,Ip, I, R,D, V) =TI,

V(t,S,1,14,1Ip, Iz, I, R, D, V) = 1S + ®R — 1, V..

After applying fractal-fractional integral with the exponential kernel, we have the follow-

ing:

(5.4)

Sy, P12, 18 BB I, I, RP, DP, VP)
i _ _ -1 -1 —1 -1 — — _
~S(ty_1, P L T BT B Rt pr e

S(tp+1) = S(tp) + |:

1
+/ S(T,S,[,[A,ID,IR,IT,R,D, V)dt,
bp

1, 52,17, 15, 15, 15, 15, R, DP, VP)
I(tyr) =1(ty) + | ~ S s N R
—(ty_y, P, 1P 1 I Iy L I R, DPL vt

tp+1~
+/ I(T:SnyIA,ID)IRrIT,R:Dy V)dT:
t,

P

Ly(t,, SP, 12,15, 15, I, I, R, DP, V'P)
SN N W el (Ll

IA(tp+l) = IA(tp) + |:

tp+1 ~
+/ IA(‘E;S;[:IA’ID’IR,ITxR;D; V)dt;
lp
(o) = I (t) Ip(t,, SP, 17, 1, 12 1%, 10, RP, DP, VP)
= + ~
PRI ity S L B B B B R, D, v

tpe1
+/ ID(‘L',S,[,IA,ID,IR,IT,R,D, V)d‘L’,
p
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Ieleos) = Ia(t) I(t, SP, 1P, 1, 12 o, I, R?, DP, VP)
= <+ ~ _ _ _ _
PP (o, S0, 7 7 17 1 R, Do, vt

p+1
+/ IR(T!S,I,IA>ID>IR,IT1R;D, V)dT;
t,

P

Ir(t,, S0, 12, I8, 15 I, 12, RP, DP, VP)
Ir(tpn) =Ir(tp) +| _~ —1 gpe1 -1 -1 -1 -1 ppo1 myp-1 1/p-1
_IT(tp—lrSp ,]P rIA ’ID ’IR ’IT ,Rp ,Dp ,Vp )

1
+/ IT(T,S,I,IA,ID,IR,IT,R,D, V)df,
t,

P

R(t,, 82,17, 15, 15, 15, 12, RP, DP, VP
R(tp+1) :R(tp) + ~ p—(lpp—l p_lA p?l Rp_lT -1 pp_1 ) 1 1p-1
_R(tp—I;S )1 7IA )ID 1IR IIT 1R ’DP ’V )

tp+1 ~
+/ R(TJSJI)IAY'IDY'IRlIT!R’Dl V)dT;
t,

/4

D(t,, S, 17,15, I, Ib, I, R?, D?, V/?)
D(tpn1) =D(g,) + | ~ —1p -1 p—lA 17?1 Rp—lT P-1 5p1 -1 1/p-1
“D(ty, P, B T 27 Y Rl el e
Ip+1
+ D(t1$11;1A11D11R71T1R;D;V)dt;
tp
Vi, S, 17, I, 15, Iy, Y, RP, DP, VP)
Vi) = V) +| o —1p -1 p—lA p?l Rp—lT =1 pp-1 -1 1/p-1
_V(tp—l:Sp ’[p ’]A ’ID ’]R ’IT ,Rp ;Dp ,Vp )

p+1
+/ V(T,S,I,IA,[D,[R,IT,R,D,V)dl’.
tp

We can have the following scheme for this model:

gi_g, lmal Sy, S22, 15, 15 I, 12, RP, DP, VP)
M(@) | =Sty P B T BT BT Rt DL v

BS(t,, SP, 17,15, 15, 15, I, R, DP, VP) At
47 _ ~1 -1 p-1 p-1 p-1 — — —
M(Ol) _5‘5;(tp—1r5p l,lp I:IA 2rID Z’IR Z’IT 2’Rp I’Dp I’Vp I)At
+28(ty2, P2, 1 I I L I, R, DP VP2 At

P s 1t,, 87,17, B, 15, 15, 15, R?, DP, V/P)

F7=F+ 7 -1 gp-1 -1 -1 -1 -1 pp 1 pp-1 1p-1
M(Ol) I(tp—lrSp )[ ’IA ’ID ’IR 1[T ;R ;Dp ;V )
" BI(t,, SP, 17, I, 1D, I8, I, R, DP, VP) At

475 - -1 -1 -1 p-1 -1 5y - -
M@ | 3 S L LT L R D VAL
+ 3 1(ty0, P72, 172 1 1 I 1 RV, DP2, VP At

p_p, Lo Lu(ty, P, 17, 1, 10, I8, 17, RP, DP, VP)
= + ~
4T M) [ Ly, L I I R, D vrY)
2371
o B La(ty, PP I 1D I I RP, DP, VP) At
+_

M@ | "3l S L I R DL VP A
N Bl 72,172, 17 12 B2 B2 R2, D2, VP2 A
12 1A\ Ep-2> ) lg H5dp Hdp AT ’ ’
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Ip+1 :Ip + 1 - - I’Z)(tprSpylpylﬁylgyIZyI};"priDpr VP)
D D M(Ol) _ID(tp_l’Sp—l,[p-l’lﬁfl,Igfl’lgfl,lj;—l’Rp—liDp—l’ Vp—l)
. BIn(ty, P, 1P, I, I, Iy, I, RP, DP, VP) At
+ —_—

T -1 gp-1 gp—1 p-1 -1 p-1 ppa -1 y/p-1
M) gIg(tp_l,sﬂ 1 ,1?2,1];72,1,;72,17];72,13 ,DPL VPO AL
+ 350D (ty—0, SP2, 1P, I I Iy I RPT2, DP2, VP At

1p+1 :Ip i l-« fl;(tp’SI”]F’]I{;,[{;,[I’;,P;’W’RP’DP’ Vp)
R Me) | ~Ip(tpor, P70 7L I 1 1 BT RO, DL Vel

Bl S I 05 R, DY, V) AL (5.5)
@ A Letyor, S T I I BT R, DY, VP A
N B Rty 57 B B B B RO, D2, VP ) AL
124R\Ep-25 ) Ly Hsip Hdip HdT ’ ’

+

1p+1 _ Ip + l-«o E(tp! Spylpylz;lgxlz;l};“yRP;Dpy VP)
LT M) | =Ip(ty, P78 L 7 I I B R, Doty

2377 P P P P
. Bl S P I I I, R, DY, V) A
* 2@ | 3 ST R DL VP AL
N2ty 72, 2 P72 272 122 272 R0, po2 Y2y A
124T\Ep-25 ’ sdy sdp dp AT ’ ’

piopi el RS IR D V)
M(@) | -R(t,_1, P70, 7, 7 7 7 7Y Re-t, pret, e
. BR(t,, SP, 1P, 15, 17, It I, RP, DP, VP) At

V@) ARy, P T I I I R DL, VP At
N BR 0 2 2, B2, 12 172, 172, RO, D02, VP2 A
127 \p=2 ’ ia ofp SR AT o ’ ’

" l-« D(t,, S, 17,15, b, I5, 15, R, DP, V/P)
D =D+ 3 -1 gp-1 =1 =1 =1 =1 ol el 1p-1
M(a) | =D(t,-1, 8P~ P74 B 10 Iy B ReY, pel, vl

-~ BD(t,, 2,17, 1, I8, I, 17, RP, DP, VP) At
* @ Dy, S P I I T R, DL VP AL
VN 5B, 0572 2, 22, 22, 272, 12, R02, D2, Vi) A
+ﬁ(tp—21 ) ylq odp sdp HdT ) :V)t

iy, oo [ VS R v
M(@) | -V(ty, S P B 1 B B R, Doty
. - BY(ty, S, 17,14, 15, 1%, I, R, DP, VP) At
* @) AV (o, L L T I I R, DL V) A
3
45

12 V(tp_z’ Sp_z’ Ip_z’ [iiz’ 1572’ 1113727 Il;'72y Rp_zy Dp_zy VP_Z)At
Now, we handle the following model with classical derivative:

S=A- (‘X(") TVt Ml)S,

I=a(®)S—(e+£&+x+u)l,

Iy =81—(0 + pu+ x + 1)y,
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Figure 33 Numerical visualization for Covid-19 model in South Africa

Ip=el—(n+¢+w)ip,

Ix=nlp+ 6L~ (v+§ + u)lz, (5.6)
Ir = ply +vIg — (o + T + )z,

R=AI+¢1D+XIA +&Ip+ ol — (P + w1)R,

D: i,

V=pS+®R- 1V,
where initial conditions are

S(0) = 57780000, 1(0) = 1, L4(0)=1, Ip(0) =1, Iz(0) = 1, (5.7)

Also the parameters are chosen as follows:

A = 57000000, k=3, p=0.5, n=0.12, x =0.015,

v=0.027, x=0.4, 6 =0.301, y =0.09, B =0.013,

(5.8)
A =0.0345, ¢ =0.0345, 8, =0.01, y1 =04, n1 =03,
e =0.161, £ =0.015, o =0.015, T =0.0199, ¢ =0.2.
We present a numerical simulation for Covid-19 model in Figs. 33 and 34.
In Figs. 35 and 36, the initial conditions are chosen as
S(0) = 81000000,  I(0)=1, I4(0)=1, Ip(0)=1,  Iz(0) =1, (5.9)

Ir(0)=1, RO)=0, D0)=0, V(0)=0.
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Figure 34 Numerical visualization for Covid-19 model in South Africa
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Figure 35 Numerical visualization for Covid-19 model in Turkey

Also the parameters are

A =80000000, k=2, p=05  5=012,  x=0.015,
v=0.027, x=04, 6=0301, =009  A=0.013

(5.10)
n=04 1 =03 e=0161, £=0015 o =0.015

T =0.0199, ®=0.2, A =0.0345, ¢ =0.0345, 61 =0.01.

We present a numerical simulation for Covid-19 model in Figs. 35 and 36.
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Figure 36 Numerical visualization for Covid-19 model in Turkey

Now, we replace the classical differential operator by the operator with power-law, ex-
ponential decay, and Mittag-Leffler kernels. We start with the exponential decay kernel:

o DIS= A= (a)+y1+m)S,

SEDOT = a(x)S — (e + & + A + 1),

SEDEIA = E1— (0 + o+ x + p1)la,

¢ DiIp=el - (n+ ¢+ u)lp,

SEDYIp = nlp + 0Ly — (v + & + ), (5.11)
gFD‘t"IT =uly +vig— (o + 1+ pu)lr,

SEDOR = 0l + @Ip + xIa + EIg + 0 Ir — (D + )R,

S peD =iy,

SFDOV =S+ dR— 1, V.
For simplicity, we write the above equations as follows:

SFDS =S(t,8,1,14,Ip, Ip, I, R, D, V'),

SFpe1 =1(t,S,1, 14, Ip, Iz, I7, R, D, V),

SEDeI, = [4(t,S, 1, 1a, Ip, Ip, I, R, D, V),

SEDIp = Ip(t, S, 1,14, Ip, Iz, I, R, D, V'),

SED%Ig = Ix(t, S, 1, 1n, Ip, Ip, I7, R, D, V'), (5.12)
SEDIy = I7(t,S, 1,14, Ip, I, I, R, D, V),

gFD(tXR = E(t)S)I)IA;IDJIRJIT;RrDJ V),
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gFD(:D = b(ty S,1, IA,ID,IR,IT,R,D, V);

gFD‘th = V(t,S,I,IA,ID,IR,IT,R,D, V)'

After applying fractal-fractional integral with the exponential kernel, we have the follow-

ing:

S@m=ﬂm+5ﬁ[

Sty S, 12, I B I, 1, RP, DP, VP)
M(e)

Sty ST L BT T B B R, DL v

1
P / S(z,S,1,14,Ip, Iz, I, R, D, V) d,
M(Ol) tp

I(tp+1) = I(tp) +

1-« 1t 2,17, 1, 15, 15, 12, R?, D?, VP)
M(@) | ~T(tpy, LY 7 17 I 17 R, Do, vt

b1
+ a / I(T,S,I,IA,ID,IR,]T,R,D, V)df,
M(a) tp

l-a La(t, SP, 17, 15, 15 15, 15 R?, DP, VP)
M(a)

I (¢ =Iu(t,) + —— ~ _ _ _ _
a( p+1) a( p) —IA(tp_l,Sp_l,Ip_l,lﬁ I,If) 1,15 1,117{ 1,Rp_1,Dp_l, Vp—l)

07
" M@)

tp+l ~
/ IA(T,S,I,IA,ID,IR,IT,R,D, V)df,
Ip

@wm=@wwfi%[

Ip(t, P, 17, 1, 18, I8, 10, R, DP, VP)
M(x

~Ip(ty, P BT T T BT R, D v

b1
+ L/‘ ID(T’S’I;IArIDrIR’IT;R;D’ V)d‘[;
M(a) tp

L) - In(e,) + 122 I(t,, SP, 17, 1 12 o, I, R?, DP, VP)
= +— ~
KT M(@) | ~Tx(tpor, 7 7 B 1 1 B R, D v
o tP+1~
+ / IR(T,S,I,IA,[D,[R,IT,R,D,V)d‘f, (5'13)
M(a) tp
It = In(e) + 120 Ir(t, SP, 17, 1, 12 15, I, RP, DV, V/P)
= + ~
T\tp+1 T\tp M(a) _IT(tp—1;Sp71)Ipil;If‘_l,lg_l,lﬁ_l,li_l,Rpil,Dp711Vpil)
o psl
+ / IT(T,S,I,[A,ID,IR,IT,R,D,V)dl',
M(a) tp
-« R(t,, 7,17, 15, b, Ih, I, R?, DP, V/P)
R(tp+1)=R(tp)+M 3 p-1 p-1 -1 p=1 =1 -1 5y 1 rp 1 yp-1
(Ol) _R(tp—lrS :] ,IA ,ID ,IR 71]' ;R ’Dp :V )
o i1
+ / R(T,S,I,IA,ID,IR,IT,R,D,V)df,
M(x) tp
l1-a D(t,,S¢, 17,5, 15, 15, 12, R, D?, V/P)
D(tps1) = D(ty) + —— | ~ 1 p-1 -1 -1 -1 -1 pp 1 pp-1 1/p-1
M(Ol) _D(tp—l’Sp ,IP ,IA ;ID 1IR ;IT ’Rp er ’VP )

tp+l ~
+ a / D(f,S,[,IA,ID,IR,IT,R,D, V)df,
M(a) tp
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1- Vit,, St 12,15, 12, 15, 1D, R, DP, VP
V(tp+1) = V(tp)"'M - 17 p—(lpp—l P*IA p?l RpflT P-1 pp-1 ; -1 y/p-1
(@) | =V(tyr, S ET 1 Iy I R DL, vPt
o [p+1~
+ / V(T,S,I,]A,ID,IR,IT,R,D,V)df.
M(a) tp

We can have the following scheme for this model:

g _g, 1o Sy, S, 1, L 12 15, I, RP, DP, VP)
M(@) | =S(ty-1, SP~L 1 B 7 7 BT R, DL, v
B8, S, 12,15, 1, 5, 17 R, DP, VP) At
o ~ _ — — —
o 58, L P I I B R, D Ve A
O 53002, 2,72, 172 1272 272 -2, o2, vy g
122\ -2 ’ da odp oip AT ) )
p_p, Lo 1(t, 2,1, I, 15, 15, 12, R?, D?, VP)
M) [T, L L I B BT R, DL VL)
BI,, P, 10, 15, 15, 1o, 15, R?, D, VP) At
o ~ _ _ — —
o ) 5L, L BT I T B R D Ve A
O 5Ty 522,272 22 272 2 R, D2, Vo) A
12 \fp-2» ) Lq Hdp iR AT > ) )
pi_p, 1o Li(t, S, 12,1, 15, 1%, 12, R, DP, V/P)
AT M) | L, S L I I I B R, Dt v
. -~ B La(ty, P, 1P, 15, 10, I, 1D, RP, DV, VP) At
* @ ALy, ST BT I B T R, DL VP At
+ S Dty P2 I I I I T RO, DP VP AL
pi_p, oo In(ty, P, 17, 1, 12 15, I, RP, DP, VP)
P M(a) | Ity ST BT I BT I R, Dt v
. ~ B Ity SV, 17, 15, 10, I, 17 R, DP, VP) At
* i@ | "3 L 1 R D VP A
+ 35 Ip(tya, P72 1P2, 12 I 12 12, RO, P2, VP A
pi_p, Lo I, SP, P, I, I, o, I, RP, DP, V/P)
BT M) | ~Hrtp, L L BT I I B R, DL e
. B B Ity P17, I, 15 I, I8 R?, DP, VP) At
* i@ | "3RS LI L R DL VP AL
o ~ _ _ _ _
+ S TRy, SP2 1P 2 12 IR I R, DR VP ) At
(5.14)
pi_p, loel Ir(t,, 2, 1P, 1, 18 I8, 12 RP, DP, VP)
T Ma) | Iy, S B B B R, DL v
Bty S, 17, fi,],’%,],’?,]l’;,RPI,DP, VP)At
47 _ _ — — — — _ _ _
@ =3 (ty-1, 7L P I B R DR VP A

+ ST (bya, P2 IP 2, 12 I 2 12 RO, P2, VP A

g, L0 [ 3 R, 7,12, 10, I, 15, I, RP, DP, VP)
—R(

M(@) | ~R(tyy, P17, 7 7 270 27 Ro-1, pr1 yety
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~ BR(,, S22, 1, I, I8, 1 RP, D, VP) At
ARy, PP I I T R, DL V) At
+ 3 R(ty0, P2 1P I I I 7 R, P VP ) At

M(a)

Dl =pP

l-a D(t,, 8%, 17, I, Ib, I5, 15, R, D?, V/P)
~ _ _ -1 -1 -1 -1 — — —
M((X) _D(tp—l’Sp 1,[17 lylﬁ ng ;Ill; yII;" ,RP 1;Dp 1) VP 1)

23 7
. LD, 11§,1,’§1, I,’Q,Il’;,RPI,Dp, VP)At
@ —3D(ty-1, PN L BT I I B R, DR, VP A
N 2Bty P2, 2, 272 272, 1272 1272, RP2, D2, VP2 At
12 p—2> ’ »iq odp g HdT ) )

M) | -V (t, 0,7 - B B 7 B R, Dol vt

23 {7
. RV s, 11§,1,’§1, 1,’3,111;,121’1,1)1”, VP)At
@ 2V (@, S I B R, DL VP A
N 2Ty, 5072, 102, P72 1272 272, 1272 R0-2, DP=2, VP2 A
12 p—2> ) »Lq odp g HdT ) )

For the Mittag-Leftler kernel, we have the following:

S =Py AB_(Z‘)§(tp,SP,IP,Iﬁ,I{;,Ig,I;,RP,DP, V?) (5.15)

o

p tr+1~
AB(o)T () S ’S’I'I ’I ’I ’I ;R,D,V t +1 — a_ld ’
* 4B (@) ,X_;/t (© S L a Ip I Ir Nty =) dr

1 ¢ {
=y 1B (a)I(tp,SP,IP,Iﬁ,If,,Ig,I;,RP,DP, vP)

r tre1
o ~
X I(T,S,[,]A,ID,IR,IT,R,D, V)(t 1 _T)O[_1 d":,
AB()T (@) XZ:/t e

1 —Q ~
=t mlA (tp, SV, 1P, 1, 1D, 15, I, RP, D, VP)

p

o tre1 ~
X = IA(T,S,I;IA>ID>IR11T7R;D1 V)(t 1_.[)01—1 dT;
AB()T (@) XZ:/t o

1 -0~
=0+ mID(tp,SP,Ip,Ij,Ig,lg,lf;,RP,DP, v?)

try1

b
o ~
X ID(T,S,LIA;[D)[RrIT)RrDy v)(t 1~ 7:)a_l dt,
AB(@)I' () XZ:/t o
1 -0~
=15+ mIR(tp,SP,IP,Iﬁ,I,I;,l]’;,lI;,RP,DP, v?)

try1

p
a ~
" AB@) () IR(v, S, 1,14, Ip, I I75 R, D, V) (b — T)* dit,
AB(a)T () ;./t; P+
1 l-o ~
7 = It gy (6 S 00 1 I T I R, D, V)

trel

p
o -
X ———— Ir(z,S,1,14,Ip, I, I7, R, D, V)(t,.1 — T)* ' d,
AB@T @) ;ﬂ/ﬁ r(t 1 Ip, IR, I Y(tpe1 —T) T
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l-o ~
1
RFFL=RP 4 1B (a)R(tp,SP,IP,IQ,Ig,Ig,F;,RP,DP, vP)

tre1

p
a ~
72 R(z,S,1,14,Ip,Ip, I, R, D, V)(t,,1 — T)* ' d,
* AB@T (@ 2/ (w5, L, Ips I I, R, D, V) (1 = 1) T

l-«

DPrl-pry ——
AB(x)

D(t,, S", 1P, 15, I, I, 1%, R?, DP, VP

try1

p
o ~
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|G Ve

o ~
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AB(a)r(mZﬁ (©. 8,1, Las Ipy I I tper — 70 L dr

r=2
We can get the following numerical scheme:

l-o~

9" = By S S L I I I R, 7, V) (516)
At G
+ AB(OZ()F() 1) ZS(t,_z,S’"Z,IV"Z,I/’\‘Z,I,’)‘Z,IE‘Z,I’T"Z,R'"Z,D’_Z, VV—Z)
o o+
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X
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AB(@)D (o +2) S | =I(trg, ™2, 172, 72 I 2 Iy 2 I 2 RT3, D2, V72)
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p-r) +6a2+18a+12:|
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C [ Ir(t, S804, 07 I I I R, DL v ]

B e —— ~
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» Ir(t, 8", 1, I, Iy, I Iy RV, D7, V)
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X
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|

o ~
R = R(t,, SV, 17, I, 10, IR, B, RY, DV, VP)

AB(a)
a(AL)~

P
bt SRy, S I I I R, DR v
AB(a)F(a+l); (-2 A 2D IR 0T )

x[p-r+1)*-(p-r°]

. Ol(At)a i E’Str,l,Sril,Irfl,IQ_I,IB_I,IE_l,I;_l,Rril,Drfl, Vr—l)
AB()T (@ +2) % | =R(ty2, S, I, 72 152, I 2 12, RT3, D772, Vi)

y p-r+1)*@p-r+3+2a)
-p-r*p-r+3+3a)
a(AL)~
" 2A4B(@)T (@ + 3)

» R(t, S I, 1y, I, I, Iy, RV, DV, V)
X Y| 2R, LT I I I L R DLV
r=2 _'_R(tr_z’sr—Z,Ir—Z’111:‘—2,15—2’1;{—2’I;“W—Z,Rr—2,l)r—2y Vr—2)

2(p -r)? + (Ba + 10)(p - r):|

+202 + 9o + 12

2p— 1) + (5a + 10)(p — r):|

(p-r+1)

X

- |: +60% + 18 + 12

l-a ~
D = D (t S T V)

a(AL)® P
t——— N "Dty S I I 7 2 R, D2 R
AB(a)F(a+1)rZ:2: (-2 A 2D IR 0T )

x[p-r+1)*-(p-r]
.\ Ol(At)a i 5}571,Sr—l’Ir—I’12—1’15—1’11;;—1’];—1’Rr—l,Dr—l’ Vr—l)
AB(a)T (e +2) —D(ty_0, S22, I 152 I 2, I, R2, D772, V2)
p-r+1)*p-r+3+2a)
X
-p-r)*p-r+3+3a)

a(AL)~
T 2AB@)(« +3)

r=2

» D(t,, S, I, I, Iy, Iy, I, R, D7, V')
x Y | =2D(ty, LI I I I I R, DL, VL
r=2 +5(tr_2,5r—2,1r—2,1‘2—2,1]{')—2’112—2,1;—2’Rr—Z,Dr—2, Vr—2)
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0—r 1) 2(p - r)? +2(3a +10)(p—7)
+20” + 9 + 12
X
2(p-7)%+ (5o +10)(p—7)
-p-r)" )
+60“ + 18c + 12
l-oa ~
v 2 AB(S) V(ty, S, 12,1, I8, 12, 12, R?, DY, VP

. a(Ar)” z 17(t ) §r-2 -2 2 pr=2 pr=2 =2 pr-2 py-2 Vr72)
AB(Q)F(C{‘FI) — r=2» ) La Hdp Hdp AT ) )

I

x[p-r+1)*-(p-r°]

a(AD” i [ Vityo, S5 I, I I 1L R, DL V) }

+ ~
AB(O[)F(“ + 2) r=2 _V(tr—Z’ Sr72¢ 11”—2’ 12_2; I{)_Zylﬁ_zjlg"_zr Rr72’Dr727 Vr—Z)

p-r+1)*@p-r+3+2a)
X
-p-rN*p-r+3+3a)
a(AL)~
+ —_—
2AB()T(a + 3)
» Vit,, S, I, I, I, In, Iy, RV, DV, V)
XY | =2V, LI I I I I R, DL VY
r=2 +V(tr_2’Sr—2’Ir—Z,IA—Z,IE—Z’I;;—Z,I;—Z’Rr—Z’Dr—2, VV—Z)

0—r 1) 2 -r)? + (3 + 10)(p—r):|

+202 + 9o + 12

2(p—7)% + (5 + 10)(p - r):|

X

— _ra
v )[ +60% + 18 + 12

For the power-law kernel, we have the following:
1 & a1
spel = T Z /t S(t,S, 1,14, Ip, Ip, I, R, D, V) (tp1 — 7)* ' dt,
r=2
1 & tral
J AR — f 1(t,S,1,14,Ip, I, I, R,D, V)(t,1 — 7)* ' dr,
F(a); ) ( 4 Ipy In I7 )(tpe1 — 7)
1 1 p tre1 ~
If:+ = m Z\/t IA(T, SrlrlA’ID’IR)IT;R’D) V)(tp+1 - 7)071 d":’
r=2 v
1 1 p trs1 ~
Ig+ = m Z/l: ID(Tr S;I,IA,ID,IR,IT,R,D, V)(tp+1 — ‘L')Ol_1 d‘[,
r=2 r

1 p try1 ~
J A @ Z /t Ix(T, S, 1,14, Ip, Ig, I1, R, D, V) (tpe1 — T)*H dl7, (5.17)
r=2 r

1 p try1 ~
[§'+1 = m Z/ IT(T; S;I;IAyIDrIR)[TyR)D; V)(tp+l - T)a_l dt’
r=2 Vi

tre1

1< ~
RP+1 = m Z/ R(T’ S,I,IA,ID,IR,IT, R,D) V)(tp+1 - T)Dl_l d‘[,
o ¢
r=2 2
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4 tri1 ~
Dp+1 =YY Z/ D(I’S!I,IArlDrerIT:RJ)y V)(tp+1 - T)a71 dr,
ty
1 E. i o
| p— Z/ V(z,S,1,14,Ip,Ip, I, R, D, V) (tps1 — T)* " d7.
ty

We can get the following numerical scheme:

(AT &

sl = D S(tr, S I I I R, D V) (5.18)
r=2

T T(e+1)

< [(p-r+1) - (p-r°]

(A G| Sor, LI I I I I, R, DL VY
+ F(Ol +2) Z —g(t Sr—2 1r—2 Ir—2 Ir—2 Ir—2 1r—2 Rr—Z Dr—2 Vr—2)
r=2 =21 ’ »dq odp Hdp AT ’ )

y p-r+1)*p-r+3+2a)
—(p-rN*(p-r+3+3a)

ane | S(t, S' 17, 01, I, I, I, R, DY, V)
+ 2F( 3) Z _Zs(tr_l,sr—l’lr—l,l‘z—l’[B—I’III;—I,I;—I,Rr—lyDr—l’ Vr—l)
o+ ~
r=2 +S(tr_2,Sr—2’[r—2’12—2’13—2,11r{2,[;:Z’Rr—Z,Dr—Z, Vr—2)

20 -r)?+(Ba+10)p-7)
+202 + 9 + 12

2p—1)* + (5a + 10)(p — r)i| ’

+60 + 18 + 12

p-r+1)

X

- |

p+1 (At)a Z T r-2 r-2 qr-2 jr-2 yr-2 -2 pr-2 pr-2 r—2
I :ﬁzl(tr—%s N 7IA ’ID ’IR ’IT R5DEV )
o+
r=2

x[p-r+1)*-(p-r°]

. (At)oz Zp: 7£tr,1,5r71,1r71,12_1,16_1,112—1,19_1,Rril,Dril, Vr—l)
D(a +2) = | b0, 202 I I I, 12, R2, D2, V)

r

» p-r+1)*p-r+3+2a)
-p-r)*p-r+3+3a)

(g & 1(t,, S, 1", I, I, I, Iy, RT, D7, V)
+ Z —27(t Sr—l Ir—l Ir—l Ir—l Ir—l Ir—l Rr—l Dr—l Vr—l)

2F(0{+3) - r-1» ) »dq odp Hdp AT ’ )
r=2 +I(tr_2,Sr—Z,1r—2,12—2’16—2’[2’—2,1%—2,Rr—Z,Dr—Z’ Vr—Z)

o201+ @Ba+10)(p - 1)
-r+l) [ +20% + 9o + 12 }

2(p-7)% + (5a + 10)(p - r):|

X

— — r o
- [ +60% + 18 + 12
(arr

p+1 ZE‘(triz’SV—Z’IV—Z,12—2’]B—Z,12—2’1;—2,Rr—2’Dr—2’ Vr—Z)
r=2

4 T T(e+1)

x [(p—r+ 1)"‘—(p—r)°‘]
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-p-r*p-r+3+3a)
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r=2

At)* ~
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Now, we handle the following model:

ABCDES = A — (@) + 11+ 111)S,

ABCDA — o (%)S — (& + & + A + )],

SBCDYLy = E1— (0 + pu+ X + 1),

0D Ip = el = (n+ ¢ + 1)Ip,

0P D I =nlp + 01y — (v + & + 1), (19
ABCDAy = uly +vIg — (0 + T + i)y,

0" D{R =M + @lp + xla + §lr + ol — (P + j)R,

oP¢DiD = 1y,

SECDYV = 1S+ R - 1 V,
where the initial conditions are

$(0)=57780000,  I(0)=1, IL4(0)=1, Ip(0)=1, Iz(0)=1, (5.20)
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Figure 37 Numerical visualization for Covid-19 model in South Africa for o = 0.75

Also the parameters are chosen as follows:

A = 57000000, k=3, p=0.5, n =012, x =0.015,

v=0.027, x=0.4, 6 =0.301, y =0.09, B =0.013,

(5.21)
y1 =04, u1=0.3, ¢ =0.161, £ =0.015, o =0.015,
T =0.0199, ® =02, A =0.0345, ¢ =0.0345, 6; =0.01.
We present a numerical simulation for Covid-19 model in Figs. 37 and 38.
In Figs. 39 and 40, the initial conditions are chosen as
S(0) = 81000000, 100) =1, 1,(0) =1, Ip(0) =1, Ix(0) =1, (5.22)
I;00=1, RO0)=0, D0)=0, V(0)=0.
Also the parameters are
A = 80000000, k=2, p=0.5, n=0.12, x =0.015,
v=0.027, x =04, 6 =0.301, y =0.09, B =0.013,
(5.23)

y1 =04, n1=0.3, ¢ =0.161, £ =0.015, o =0.015,

7 =0.0199, ¢ =02, A =0.0345, ¢ =0.0345, 8, =0.01.

We present a numerical simulation for Covid-19 model in Figs. 39 and 40.
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Figure 38 Numerical visualization for Covid-19 model in South Africa for o = 0.75

<107 No - Lockdown
—(t)
—A()
6 D) | 1
- = =IR(t)
_ - - =T
§5‘ R | 7
= - = =D(t)
D
T4l
Q
>
o)
O3t
>
[0}
K
22t
l
5 | |

Time (days)

Figure 39 Numerical visualization for Covid-19 model in Turkey for o = 0.8

Now, we replace the classical differential operator by the operator with power-law, ex-
ponential decay, and Mittag-Leffler kernels. We start with the exponential decay kernel:

FEED{PS = A — (@) + y1 + 101) S,
FEEDYPT = a(w)S — (& + & + A + 1),
gFED?,ﬂIA =E[— (O +p+x + 1)y,
FEEDYP Iy = eI — (3 + @ + 1),

FEEDYP Ie = nlp + 014 — (v + & + pu1)Ig, (5.24)
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Figure 40 Numerical visualization for Covid-19 model in Turkey for o = 0.8

FEEDOP Iy = uly +vIg — (0 + T + i),
gFEDl;t:ﬁR =M+ @lp+ xIg + EIg + ol — (D + u1)R,
FEEDYPD = Iy,

FEEDEPY = 1S+ OR— 1, V.
For simplicity, we write the above equations as follows:

FFEDYPS = (8, 8,1, 14, Ip, Ix, I, R, D, V),

FEEDYP 1 = 1(t,S, 1,14, Ip, Ip, I, R, D, V),

FEEDYP 1, = I4(t, S, 1,14, 1p, Iz, I7, R, D, V'),

FEED®P 11y = In(t,S,1, 14, Ip, I, I, R, D, V),

FEED®OP Ip = In(t, S, 1, 1n, Ip, Ig, I7, R, D, V), (5.25)
FEEDYP 11 = [7(t,S, 1, Ia, Ip, I, IT, R, D, V),

FFEED®PR = R(t, S, 1,14, Ip, Iz, I7, R, D, V),

FEEDYP D = D(t,S, 1,14, Ip, Iz, I7, R, D, V),

FEEDYPYy = V(t,S,1,14,1p, Iz, I7, R, D, V).

After applying fractal-fractional integral with the exponential kernel, we have the follow-
ing:
-« ty Sz, 80,12, 1, I, I8, 12, RP, DP, VP)
S(tpr1) = () + 77— 1-pg -1 gp-1 -1 -1 -1 -1 5p 1 p-1 y/p-1
M(a) —tp_IS(T,Sp ’I )IA ’ID )IR ,IT 7R ;Dp 7V )

o tp+1~ 1
+— f S(t, 8,1, 14, Ip, I, I, R, D, V)1 7P dx,
M(Ol) t

/4
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l-a ty "1z, 82,12, 1, I, 1%, 1%, R?, D?, V/P)
1(tp1) = 1(tp) + B op-1 gp-1 -1 -1 -1 p-1 pp 1 pypol 1p-l
M(e) | =, VI(x, 77 - I I I B R, DPt, vet)
o [p+l~
+ / I(t,S,1,14,1p, Iz, I7,R, D, V)t # dr,
M(a) tp
L) = Lt + l-a ty PLu(z, 2,7, 1, 18 I8, 12, R?, DP, V/P)
AT M@) |~ T, s B I T T R, D v
o tp+l ~ 1
+ / In(7,8,1,14,Ip,Ip, I, R, D, V)1~ # dx,
M(a) tp
I = Iot) + l-«a ty PIp(z, 88,12, I, I, I3, 1%, RP, DP, V/P)
PRI Moy | o Ip(e, s T 1 1 B R, Dt vt
o 3p+1 ~
+ / In(t,S, 1,14, Ip, I, I, R,D, V)1 7P dr,
M(or) tp
Ie(tynt) = Inlty) + =2 ty PIp(z, P, 17, 14, 1D, 16, 1 RY, DP, V)
T M(@) |~y Bk, s B 1 B B R, D v
o fp+1 ~ 1
+ / IR(.C'S'IrIAlele’ITiR;D; V)t - drr (526)
M(or) tp
Irlty) = Ir(ty) + —2 ty P Ir(e, 2,17, 1, I, Iy, 17, RP, DP, VP)
T M(@) |~y (e, s e B B B R, Do v
o fp+l ~
" / Ir(t, 8,1, 14, Ip, I, I1, R, D, V)T ' P di,
M(a) tp
Rl - RE) l-« ty PRz, s, 1 1 18, 12 RP, D, VP)
= + — ~
P Ma) |~ PR, B B B R, e v
o tp+1~ 1-8
+ R(T,S,I,]A,ID,IR,IT,R,D, V)f dfr
M(a) tp
Dt,.1) = Dit,) + l-a ty PD(x, 82,1, 1, 18, 15, 15, R?, DP, V'P)
Pl P Me) | 6, D(e, e B I I B R, D, v
o lp+l ~ 1
+— D(t,8,1,14,Ip,Ip, I, R, D, V)t ~P dz,
M(a) tp
Vit = Vit) + l-« t PV (e, 2, B, 1, 15, I, R, DP, VP)
Pl PET M) | £V (e, Se e 7 T B T Ret, peet ey

o b1
+ / V(T:SyI,[A,ID,IR,IT,R,D, V)‘L'l_ﬁ dr.
M(a) t

We can have the following scheme for this model:

sl gp

1-« ty PS(ty, S, 17, 18, I8, I8, 12 RP, DP, VP)
+ =BT p-1 gp-1 p-1 p-1 -1 -1 pp g -1 y/p-1 (5.27)
M(C{) tp_IS(tpfl!S }I )IA ;ID )IR ;IT 1R er ’V )

Page 69 of 89



Atangana and igret Araz Advances in Difference Equations (2020) 2020:659

%t;—ﬁg(tp, S, 1L 1 I I, RP, DP, VP) At
o B — — — —
i@ | S P I R D v
> 3 - - - . B — — — —
+ﬁtp,2S(tp_2,Sp 2,119 2’[11; ’Ig rli ’IIT) ,RP 2,Dp 2,VP 2)At
Py l-« t, 1, SP, 17, 1, 15, I8, 15 R?, DP, V'P)
M@ [, T, L I 1 R, D v
o B (1,50, 12, 1, 15, 15 10, R, DP, VP) At
415 1 el -1 1 -1 p-1 o1 el 1 e
+M(a) _§tpf1ﬁ1(tp—1,51’ Ly I,IZ 2,1% 2,12 2,[’; 2,R17 L pr-1 yr-1)At
5 1A —2 gp2 -2 -2 -2 -2 ppd -2 1p-
ity o Ly, P P I 1D I I RO, D2, V) A
Py, l-a ty PLa(t,, S, 12, 1, I, I, I, RP, DV, VP)
AT M(a) —t;:fﬂ(tp_l,SP_I,IP_I,Iﬁfl,If{l,11’;’1,11;’1,[319—1’1)14—1’Vp_1)
%t;—ﬁ];(tp,Sl’,[P,[Z,]g,jg,ﬂ;’ RP,DP, VP)At
o -Br — — — —
T M@) ~5t, o, S LI I I B R, DY VP A
i3ty b altpe, S, P I I I 1 RO, D, VP ) A
Ip+1 = Ip + l-«a t;_ﬁj;)(tp:Spylp,li,lg,lg,lgn,Rp,Dp, VP)
P M) |, i, S I I L R D, Ve
%t;_ﬁl’;)(tpy SP P I IR, I, RP, DP, VP) At
o -Br- — — — —
+ M(O{) _%t;IJIZID(tp—I,Sp_l,lp_l,li 12’I§ 12,I£ 12’[17{ lz’Rp—l’Dp—l, Vp—l)At ,
> 15 - - - - B — — — —
4ty 2 (b2 S 1P, L I I I RV, D2, V) A
P = ty  Te(ty, SP, 1P, 14, 10, I, 17, RP, DP, VP)
R ~°R M(O[) - ;:f&(tp_l,sp_l,lp_lxIf:il,]gil,[Zﬁl,lgfl,RP—l,Dp—l, Vp—l)
%té‘ﬁlz(tp;sp,IP,Iﬁ,Ig,Iz,II;, RP,DP, VP)At
o -B7 — — — _
@) | 3l e S L R DL VP A
42ty o IR(tpa, S 72 I I I 12 RO, DP 2, VP ) At
pop, 1= ty PIr(t,, 2,17, 1, 1B I8, 12, RP, DP, VP)
T M@ [~ T, S P I I B R D v
%t;_ﬁj;(tp;SP;IP,IA{j,Ig,II};,Ii,Rp,Dp, VP)At
o -Br — — — _
M@ | Sl ST I I R D VAL
> 7’ - o - . - — —! — !
ity (b S 102, L 0 I I RV, D22, V) A
+ l-a ty PR(ty, P, 17, 15, 10, IR, I, R?, DP, VP)
RV =R+ 1-p% 1 gp-1 gp-1 -1 -1 -1 1 1 1
M(a) _tpflR(tP—l’Sp_ P E T I Iy Iy R, DR VP
B PRty 57,17, 15, 15, 15, 15, R?, D?, VP) At
o

@ | AR, B B R, D, Ve A
a ~
St Rty 2, S22 I I I 12 RO, D2, VP ) A

" l-a ty P D(t,, S, 17, 1}, b, 15, I, R?, DP, VP)
D =D + 185 —1 gp-1 -1 -1 -1 -1 pp 1 -1 yp-1
M(O{) _tp,lD(tp—l)Sp ’IP ’IA ’ID ’IR ’IT ,Rp pr ’VP )
23 1-B7
o 2ty "Dty, P, 1P, I, I, 15, I, RP, DP, VP ) At

4,1-F 1 el -1 el el el a1 el e
M) | 31 2, LI L L I R DY VP A

) 2 -2 -2 -2 -2 -2 p 2 D 1o
3ty Dty S0 P2 L I 1 RO, DR V) A

’
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1-a [ 67Vt S0, 0,1, I, 12, 12, RP, DP, VP) }

TSRV (PRN N N AR ol Al Al (N )l )

23 ,1-B T
_ b V(ty, SP, I, I, B, 15, I, RP, DP, VP) At
S V(T T B R, D v A
" it;_g V(tp_z, Sp_z’ Ip_z’lﬁiz’ I£72’1272! 1117"72; Rp—z, Dp—2, VP—Z)At

For the Mittag-Leffler kernel, we have the following:

l-« ~
L = 1-p PP b P
Sl =P 4 AB@) L, S(t, SP 1P, 1, 1, I8, I, RP, DP, VP (5.28)
o

L4 tr+1~
X ——— S(t,S8,1,14,Ip,Ip, I7,R, D, V) (41 _.L.)a—lflfﬁ dr,
AB@)T (@) 22:/ z

l-a , ~
plop AB@) t) #1(t,, 87,12, 15, I8, 15, 15, R?, D, V)

L4 tre1
o ~
X —————— I(‘L’,S,I,]A,ID,IR,]T,R,D’ V)(t 1 _T)a_lfl_ﬁd‘f,
AB@T @) 2 / 2

pel g ~— % app PP
A That AB(a)tp PLa(ty, P, 1P, 1, I, I, 17, R, DP, V)

p

o tre1 ~
X —— Iy(z,S, 1,14, Ip, Ip, I7,R,D, V(¢ I_T)a_lfl_ﬂdr,
AB@T (@) 22/ i

1 l-a ; 4~
B = st (e, S 1 I I R, V7)

p

o tre1 ~
X —— In(t,S,1,14,Ip,Ip,I7,R,D, V)(¢t I—T)a_l‘fl_ﬂd‘[,
AB@)T (@) 22/ 2

1 l-a 4~
bl _ §+AB(a)tp PLr(ty, S, 1P, 15, 15, o, I, RP, D, VP)

p

o tre1 ~
X ———— Ip(t,S, L1, Ip, Ip, I7, R, D, V) (t,.1 — T)a_ltl_ﬂ dr,
AB@T (@) ZZ/ 2

1 l-a ; 4~
Pl _ 1;+AB (a)tp PIr (b, S, 17, 12, 18, 15, I8, RP, DP, VP

try1

b
o ~
X ———— E Ir(t,S, 1,14, Ip, Ip, I7,R,D, V)(¢t 1_1.)01—11_1—[301‘[’
AB(a)I (@) /t v

1-« ~
+1 _ — " 1B P P P P
RPFL_RP 4 AB(ot)tp R(t, s, 17, I, 12, 15, 15, R?, DP, VP

try1

b
o ~
X AB@T (@) R(t,8,1, 14, Ip, Ip, 17, R, D, V) (tpe1 — 7)* 7P dir,
AB(ot)l"(a)rX:Z:_/t; (t AsIps AR, AT Y1 —T) T T

l-«

Dp+1=Dp

p~
* 1B@) P D(t,, S, 17, 1, I, 1%, 1%, R?, DP, V)

trel

p
o ~
X D T)S)I;I yI yI ,I ,R,D,V t -7 Dl—lfl_ﬂdf’
AB(a)T (@) Zﬁz-/;r ( A5 Iy ARy AT )(Eps1 — T)
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l-«

|G Ve
AB(x)

t;_ﬁ V(tp,sp,lp,lﬁ,lﬁ,li»l’%, RY,DP, VP)

tre1

o p
" AB@)I (@) XZ:/t

We can get the following numerical scheme:

V(t,8,1,14,Ip, I, I, R, D, V) (1 — 7)* "' P dt.

l-«

= et S S 1 R D, V) (5:29)
+ O[(At)a i tl—ﬁg(t N Sr—2 1r—2 IV—Z Ir—2 Ir—2 1r—2 Rr—2 DV—Z Vr—2)
AB(a)F(a_'_l) — -2 r—2» ’ »tA »EiD AR AT ’ ’
x[p-r+1)*-(p-r)]
a(AL)®
+ —:
AB(o)M(a + 2)
p trl__fg(tr,bSril,Irfl,12_1,18_1,11};_1,1%_1,Rril,D’Ll, Vr—l)
x Z —tliﬂg(t Sr—2 1r—2 Ir—2 [r—2 1r—2 1r—2 Rr—2 Dr—2 Vr—Z)
r=2 r=2 r—2» ’ Ly sdp Hip ST, ’ )
p-r+1)*@p-r+3+2a)
X
-p-r*p-r+3+3a)
a(AL)®
+ S —
2AB(a)T (o + 3)
v t S, ST I 10, I, I, I, R, DY, V)
X Z _2tr1:fs(tr_1,Sr—l,[r—l,Iz—l,Ig—l,]Ire—l’[;—I,Rr—l,Dr—l’ Vr—l)
=2 | w8 St 0, ST I I I I R, D2, V)
0+ 1) 20 -1+ Ba+10)p-r)
+20 + 9 + 12
X
2(p—r)? + (Ga +10)(p—7)
-p-r"
+602 + 18c + 12
1- ~
P = L, S, P, B 1, 1, 1, R, DP, V)

AB(x)

C((At)a - 1-7 r—=2 qr=2 gr-2 gr-2 pr-2 -2 pr-2 pyr-2 r-2
S 6 (b, ST L I I I, R D2, V)

T AB@)M(a+ 1) &

x[p-r+1)*-(p-r)]
a(Ar)”
+ S —
AB(o)T (o + 2)
P |: t::fY(tr_l,Sr_l,lr_l,IZ_I,IB_I,IE_I,I%_I,Rr_l,Dr_l, Vr—l) j|

X 1-B%, D R S S _ _ _
,ZZ: _tr—fl(tr—Z:Sr LI I I I, RT3, D2, V)

» p-r+1)*@p-r+3+2a)
—(p-r*p-r+3+3a)

a(AL)®
" 2AB@)T (o + 3)
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P ty P1(t,, ST 17, 1, I, I, I, RT, DV, V)
X Z _Ztrl:f"i(tr_l,sr—l,Ir—l,Iz—l’Ig—l’IIr{—l’[;"—I,Rr—l,Dr—l’ Vr—l)
r=2 +t3:f’f(tr_2,Sr—2,1r—2,12—2’15—2,IIZ—Z’I;—Z,Rr—2,Dr—2’ Vr—2)

0+ 1) 20 -1+ Ba+10)p-r)
+20% + 90 + 12
X
(0 -1 2 -r)? + (Ga+10)(p—7)
-p-r
+6a2 + 18« + 12

1- -
5t (Z) BT (b, P, 1, B, I8, B, 1, RP, DP, V)

a(AL)®

p
1-p r=2 gr-2 qr-2 gqr-2 gr-2 -2 pr-2 pr-2 =2

+ E t s Ia(to, S 15 1 5 Iy 5 Iy, I, R, D%, V'
AB@) (o +1) &= ' altr- A bR )

x[p-r+1)*-(p-r)]
a(AL)®
T AB(@)T (o +2)

P oL, s L I I I I R D v
x Z _tl—ﬁIN (t Sr—2 Ir—2 1r—2 1r—2 Ir—2 1r—2 Rr—2 Dr—Z Vr—Z)
r=2 r—2 LA\br-2, ’ slg sip Hdp i ’ ’
o p-r+1)*@p-r+3+20a)
—(p-r*p-r+3+3a)
a(Ar)®
+ e ——
2AB(a)T (o + 3)

» tr "Lt ST 17, I, Iy, I, I3, R, D7, V)
x Z —2tr1:lﬂ[A(ty,1,Sr_l,]r_l,13;71,1671,1};71,]%71,Rr_l,Dr_l, Vr—l)
r=2

P Tty S22 I 152, 152, 152, R2, D72, VT 2)

ore 1" |:2(p—r)2 + (3o + 10)(p—r):|

+20% + 90 + 12

% | 20+ G100
+60% + 18 + 12

[£+1 _ l-a

1-B 7~ P P P P
AB(a)tp Ip(ty, P, 1P, 1, I, I8, I, RY, DP, VP)

a(AL)®

p
1-B77 r=2 pr=2 qr-2 qr-2 -2 -2 pr-2 pyr-2 y/r-2
+ E t._ o Ip(ty_p, S, 1" 215155 Iy -, I, R,D =,V
AB(@)I'( +1) & 2 o(t-2 4 bR )

x[p-r+1)*-(p-r)]

a(AL)®
T AB@)M(a +2)

P 0l I, ST I I I I R, DL v
x Z _tl—ﬂf Sr=2 Jr=2 =2 pr=2 pr=2 =2 pr-2 py-2 y/r-2
=2 r—2 D(tr—21 ’ ylg H5ip sdp AT ’ ’ )

o p-r+1)*(p-r+3+2a)
—p-r*p-r+3+3a)
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a(Ar)”
+ _—
2AB(a)T (a + 3)
» 6 PIp(t, S, 1, 1, I, I, I R, DV, V)
< Y | =2 Ity LI I I I I R DL V)

r=2 +ty1~_72ﬂIADl(tr72) S}LZ) IV?Z) 12_21 13_27 1;3_2) 1;"_2) Rriz) Dr721 Vriz)

—re 1 [2(194)2 + (B + 10)(p—r)i|

+20% + 9o + 12

X
1) 2(p —r)? -Zr (50 +10)(p - 1)
+6a” + 18a + 12
1 l-« 1-85
o AB(a)tp PIr(ty, P, 1P, 1, 10, I, I, RP, DP, VP)

a(AL)® 2. e
+ t To(t. ’SV’—Z,Ir—2,1r—2’1r—2’IV—Z’IV—Z, RV—Z’DI‘—Z’ VV—Z
AB(oc)F(oz+1)rX=2: -2 lltr-2 A b IR T )

X [(p—r+1)°‘—(p—r)°‘]

a(AL)¥
T AB@)T(a +2)

|ty D Tptyo, S22, I L2 12, 12, R, D2, V72)

i [ £ oy, L, 17 L, I I, 1 R, DL, Y }
-p-r*p-r+3+3a)

a(Ar)”
T 2AB@)(a + 3)

y |:(p—r+1)°’(p—r+3+2a):|

» P Ixt,, S, 1, I, Iy, I, I, RT, D, V)
X Z —Zt::fIR(tr_l,Sr_l,lr_l,lz_l,15_1,113_1,1;71,Rr_l,Dr_l, Vr—l)
=2 |+t IRty ST I IS I I R2, D2, V2

o—r e 1" [2(,;-@2 + (3a + 10)(p—r)j|

+20% + 9o + 12

X
o 20 =1+ (50 + 10)(p — 1)
- [ +602 + 18 + 12 }

1- -
B == (Z) 8P I (6, 217,18, 10, 1, 10, RP, DP, VP
a(At)a - 1-B7- r=2 qr-2 qr-2 gr-2 gr-2 -2 pr-2 pyr-2 r—=2
+m2t,_2h(t,,2,5 I I I I R D, V)
o o+

r=2
X [(p—r+ 1)* —(p—r)“]
a(AL)¥
T AB@)M(a +2)

5 i [ 8L T (b, L, I I I I 1 R, D, V) }

N, T (b, S22, I, I 2, I 2, I, R, D2, V72
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—(p-r*(p-r+3+3a)

a (AL~
T 2AB@) (@ +3)

» |:(p—r+1)“(p—r+3+2a):|

» t, P It ST, 17, I, Iy, I, I, RE, DV, V)
<Y | =2, LTyt LI I I I I R, DL VY
=2 | It ST I I I I, R2, D2, VT2

o | 20=1)?+@Ba+10)(p-7)
p-r+1) +20% + 9 + 12 j|

* Ly |20+ e+ 100 1)
+60% + 180 + 12

1- ~
. IF(S)t;‘ﬁR(tp,SP,IP,Iﬁ,I’,S,Iﬁ,I’},RP,D”, v?)
a(At)” NP
t R(¢t._ ’Sr—Z,1r—2’1r—2’1r—211r—2,Ir—2,Rr—2,Dr—2’ Vr—Z
+AB(a)I‘(a+l)§'_2 (t-2 A b iR T )
x[p-r+1)*-(p-r]
a(AL)~
+ e —
AB(a)T (o +2)
i t}__fﬁ(t,«_l,Sr_l,lr_l,12_1,18_1,[13_1,1;:1,Rr_l,Dr_l, Vr—l)
— —trl__fﬁ(tr_z, §2, -2 12—2’ 74,72, 72, R2, D2, Vr2)
» p-r+1)*(pp-r+3+2)
-p-r*p-r+3+3a)
a(At)”
+ e —
2AB(a)T (a + 3)
» tr PRt S I, I, Iy, I, I3, R, DY, V)
x ) | =26 Ry, S 0L I I I I R, DL VY
r=2 +ti_—ffé(tr72,SV—Z,IV—Z,12—2’]B—Z,11;;—2’1;—2’Rr—2’Dr—2’ Vr—Z)
0—r 1) 20 -r)? +(Ba+10)(p—7)
+20? + 9a + 12
X
(1) 2(p —r)? + (5o + 10)(p —7)
+6a2 + 18a + 12
1- ~
1= (2‘) 8P D(t,, S, 1, 1, 15, 15, 15, R, P, V)

Ol(At)o‘ - 1-B7 r=2 gr=2 gr-2 pr-2 -2 =2 pr-2 pyr-2 -2
S 6 D(ta, S I I I R, D VT

" AB(@)M(a+ 1) &

x[p-r+1)*-(p-r°]

a(AL)~
" AB@)T(« + 2)
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p t::{zi‘j(tr_l’Sr—l,lr—l,lz—l’IB—I’I;e—l’I;w—l,Rr—l’Dr—l’ Vr—l)
x Z _tlfﬁlﬁj(t Sr—Z 1r—2 1r—2 1r—2 Ir—2 [r—2 Rr—Z Dr—z Vr—Z)
r—2 -2 ) »iq sdp Hdp AT ) )

r=2
p-r+1)*p-r+3+2a)
X
-p-r*p-r+3+3a)
a(AL)~
+ e —
2AB(a)T (a + 3)
» 4D, S0 I Iy I I, R D, V)
X Z _2t)}:fD(tr_l,Sr—l,[r—l’IA—I’IE—I’IE—I,I;—l,Rr—l’Dr—l’ Vr—l)
r=2 +tr1:2ﬂD(tr_2, Sr—2,Ir—2’12—2,15—2,11r€—2’[;—2,Rr—2’Dr—2’ Vr—2)

o | 20 =7)+ (Ba +10)(p - 1)
w-r+1) [ +202 + 9 + 12 :|
2(p—r)2+(5oz+10)(p—r):|

X
— _ra
P-n [ +60 + 18 + 12

1- ~
vl — (z) BBV (6, 2,12, 1, 15, 15, 12, RP, D, V)

Ol(At)a - 1-B77 r=2 qr=2 gr-2 pr-2 -2 -2 pr-2 pnyr-2 -2
N TV (b, ST I I I R, D VT

T AB(@)M(a+ 1) &

x[p-r+1)*-(p-r°]
a(AL)~
T AB(@)T (o +2)

)4 |: t}:{g V(t,«_l,Sr_l,lr_l,lz_l,15_1,112_1,1%_1,Rr_l,Dr_l, Vr—l) :|

X 1-875 9 e e -2 -2 g _ _ _
; —tr_fv(tr—z;sr LI I I I, RT3, D2, VT 2)

y p-r+)*p-r+3+2a)
—(p-rN*(p-r+3+3a)
a(At)~

+ e —

2AB(o)"(a + 3)

» &PV, S, I, I, I I RE, DV, VT

x Z —21’:__{3 ‘7(1';«,1,Sr_l,]r_l,1271,1671,1;{1,];:1,Rr_l,Dr_l, Vr—l)

r=2 +t:__2ﬁ V(tr,z, Sr—2’IV—Z,12—2’117)—2,1]};—2’1;—2’Rr—2’Dr—2, Vr—2)

20 -1+ (Ba+10)(p—-7)
+202 + 9 + 12
2p—1)? + (50 +10)(p — r)j|

(p—r+1)°‘|:
—(p—r)o’|: +602 + 18a + 12

X

For the power-law kernel, we have the following:

1 p brel ~
Sp+1 = m Z/ S(T: S,I,IA,ID,IR,IT, RyD; V)(tp+1 - 1.)01—11,1—/3 dT:
o 4
r=2 r

1 p tr+1~
Ip+1 = m Z/ I(T’ S;I’IAlele)IT; R,D) V)(tp+1 - T)a_ltl_ﬂ dty
o tr

r=2
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1 p tr+1
AR I Z/ (0,8,1,1a, Ip, I, I, R, D, V) (tps1 — T)* 221 P dt,
Ol
r=2
p+1 1 & [ a-1_1-f
T Z In(e, 81,14, Ip, I, 1, R, D, V) (tps1 = 7) d,

1
e p— Zf Ix(T,8,1,1a, Ip, In, I, R, D, V)t — 7)* L1717 dt, (5.30)

._J

tre1

1 g ~
I[T?'+1 = m Z/ ]T(T,S,I,]A,ID,IR,IT,R,D, V)(tp+l - T)ailrliﬂ dT;
=3 Vir

p

1 tr+1

R = s 2 f R(x, 81,14, Ip, I, I1, R, D, V)t — 1) e P

o ¢
r=2 v

1 » trel ~
Dp+1 ey Z/ D(T,S,I,[A,ID,IR,IT,R,D, V)(thrl - 1')a_l‘tl_ﬂ dTr
r=

trel ~
/ V(t,8,1,14,Ip, I, IT, R, D, V) (tps1 — 7)* 7' P d.
We can get the following numerical scheme:

A &
SP+1 (a -2 1 Z ti r 2,Sr—2’Ir—z’szz,Igfz,II}%fz’I?fz’Rr72,D}"72, Vr—2) (5‘31)
r=2

x [(p—r+ 1)"‘—(p—r)"‘]

(At i 1 ﬂS(tr 1’Sr—l IV—I’IQ—I’IE—I,IE—I’I;—I,Rr—l’Dr—l’ Vr—l)
F(O[ + 2) : iBS tr 5,8 2’1r—2’]2—2’16—2,I;—Z’I%—Z’RV—Z,Dr—Z’ VV—Z)

r=

o p-r+1)*(p-r+3+2a)
—-(p-r)*p-r+3+3a)

(At)a P - trl'_ﬁg(trvSr;Ir)1211£111’é11;":Rr1Dr¢ Vr)
> | 2078, L L I I L I L L R DL VY
ZF(O{ +3) r=2 +t17ﬂ§(t Sr—2 1r—2 Ir—2 [r—2 1r—2 1r—2 Rr—Z Dr—2 Vr—Z)
r—2 r—2> ’ Ly sdp Hip T ’ )

o201+ @Ba +10)(p - 1)
-r+l) +20% + 9o + 12 }

X
o |20 =1)?+ (5a +10)(p - 1)
-7 [ +602 + 18 + 12 }

Af)
J o 71“((04 = Ztl_ﬁl by, ST L I I I, R, D772, V7 ?)

x [(p—r+1)°‘—(p—r)°‘]
I(t LSl Ir—l Ir—l,[Ire—l’IrT—l’Rr—l,Dr—l’ vl
r(a + 2) Z |:—t,1 Wby, S22, 172 152, 12 172, R 2, D2, vr—z)}
y |:(p—r+ 1)"‘(p—r+3+2a)i|
—p-rN*(p-r+3+3a)
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A & 6T S I T I, R D V)
+ Z _Ztrl:f[(tr—bsr_lx[r_lylz_lylg_lyl;g_l,IrT_l,Rr_l,Dr_l, Vr—l)
2F(Ol +3) r=2 +t1_ﬁ7(t Sr—2 Ir—Z IV—Z Ir—2 [r—2 Ir—Z Rr—z Dr_z Vr_g)
r-2 £30r=2s o4y dp AR AT ) )

.| 20=1)?+@Ba+10)(p-7)
y p-r+1) [ +202 + 9o + 12 }
1) 2(p —r)? + (5o + 10)(p —7)
' +60% + 180 + 12

14
P+l _ (Ar)® 1-g7 r=2 =2 -2 -2 -2 -2 pr-2 pyr-2 yr-2
Iy —mrE:zt,_zlA(t,_z,s T I I I R, D, VR

x[p-r+1)*-(p-r°]

(AR i |: l’:__fj:;(tr,bSril,lrfl,Iz_l,Ilr)_l,Ilr{l,];w_l,erl,Dr*l, %) :|

+ = ~
[(a+2) 8 P L, ST I, 2 I3 I, R, D2, VT2)

o [(p—r+ 1)“(p—r+3+2a)j|

r=2

—-(p-r)*(p-r+3+3a)

p trl'iﬂj;(tri SV,IV’IQ,IB,IIYQ’I;",RV,DF, Vr)

At)* ~
+ # Z _Ztrl:f}]A(tr_bSr—l,lr—l,lz—l,Ig—l’IE—I’ISW—I,Rr—I’Dr—l’ Vrfl)
2F(Ol + 3) r=2 +t17ﬂ1~ (t Sr—2 1r—2 IV—Z Ir—2 [r—2 Ir—2 Rr—2 Dr—2 Vr—2)
r—2 LA\br=2> ’ Ly sdp Hip i ’ ’
01+ 1) 2(p—r)2+2(3a +10)(p - 1)
+20 + 9o + 12
X
2p-7)%+ (5o +10)(p—7)
-p-n" )
+6a” + 18a + 12

At g~
1p£)+1 _ ( ) Z tl QﬂID (trfz, S"Z,["2,12‘2,115_2,IE_2,1’T‘2,Rr_2,D'_2, Vr—2)

r—

x[p-r+1)*-(p-r]

GYS i [ t L Ip(tyoy, SL I I I I I R, DY, v }
o +2)

— _t::fj;)(tr_z,sr—Z,Ir—2’[2—2’15—2’1};—2,15:2,Rr—2’Dr—2’ VV—Z)

-p-rN*(p-r+3+3a)
t P Ip(t, S 1, 1, Iy, I, I, R, DY, V)

(A & e
+— 2t In(t,. ,Sr—l’Ir—l’Ir—l’Ir—l,Ir—l’]r—l’Rr—l’Dr—l’ Vr—l
21"(a+3)r2=2: -1 Io(tr A 2Ip IR 0T )

o |:(p—r+ 1)"‘(p—r+3+2a):|

+t:_2/31;(tr72’SV—Z’IV—2,12—2,16—2’112—2’1;—2’Rr—2,Dr—2’ Vr—Z)

N 20 -r)?+(Ba+10)(p—-7)
p-r+1) [ +202 + 90 + 12 }

2p 1) + (5 + 10)(p — r)j|

X

-7 [ +60% + 18 + 12

« P
p+l _ (At) 1-877 r=2 pr=2 r-2 -2 =2 =2 pr-2 pr-2 y/r-2
I —mgt,,2lR(t,_2,s I I I I R, D VR
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x[p-r+1)*-(p-r°]

. (At)oz i t::fi['i(tr_l,sr—l,Ir—l’12—1’15—1,112—1,15‘—1,Rr—I,Dr—I’ Vr—l)
T(a+2) £ PRty 0, S22 2 152, 2, 152, RT3, D72, VT 2)

9 |:(p—r+ 1)“(p—r+3+2a):|

r=2

—(p-r*(p-r+3+3a)

» t P Ix(t,, ST, 17, I, I, I, I, RV, DY, V)

At)* ~
+ i Z —Ztrl:f[R(t _1,Sr_1,1r_1,I:l_l,[B_I,I};_I,I;Tl,Rr_l,Dr_l, %80!
2F(Ol +3) r=2 1-g7° r=2 pr=2 qr-2 gr-2 gr-2 jr=2 pr-2 pyr-2 /-2
+tr721R(tr—2)S :[ ’IA ’ID ’IR 1[T ,R ;D :V )
0—r 1) 2(p - r)? +2(3a +10)(p—7)
+20* + 90 + 12
X
2(p —r)? + (5o + 10)(p —7)
-1y )
+60° + 18c + 12

(AL N g~
11}+1 _ F(( )1) Z i—f]T (tr_z’Sr72,1r72,1272715—2’IE—Z,I;—Z,R;‘—Z,DV—Z, Vr72)
o+
r=2

x[p-r+1)*-(p-r°]

(AD)* i [ E P (o, S L I I I, I R, DL, v ]

+ = ~
Dl +2) & |~ 5 I (b, S22 I 15 2 I 2 12, R2, D2, V7 2)

y |:(p—r+ 1)“(p—r+3+2a):|

~

r=2

-p-r)*p-r+3+3a)

p trl'iﬁj;"(trrSrrlr:I:pIB)I]rng;WRr)Dr) Vr)

Ab)* ~
+ % S 2o iy, S I I I L R DL VY
r=2 +t::§1T(tr_2’SV—Z,I;"—Z,];;—Z,16—2’IE—Z’I;—Z,Rr—Z’Dr—2, Vr—2)
2(p-1)? + (B +10)(p —
(p—r s 1y |27 Gt 10 -1)
+2a” + 9a + 12

X
o |20 =1+ (5a +10)(p - 1)
~-n [ +602 + 18 + 12 }

AL N~
RPHL = % Z t}_ 213 R(tr,z, S, 12 2 2 12 [ R D2, Vr—z)
r=2

x[p-r+1)*-(p-r]
(A G| BRI I L R D v
+ F(O{ + 2) Z _tl—ﬁjé(t Sr—2 1r—2 IV—Z IV—Z Ir—2 [r—2 Rr—2 Dr—Z Vr—2)
=2 r—2 r=2» ’ »iq odp Hdp AT ’ )
y p-r+1D)*p-r+3+2a)
-p-rN*(p-r+3+3a)
(A 2 R ST I I I, R, DL V)
+—7 Z —2t}}__f3R(tr,1,Sr_l,Ir_l,1271,1571,11271,1;:1,Rr_l,Dr_l, Vr—l)
ZF(OI + 3) r=2 +t1_ﬁﬁ(t Sr—2 1r—2 1r—2 1r—2 17—2 Ir—Z Rr—2 Dr—2 VV—Z)
r—2 -2 ) »Aq odp Hdp AT ) )
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.| 20=1)?+Ba+10)(p-7)

y (p—r+1)|: +202 + 9o + 12 :|
o | 20=1)?+ (5a +10)(p - 1)

_(p_r)[ +602 + 180 + 12 }

At s~

Dp+1 = F(( ) 1) Z ti—fD(tr—b Sriz;Iriz’1,272715727Iﬁiz)l;iz’Rriz)DFz? Vriz)
o+

r=2

x[p-r+1)*-(p-r°]

(207 [ G Dlty1, 4,0 I I 1 R, DL V) ]

+ = ~
I(a+2) £ Dt 2, L I, I 2, 12, I, R, D2, VT-2)

y |:(p—r+ 1)“(p—r+3+2a)i|

r=2

-p-r)*p-r+3+3a)

B 2 ~ t P D(t,, S, 1", I, I}y, I, I, R, D7, V)
t Y 2 D, S I I I I R, DL v
r=2 +t::§5(tr_2’SV—Z,]r—Z,12—2’13—2’11;;—2,1%—2,RV—Z,Dr—Z, Vr—2)

.| 201+ @Ba +10)(p - 1)

5 (p—r+1) [ +202 + 90 + 12 }
o |20 =1+ (5a +10)(p - 1)
_(p_r)[ +602 + 18 + 12 }

p+1 (At)a C 1-877 r=2 qr=2 pr=2 -2 pr=2 -2 pr-2 pr-2 y,r-2
VPl e N TV (b0, S I I I I R, D V)

x [p-r+1)" = (p-r°]
(AD)” i [ PV (e, S, 170, 7 1, 1Y, 7 R, DL, e ]

— _trl—_zﬁ 'V(tr_z,sr—Z’[r—2,12—2,15—2,11)é—2’[;—Z,Rr—Z’Dr—2’ Vr—2)

—(p-rN*(p-r+3+3a)
(A 2 6 VS I I T I, R D V)
+ m Z —Zt}:f V(tr,l,Sr_l,Ir_l,1271,1871,11271,1571,Rr_l,Dr_l, Vr—l)
o+ ~
r=2 +l’:__£ V(tr,z,Sr_z,lr_2,1272,1£72,I£72,1972,Rr_2,Dr_2, VV—Z)

y |:(p—r+ 1)"‘(p—r+3+2a)i|

.| 20=1)?+@Ba+10)(p-7)
y p-r+1) [ +202 + 9 + 12 :|
- 2(p—r)? + (5o + 10)(p —7)
+602 + 18 + 12

Now, we handle the following model:

SMDIPS = A~ (o) +y1 +411)S,
gFMD?’ﬂ[ =ax)S—-(e+&+ A+ u)l,

FEMDOP Ly = 61— (6 + o+ x + p1)La,
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Figure 41 Numerical visualization for Covid-19 model in South Africa for & = 0.9, 8 =0.75

gFMng/’]D =el—(n+¢+u)lp,
FEM DY [0 = nlp + 014 — (v + & + 1),
FEMDOP I = ply +vIg — (0 + T + ),

6 MDY R = A+ @lp + XIa + Elx + oI — (® + 1R,
FMDYPD = ¢y,

FEMDIPY — S+ @R — 11 V,

where the initial conditions are

S(0) = 57780000, 1(0) = 1, 14(0) =1, Ip(0) =1, Ix(0) =1,
I7(0) =1, R(0) =0, D(0) =0, V(0) =0.

Also the parameters are chosen as follows:
A =57000000, k=3, p=0.5, n=0.12, x =0.015,
v=0.027, x =04, 6 =0.301, y =0.09, B =0.013,
1 =04, u1 =023, ¢ =0.161, & =0.015, o =0.015,
T =0.0199, ®=0.2, A =0.0345, ¢ =0.0345, 81 =0.01.

We present a numerical simulation for Covid-19 model in Figs. 41 and 42.
In Figs. 43 and 44, the initial conditions are chosen as

§(0) = 81000000, 1(0) = 1, 14(0) = 1, Ip(0) =1,

Ir(0)=1, RO0)=0, D0)=0, V(0)=0.

Ix(0) =1,

(5.32)

(5.33)

(5.34)

(5.35)
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Figure 42 Numerical visualization for Covid-19 model in South Africa for o = 0.7, 8 = 0.75
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Figure 43 Numerical visualization for Covid-19 model in Turkey for & = 0.9, 8 = 0.75

Also the parameters are

A =80000000, k=2, p=05, n=0.12, x =0.015,
v=0.027, x=0.4, 6 =0.301, y =0.09, B =0.013,
(5.36)
y1 =04, n1=0.3, ¢ =0.161, £ =0.015, o =0.015,
T =0.0199, ¢ =02, A =0.0345, ¢ =0.0345, 6; =0.01.

We present a numerical simulation for Covid-19 model in Figs. 43 and 44.
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With Lockdown

e | 1)
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Figure 44 Numerical visualization for Covid-19 model in Turkey for o = 0.7, 8 = 0.75

6 Optimal control for Covid-19 model

Optimal control theory provides us important contributions in controlling Covid-19 out-
break. In this section, we will use 7 control variables as 7 possible control strategies to
reach our aim. The control variable u; is the partial lockdown of schools, travel, universi-
ties, some businesses in Turkey. Also the government applies partial lockdown differenti-
ated by age of people and sometimes states where the spread of virus is high. The control
variable u, is the vaccination which is applied to susceptible individuals. The control vari-
able u3 is the information campaign to people that have symptoms but not have been
tested. The control variable u, is the treatment for the infected individuals. The control
variable us is the personal protection which is achieved with masks, sanitizer, and other
means. The control variable i is the self-quarantine of exposed people. The control vari-
able u; is the isolation of infected people.

We modify our model by adding these control variables:

. kipe™
S=A- N (l—ul)(1+w(,31D+yIA+811R))+y1+ul S

- u5$ - MzS + M7IR - M6S,

- kipe™

I (L =) (I +w(BIp + yIa + 81IR))S — (e + & + A + 1)1,

Lo=E1— O+ p+ x + )l — usla,

Ip=el-(+¢+u)lp,

In=nlp+ 0Ly — v+ & + pu1)lg — tirlg — ualg + UgS, 6.1)
I = ply +vIg = (o + T + )7,

R =M+olp+ xlg+EIr + o7 — (D + w1)R + ugdp + usS + uszla,
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D = TIT,

V:ylS+<I>R—,u1V+qu.

In this paper, we aim to minimize susceptible, infected, critically infected, asymptomatic
people, and to maximize recovered people while minimizing the costs caused by the par-
tial lockdown, vaccination, information campaign, treatment, personal protection, self-
quarantine, and isolation. Thus, we construct the cost functional as follows:

min ](uly U, U3, Us, Us, U, M7)
(w1 ,u2,u3,uq,us,ue,uz) el

~ /T (mS + pol + p3lr + pala — psR + 113 + ﬂzu%) 0
0

+T3US + UG + TsUE + MU + U3

on the set of admissible controls

(1, t, U3z, U, Us, U, U7) € L%(0, T) x L>°(0, T) x L*(0, T)
U= XL®(0,T) x L*(0,T) x L*®°(0,T) x L*(0,T) : 63)
- 0 < ui(t) <1,0 < up(t) <0 < us(t) <us, ’ )

0 < us(t) < s 0 < us(t) <0s,0 < ue(t) <, 0 < uz(t) <y

The parameters p1, P2, 03, P4, P5, 1, T2, T3, Ta, s, e, T7 represent the weighted parame-
ters.

To show the existence of the optimal control for the problem under consideration, we
notice that the set of admissible controls U is, by definition, closed and bounded. It is
obvious that there is an admissible pair (uy, uy, u3, ua, us, us, u;) for the problem. Hence,
the existence of the optimal control comes as a direct result from the Filippove—Cesari
theorem [17, 18].

We prove that the existence of an optimal control of an optimal control is guaranteed
by providing the following conditions:

+ The set of admissible controls is convex, bounded and closed.

« The set of controls and corresponding state variables is nonempty.

« The right-hand side of the state ODE system is bounded by a linear function in the

state and control variables.

+ The convexity of the integrand of cost functional with respect to u on the set U. The

Hessian matrix of this functional is given by

2mr; O 0 0 0 0 0
0 2my O 0 0 0 0
0 0 273 O 0 0 0
H=| 0 0 0 2m O 0 0 (6.4)
0 0 0 0 275 O 0
0 0 0 0 0 2m O
0 0 0

0 0 0 2ny

Since the Hessian of of this functional is everywhere positive definite, the functional

J(u1, g, us, ua, Us, Ug, u7) is strictly convex.
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There exist a constant = = min{my, 775,73, 74, 5, 76, 77} > 0 such that the integrand of the
cost functional satisfies

5, 2 2 2 2 2 2 2
J(U) = myuf + ol + W33 + Malky + T5Us + Telg + 715

+ 018 + pol + P31 + pada — psR (6.5)
> T U+ QU + T3US + T4ls + T5UE + TeU2 + U2
2,2, 2, 2 2 2 2

> r (] + U3 + Ug + Uy + Uz + ug + 1u3)
under the condition p1S + pof + p3lg + pals > psR. Applying the Pontryagin’s maximum
principle, we present the first order necessary conditions for an optimal solution for the
considered optimal control problem. To achieve this, we construct the Hamiltonian H,
which is given as

H= nlu% + 7T2M% + 7T31/£§ + 714142 + ﬂgué + 716u2 + 7T7I/l$

+ 018 + o2l + P30 + pads — psR

(A () — ) + w(BIp + yIa + 611R)) + Y1 + 11)S
! —M5S - qu + M7IR - I/t65

+ Ao (8L = un)(I + w(BIp + 1 + 811p))S — (€ + & + A + pu1)I)

+A3(E1— (0 + p+ X + p1)la — usly) (6.6)
(eI~ (n+ ¢ + w)lp)

+ A5 (nID +0I4 — (V+ &+ u)lg —usdp —ugdp + u6S)

+ )»6(LLIA +vip—(oc+T+ ,ul)IT)

+ )»7(M +@lp + xIq + EIg + ol — (D + w1)R + ugdp + usS + MgIA)

+Ag(Y1S + PR — 111V + uyS).

Then there exists A € R” such that the first order necessary conditions for the existence of
optimal control are given by the equations:

d}\.l oH —Us — Uy — Ug

dt S +A2(8(x)(1 —u)(I + w(BIp + yIa + 811r)))
+)»5I/l6 + )\7”5 + )\.3(142 + )/1)

((S(x)(l —un)(I+w(BIp + yLy +81Ip) + v + m))
P1— A1

dr,  OH P2+ A1(8(X)(1 = u1)S) + A2 (B(x) (1 —u1)S — (€ + & + A + 1))
dt ol +A3E + Age + AgAL

drs _ OH Pa+ (A1 + 22)8(x)(1 = ur)wy S+ As(=(0 + pu + x + 1) — u3)

dtr 3l +As0 + Aot + A7 (x + u3)

dx OH

== = O+ A2)8()(L — u)WBS — a(n + @ + 111) + hst) + Az}, (6.7)
dt dolp

d)\.5 oH pP3 + ()\1 + A2)8(x)(1 - ul)w81S + AUy

dt ol “As((V+ & + 1) + uy + ug) + AgV + A7 (€ + uy)
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=
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— =

oH
alr
oH
oR
oH
aV
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= _{—)%(cr +TH U+ )»70},
= —{-05 = A7 (® + 1) + gD},

=—{-Agu1}.

Hence the optimal controls are given as

u

125

Uus =

_ Ir(#)(A5 = A7)
Uy =

Us

Ue

uz

2]T1

_ S() (A1 — Asg)

27'[2

Ii(£)(A3 — A7)

277.’3

27'[4

_ S (A — A7)

27‘[5

SO0~ 3s)

277.’6

_ I(t) (A5 — A1)

27'[7

_IOS@)(3 +22)

’

and optimality conditions are given by

u} = min
w5 = min
u3 = min
i, = min
uf = min
uy = min
u5 = min

7 Discussion, recommendations, and conclusions

The Covid-19 fatality on mankind prompted undertaking serious investigations covering
various aspects within several fields of science, technology, and engineering in the last 4
months. While researchers have obtained some successful results, they are still struggling
to get an effective vaccine that could prevent the spread of the deadly Covid-19 among
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human beings. From December 2019 to 30 April 2020, there were 3441767 confirmed in-
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fected cases, 1097858 recovered, and 243922 deaths worldwide, among which 6336 con-
firmed cases, 2549 recovered, and 123 deaths were recorded in South Africa, while 124 375
confirmed cases, 58259 recovered, and 3336 deaths in Turkey. South Africa registered its
first confirmed case of Covid-19 before Turkey on 5 March 2020, while Turkey witnessed
its first case on 11 March 2020. The unfolding of the spread of Covid-19 in both countries
has defeated the general expectations that South Africa would record more infections and
deaths compared to Turkey. As a result, endless scientific questions were asked within dif-
ferent fields of science, which impelled the compilation of this paper to present critical
and comprehensive studies with cases studied in South Africa and Turkey in particular.
Although both countries have put in place severe measures to protect their citizens, the
predictions from the suggested mathematical models and statistical analysis show two dif-
ferent patterns for both countries. For instance, in Turkey, a high and exponential growth
in newly infected from 11 March 2020 to 11 April 2020 was observed due to late imple-
mentation of the lockdown regulations; however, from 12 April 2020 to 2 May 2020 this
country has observed an exponential decay in the daily numbers of new infected cases.
Thus, Turkey curve seems to follow a lognormal distribution, which, of course, could mean
that it is winning the Covid-19 war or that it took control of the situation. As a result, it
is possible that Turkey in the next few months could end the spread of Covid-19, if it
maintains the energy and adheres to the measures in place to combat this virus. How-
ever, if it relaxes, the prediction from reliability level method indicated that Turkey could
see a very rapid exponential growth in numbers of daily deaths and new infections. Fur-
thermore, it is observed that the exponential decay in the daily number of new infected
and death cases corresponds to the period of lockdown implementation and the stringent
rules put in place by the Turkish government, by which the contravening to the rule is
punishable with a monetary fine. On the other hand, in South Africa, although the num-
bers are not as high as those of Turkey, three phases are observed from statistical results.
The first phase goes from 5 March 2020 to 27 March 2020, where the country witnessed
an exponential growth in numbers of new infected and deaths daily; and it corresponds
to a pre-lockdown period. The second phase began on 28 March 2020 and lasted until
18 April 2020, in which the country observed a slow increase of new infected and dead
daily; a period corresponding to lockdown period enforced with the presence of South
Africa Defence Force. The last phase ranges from 19 April 2020 to 2 May 2020, in which
the country observed an exponential growth in numbers of new infected and dead per
day. This exponential growth is attributed to the relaxation and disobedience of lockdown
regulations, probably due to economic breakdown, increasing poverty effects among the
larger population, and also due to migration from level five to level four on 1 May 2020.
Therefore, as the provision of a suitable vaccine to save and protect human beings, the
wrath and fatality of the deadly Covid-19, which broke-out in Wuhan, China, in Decem-
ber 2019 is delayed, it is clearly evident that the exponential growth in numbers of new
infected can only be stopped or halted by enforcing the implementation of social distanc-
ing and ensuring that people do frequently wash their hands upon touching any object or
even animals, whether infected with Covid-19 or not. Additionally, the wearing of masks
should be adopted in public places to avoid the spreading of the virus, in case the social
distancing rules are not being kept. It is further paramount that the medical workers in
charge of Covid-19 patients are well protected to minimize the contraction of the virus
from the patients and passing it on to the general public. In addition to the prohibition of
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alcohol sales and usage in public places, public smoking should also be prohibited in the
effort to combat the spread of Covid-19. Moreover, the statistical analysis results, specifi-
cally the reliability level prediction and the results obtained from suggested mathematical
models, indicated that without social distancing restrictions or clear implementation of
lockdown regulations, it will be impossible for countries to control the spread of Covid-
19. This implies that the number of new infected and deaths per day would be difficult to
contain, resulting in the fight against the virus getting out of hand. These outcomes from
reliability level are therefore indicated in blue lines in Figs. 18, 19, 20, 29, and 30 those
from reliability level. The suggested mathematical models with different differential op-
erators, including classical and nonlocal operators in the last 12 figures, considered with
lockdown and no-lockdown and presented for different fractional orders, also confirmed
the results obtained from the reliability level. In consideration of all prediction results,
it is concluded that South Africa has not yet won the war against Covid-19 and serious
outbreaks are expected in the near future as the climate season changes to winter. Cold
seasons are scientifically proven to be a thriving climate for the survival of coronavirus.
Therefore to avoid this foreseen crisis, social distancing must be a responsibility of each
person living within the Republic of South Africa, and the transition from level 5 to level
1 should be implemented very wisely.
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