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Abstract
According to the World Health Organization reports, tuberculosis (TB) remains one of
the top 10 deadly diseases of recent decades in the world. In this paper, we present
the modeling, analysis and simulation of a mathematical model of TB transmission in
a population incorporating several factors and study their impact on the disease
dynamics. The spread of TB is modeled by eight compartments including different
groups, which are too often not taken into account in the projections of tuberculosis
incidence. The rigorous mathematical analysis of this model is provided, the basic
reproduction number (R0) is obtained and used for TB dynamics control. The results
obtained show that lost to follow-up and transferred individuals constitute a risk, but
less than the cases carrying germs. Rapidly evolving latent/exposed cases are
responsible for the incidence increasing in the short and medium term, while slower
evolving latent/exposed cases will be responsible for the persistent long-term
incidence and maintenance of TB and delay elimination in the population. The
numerical simulations of the model show that, with certain parameters, TB will die
out or sensibly reduce in the entire Democratic Republic of the Congo (DRC)
population. The strategies on which the DRC’s health system is currently based to
fight this disease show their weaknesses because the TB situation in the DRC remains
endemic. But monitoring contact, detection of latent individuals and their treatment
are actions to be taken to reduce the incidence of the disease and thus effectively
control it in the population.

Keywords: Tuberculosis; Mathematical model; Modeling-simulation; DRC;
Equation-based model; Differential equations

1 Introduction
The study of the infectious diseases dynamics is one of the most important and essential
tasks to be done in order to have a good understanding of the emergence of diseases in
a population. If until now, there are diseases that continue to ravage populations in low-
and middle-income countries, such as the Democratic Republic of the Congo (DRC), it is
largely due to the lack of understanding of the dynamics of these diseases. Despite govern-
ment efforts and extensive research to control tuberculosis (TB) transmission in Congo,
the disease continues to spread and settle in various parts of the country. The study of
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the spread of diseases allows decision-makers to try to eradicate them in the population
based, for example, on the results of simulations or any other experiments. This way can
also help to make predictions and thus to make a good decision at the right time. Efforts
are made each year and funds are used to reduce the burden of TB, for its control through
the TB stop strategy from 2015 for its elimination in 2035 in line with the Sustainable
Development Goals (SDG) of the United Nations (UN) which focus on the global tuber-
culosis epidemic elimination. The global report 2018 [1] recently confirms that this UN
Sustainable Development Goals and End TB Strategy targets for 2035 cannot be met with-
out intensified scientific research. The DRC has also entered this program line [2], despite
the low resources in its possession.

Tuberculosis is a global public health problem. The 2018 World Health Organization
report [1] shows that nearly a third of the world’s population is infected with tuberculosis,
with millions of deaths as well as millions of new cases of infection each year. That report
confirms that tuberculosis is one of the top 10 causes of death worldwide. For example in
2015, 10.4 million people contracted TB and more than 1.5 million died from the disease,
including 0.4 million among people with HIV (Human Immunodeficiency Virus). Over
95% of TB deaths occur in low- and middle-income countries. Recently, the WHO reports
confirm that DRC is one of 22 countries the most infected by TB and is one of 27 states
which support 85% of estimated number of multi-resistant TB in the world. The report
indicates that more than 130,000 infected new cases are reported each year in DRC. This
situation is due to a misunderstanding of the dynamics of the disease. It is therefore crucial
to put in place strategies and methods to easily understand the transmission of this disease
in order to anticipate its evolution. This disease is caused by Mycobacterium tuberculosis
[3]. It should be noted that the TB usually spreads by coughing, sneezing, kissing, spit-
ting of people with active pulmonary TB. The infection also spreads through the use of
non-sterilized utensils (dishes, drinking glasses) of an infected person. It mainly attacks
the lungs for pulmonary tuberculosis, but can also affect other organs of the human body,
including the central nervous system, the circulatory system, the genital urinary system,
bones, joints and even the skin [4, 5]. In some cases, an infectious pregnant woman may
infect the fetus [6]. Only people with active TB can transmit the disease. The latent in-
fected cases do not transmit it. Transmission from one individual to another depends on
the number of infected and expelled drops, the activity of environmental ventilation, the
duration of exposure to the risk of contamination, and the virulence of the Mycobacterium
tuberculosis [4, 7, 8].

In order to identify ways to control diseases in the population, several studies have been
conducted in mathematics [9–14]. Mathematical models are developed and applied in
ecology, and also are used to understand epidemiological phenomena [15, 16]. One of
the main objectives of these mathematical models is to try to understand how a given
disease spreads in the population, in order to try to eradicate it in the future [17]. In other
words, mathematical models attempt to answer the question of how to control a disease
(prevention and surveillance) in the population.

Several mathematical models of tuberculosis have been developed [18]. These models
have a significant role to play in the process of controlling TB worldwide that is ongoing. In
the literature, these mathematical models are compartment one. Compartmental models
are used since years. The Kermack and Mac Kendrick model is one of those models on
which current models are based [19]. Most of TB models we find in the literature are
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of the SIR [20] or SEIR type [21–26]. Basically, there are groups or class of individuals,
each group has a status that characterize it as susceptible (S), latent (E), infectious (I) or
recovered (R). The transition of individuals from a group to another is generally defined
by a proportion and/or a rate.

In this article, we model, analyze and simulate a mathematical model of the dynamics
of pulmonary tuberculosis with eight compartments that include groups of individuals
lost to follow-up and transferred. The basic reproduction number is obtained and used to
propose ways to control TB in the population. Being a general and adaptable model for
different contexts and scenarios, the objective here is to contribute to the understanding
of TB dynamics in the population and provide materials that can be used to strengthen TB
control strategies. So, this article is structured as follows. First, we present the description
of the proposed model, then we present its mathematical analysis. Here we show the posi-
tivity of the solution, its existence and uniqueness, the computation of equilibrium points
(DFE and EE), the basic reproduction number R0 and the stability of equilibrium points.
Some simulations are presented before to discuss the results obtained. The concluding
remarks finalize this research paper.

2 Model description
We consider a compartmental model with 8 compartments (groups). In the model we
consider a population S that is susceptible to contract TB infection. This population can
be infected according to a contact rate α and a transmission rate λ. For this, there is a
proportion 1 – p of this population that will be infected and therefore will be part of com-
partment I , this is a fast progression to the active TB. We note that a susceptible individual
can become latent Le (latent early) following a contact rate α and a transmission rate λ. In
this model a latent individual (Le and Lf ) is not yet able to transmit the disease. A latent
individual Le can become Lf (latent late) following a given rate h. A latent Le can also di-
rectly become infectious (able to infect other people) at a rate q, an individual Lf can also
become infectious I at a rate w, this is the low progression to the active TB.

In this model, infected and infectious individuals, who are in the I , Le and Lf compart-
ments can heal spontaneously and move in the compartment R2 according, respectively,
to the rates σ , g2 and k2. They can also heal after treatment process and move in the com-
partment R1 according, respectively, to the rates γ , g1 and k1. These healed individuals can
be re-infected according to a rate of transmission λ, a contact rate α and a re-infection rate
r. Infectious people I , under treatment can also became Le according to a rate r1. During
the treatment process, there are people who are lost to follow-up, so people who stop
treatment (K ). These individuals can be re-infected according to a rate r3. In the model,
we consider other people who are transferred to other hospitals for lack of capacity or
medication (T ). These people can be re-infected at a rate r2.

Demography is considered in the TB proposed model. We note � the rate of recruitment
of susceptible individuals S. In the model people can die, for that we consider μ1 as the
rate of natural mortality (not related to TB infection) and μ2 the rate of mortality linked to
TB infection. Figure 1 below presents the TB transmission dynamics between the different
compartments of the model.



Kasereka Kabunga et al. Advances in Difference Equations        (2020) 2020:642 Page 4 of 19

Figure 1 Diagram describing the dynamics between compartments for TB transmission

Based on presented information, we obtain the Ordinary Differential Eq. System below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = � – αλpSI – αλ(1 – p)SI – μ1S,

L̇e = αλpSI + αλrI(R1 + R2) + r1I + r2T + r3K – B̃Le,

L̇f = hLe – (μ1 + w + k1 + k2)Lf ,

İ = wLf + qLe – ÃI + αλR1I + αλR2I + αλ(1 – p)SI,

Ṙ1 = g1Le + k1Lf + γ I – αλrR1I – μ1R1 – αλR1I,

Ṙ2 = σ I + k2Lf + g2Le – αλR2I – αλrR2I – μ1R2,

Ṫ = βI – (μ1 + μ2 + r2)T ,

K̇ = vI – (μ1 + μ2 + r3)K ,

N = S + Le + Lf + I + R1 + R2 + T + K .

(1)

Here Ã = (r1 + γ + β + σ + v + μ1 + μ2) and B̃ = (μ1 + h + q + g1 + g2).

3 Mathematical analysis
In this section, the proposed model is analyzed in order to show the positivity of the so-
lution, the existence and uniqueness of the solution, the calculation of equilibrium points
(DFE and EE), the basic reproduction number R0 and the stability of the equilibrium
points.

3.1 Positivity of the solution
By adding all the equations of system (1), we have

N = � – αλpSI – αλ(1 – p)SI – μ1S + αλpSI + αλrI(R1 + R2) + r1I + r2T

+ r3K – (μ1 + h + q + g1 + g2)Le + hLe – (μ1 + w + k1 + k2)Lf + wLf

+ qLe – (r1 + γ + β + σ + v + μ1 + μ2)I + αλR1I + αλR2I – αλrR1I

+ αλ(1 – p)SI + g1Le + k1Lf + γ I – μ1R1 – αλR1I + σ I + k2Lf + g2Le
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– αλR2I – αλrR2I

– μ1R2 + βI – (μ1 + μ2 + r2)T + vI – (μ1 + μ2 + r3)K ,

N = � – μ1S – μ1Le – μ1Lf – μ1I – μ1R1 – μ1R2 – μ1T – μ1K – μ2I – μ2T – μ2K .

By simplifying the obtained expression of N , we have Ṅ = � – μ1N – μ2(I + T + K) with
N = S + Le + Lf + I + R1 + R2 + T + K . If we assume that there is no disease in the population,
we have N = S, this implies that Le = Lf = I = T = K = R1 = R2 = 0.

By setting Ṅ = 0, we have � – μ1N – μ2(I + T + K) = 0, considering I = T = K = 0, we
obtain

N =
�

μ1
. (2)

The obtained result (2) means that when there is no disease in the population, it is nat-
urally expected that the spread of Tuberculosis in the population will reduce N (that is,
N > �

μ1
). The feasible region of the model system (1) is

�ε =
{

(S, Le, Lf , I, R1, R2, T , K) ∈R
8
+, 0 ≤ N ≤ �

μ1
+ ε

}

,

where ε is a positive constant. With regard to the model system (1) that describes the TB
dynamics in the population, we have the following results.

Theorem 3.1 The compact whole �ε is an absorptive and invariant whole which attracts
all existing solutions of the model system (1) in R

8
+.

Proof A Lyapounov–LaSalle function W (t) can be defined as W (t) = N(t) with N(t) =
S(t) + Le(t) + Lf (t) + I(t) + R1(t) + R2(t) + T(t) + K(t) satisfies

dW
dt

= � – μ1W – μ2(I + T + K) ≤ � – μ1W . (3)

Therefore, dW
dt ≤ 0 for W > �

μ1
. This implies that �ε is a positively invariant whole. By

solving (3), we obtain 0 < W (t) < �
μ1

+ W (0)eμ1t , in which case W (t) has as initial condition
W (0). Consequently, as t −→ +∞, we have 0 ≤ W (t) ≤ �

μ1
. Then we can conclude that �ε

is an attractive whole (set) and this achieves the proof. �

3.2 Existence and uniqueness of the solution
The system (1) is described by a system of autonomous non-linear first order ordinary
differential equations. It can be rewritten in the following matrix form:

Ẋ(t) = F
(
X(t)

)
, where X(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S(t)
Le(t)
Lf (t)
I(t)

R1(t)
R2(t)
T(t)
K(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)
x6(t)
x7(t)
x8(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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F is the function C∞ on R
8
+ described by

F
(
X(t)

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f1(x1, . . . , x8)
f2(x1, . . . , x8)
f3(x1, . . . , x8)
f4(x1, . . . , x8)
f5(x1, . . . , x8)
f6(x1, . . . , x8)
f7(x1, . . . , x8)
f8(x1, . . . , x8)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

F
(
X(t)

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� – αλx1x4 – αλ(1 – p)x1x4 – μ1x1

αλx1x4 + αλrx4(x5 + x6) + r1x4 + r2x7 + r3x8 – A
hx2 – Bx3

ωx3 + qx2 – Cx4 + αλx5x4 + αλx6x4 + αλ(1 – p)x1x4

g1x2 + k1x3 + γ x4 – αλrx5x4 – μ1x5 – αλx5x4

σx4 + k2x3 + g2x2 – αλx6x4 – αλrx6x4 – μ1x6

βx4 – Dx7

υx4 – Ex8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here A = μ1 + h + q + g1 + g2, B = μ1 + w + k1 + k2, C = r1 + γ + β + σ + v + μ1 + μ2,
D = μ1 + μ2 + r2 and E = μ1 + μ2 + r3.

Also, X(t) = (x1(t), x2(t), x3(t), . . . , x8(t)), as F is of class C1, therefore locally Lipschitzian
on R

8
+, we deduce the existence and uniqueness of the maximum solution to the problem

of Cauchy associated to the differential equation (1), with the initial condition (t0, X0) ∈
R×R

8
+.

Moreover, F being of class C∞, we deduce that this solution is also of class C∞.

3.3 Calculation of equilibrium points
To find equilibria of the system (1), we set Ṡ = L̇e = L̇f = İ = Ṙ1 = Ṙ2 = Ṫ = K̇ = 0. Consider-
ing that X∗ = (S∗, L∗

e , L∗
f , I∗, R∗

1, R∗
2, T∗, K∗) is the endemic equilibrium, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� – αλpS∗I∗ – αλ(1 – p)S∗I∗ – μ1S∗ = 0,

αλpS∗I∗ + αλrI∗(R∗
1 + R∗

2) + r1I∗ + r2T∗ + r3K∗ – B̃L∗
e = 0,

hL∗
e – (μ1 + w + k1 + k2)L∗

f = 0,

wL∗
f + qL∗

e – ÃI∗ + αλR∗
1I∗ + αλR∗

2I∗ + αλ(1 – p)S∗I∗ = 0,

g1L∗
e + k1L∗

f + γ I∗ – αλrR∗
1I∗ – μ1R∗

1 – αλR∗
1I∗ = 0,

σ I∗ + k2L∗
f + g2L∗

e – αλR∗
2I∗ – αλrR∗

2I∗ – μ1R∗
2 = 0,

βI∗ – (μ1 + μ2 + r2)T∗ = 0,

vI∗ – (μ1 + μ2 + r3)K∗ = 0.

(4)

Here Ã = (r1 + γ + β + σ + v + μ1 + μ2) and B̃ = (μ1 + h + q + g1 + g2).
By solving the system (4), we obtain two possible equilibria. The first one is X0 =

(S0, 0, 0, 0, 0, 0, 0, 0), which represents the disease-free equilibrium (DFE) with S0 = �
μ1

, and
the second one is X∗ = (S∗, L∗

e , L∗
f , I∗, R∗

1, R∗
2, T∗, K∗), which represents the endemic equilib-
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rium (EE). For that, we extract S∗, L∗
e , L∗

f , R∗
1, R∗

2, T∗ and K∗ from the system (4) in function
of I∗ as follows:

By extracting S∗, L∗
f , T∗ and K∗ from the system (4) we obtain

S∗ =
�

αλI∗ + μ1
, (5)

L∗
f =

hL∗
e

B , (6)

T∗ =
βI∗

D , (7)

K∗ =
vI∗

E . (8)

The substitution of Eqs. (5) and (6) in the second equation of the system (4) yields

αλp
(

�

αλI∗ + μ1

)

I∗ + αλrI∗(R∗
1 + R∗

2
)

+ r1I∗ + r2

(
βI∗

D

)

+ r3

(
vI∗

E

)

– AL∗
e = 0, (9)

L∗
e =

1
A I∗

[(
�αpλ

αλI∗ + μ1

)

+ αλr
(
R∗

1 + R∗
2
)

+ r1 + r2
β

D + r3
v
E

]

. (10)

By inserting (6) and (5) in the fourth equation of (4) we have

w
(

hL∗
e

B

)

+ qL∗
e – ÃI∗ + αλR∗

1I∗ + αλR∗
2I∗ + αλ(1 – p)

(
�

αλI∗ + μ

)

I∗ = 0, (11)

L∗
e =

( B
wh + qB

)[

Ã – αλR∗
1 – αλR∗

2 – αλ(1 – p)
(

�

αλI∗ + μ

)]

I∗. (12)

We equate (10) and (12) and we obtain

1
A I∗

[(
�αpλ

αλI∗ + μ1

)

+ αλr
(
R∗

1 + R∗
2
)

+ r1 + r2
β

D + r3
v
E

]

=
B

wh + qB

[

Ã – αλR∗
1 – αλR∗

2 – αλ(1 – p)
(

�

αλI∗ + μ

)]

I∗,
(13)

αλr
A

(
R∗

1 + R∗
2
)

+
BαλR∗

1
wh + qB +

BαλR∗
2

wh + qB =
–1
A

[(
�αpλ

αλI∗ + μ1

)

+ r1 + r2
β

D + r3
v
E

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]

,
(14)

R∗
1

(
αλr
A +

αλB
wh + qB

)

=
–1
A

[(
�αpλ

αλI∗ + μ1

)

+ r1 + r2
β

D + r3
v
E

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]

– αλR∗
2

(
r
A +

B
wh + qB

)

,

(15)
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R∗
1 =

A(wh + qB)
αλAB + αλr(wh + qB)

×
[

–1
A

[(
�αpλ

αλI∗ + μ1

)

+ r1 + r2
β

D + r3
v
E

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]]

– αλR∗
2

(
r
A +

B
wh + qB

)

.

(16)

By inserting (6) in the fifth equation of (4) we have

g1L∗
e +

k1hL∗
e

B + γ I∗ – αλR∗
1I∗(r + 1) – μ1R∗

1 = 0, (17)

L∗
e =

B(αλR∗
1I∗(r + 1) – γ I∗ + μ1R∗

1)
g1B + k1h

. (18)

By inserting (6) into the sixth equation of (4) we have

σ I∗ +
k2hL∗

e
B + g2L∗

e – αλR∗
2I∗(r + 1) – μ1R∗

2 = 0, (19)

L∗
e

(
k2h
B + g2

)

= αλR∗
2I∗(r + 1) + μ2R∗

2 – σ I∗, (20)

L∗
e =

B(αλR∗
2I∗(r + 1) + μ2R∗

2 – σ I∗)
k2h + Bg2

. (21)

Equating (18) and (21) we obtain

( B
g1B + k1h

)
[
αλR∗

1I∗(r + 1) – γ I∗ + μ1R∗
1
]

=
B(αλR∗

2I∗(r + 1) + μ2R∗
2 – σ I∗)

k2h + Bg2
, (22)

R∗
1 =

(g1B + hk1)(αλR∗
2I∗(r + 1) + μ2R∗

2 – σ I∗) + γ I∗

(k2h + Bg2)(αλI∗(r + 1) + μ1)
. (23)

Equating (16) and (23) we obtain

A(wh + qB)
αλAB + αλr(wh + qB)

×
[

–1
A

[(
�αpλ

αλI∗ + μ1

)

+ Z̃1

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]]

– αλR∗
2

(
r
A +

B
wh + qB

)

=
(g1B + hk1)(αλR∗

2I∗(r + 1) + μ2R∗
2 – σ I∗) + γ I∗

(k2h + Bg2)(αλI∗(r + 1) + μ1)
.

(24)

Here Z̃1 = r1 + r2
β

D + r3
v
E .
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From (24) we can extract R∗
2 and then we obtain

A(wh + qB)
αλAB + αλr(wh + qB)

×
[

–1
A

[(
�αpλ

αλI∗ + μ1

)

+ Z̃1

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]]

–
I∗(g1Bσ + hk1σ + γ )
I∗Z̃3 + k2hu1 + Bg2u1

= R∗
2

(
I∗Z̃2 + g1Bu2 + hk1u2

I∗Z̃3 + k2hu1 + Bg2u1

)

+ αλR∗
2

(
r
A +

B
wh + qB

)

,

(25)

A(wh + qB)
αλAB + αλr(wh + qB)

×
[

–1
A

[(
�αpλ

αλI∗ + μ1

)

+ Z̃
]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]]

–
I∗(g1Bσ + hk1σ + γ )
I∗Z̃3 + k2hu1 + Bg2u1

= R∗
2

(
I∗Z̃2 + g1Bu2 + hk1u2

I∗Z̃3 + k2hu1 + Bg2u1

)

+ R∗
2

(
rαλ

A +
αλB

wh + qB

)

.

(26)

Here Z̃2 = (g1Bαλ + g1Bαλ + hk1αλr + hk1αλ) and Z̃3 = (k2hαλr + k2hαλ + Bg2αλr +
Bg2αλ).

Addressing R∗
2 we obtain

A(wh + qB)
αλAB + αλr(wh + qB)

×
[

–1
A

[(
�αpλ

αλI∗ + μ1

)

+ Z̃1

]

+
B

wh + qB

[

Ã –
αλ�(1 – p)
αλI∗ + μ1

]]

–
I∗(g1Bσ + hk1σ + γ )
I∗Z̃3 + k2hu1 + Bg2u1

= R∗
2

(
I∗Z̃2 + g1Bu2 + hk1u2

I∗Z̃3 + k2hu1 + Bg2u1
+

rαλ

A +
αλB

wh + qB

)

.

(27)

Then R∗
2 is given by

R∗
2 =

Z̃4[ –1
A [( �αpλ

αλI∗+μ1
) + Z̃1] + B

wh+qB [Ã – αλ�(1–p)
αλI∗+μ1

]] – I∗(g1Bσ+hk1σ+γ )
I∗Z̃3+k2hu1+Bg2u1

( I∗Z̃2+g1Bu2+hk1u2
I∗Z̃3+k2hu1+Bg2u1

+ rαλ
A + αλB

wh+qB )
. (28)

Here Z̃4 = A(wh+qB)
αλAB+αλr(wh+qB) .

In (23) we insert (28) and we obtain

R∗
1 =

(g1B + hk1)(αλZ̃5I∗(r + 1) + μ2Z̃5 – σ I∗) + γ I∗

(k2h + Bg2)(αλI∗(r + 1) + μ1)
. (29)
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Here

Z̃5 =
Z̃4[ –1

A [( �αpλ

αλI∗+μ1
) + Z̃1] + B

wh+qB [Ã – αλ�(1–p)
αλI∗+μ1

]] – I∗(g1Bσ+hk1σ+γ )
I∗Z̃3+k2hu1+Bg2u1

( I∗Z̃2+g1Bu2+hk1u2
I∗Z̃3+k2hu1+Bg2u1

+ rαλ
A + αλB

wh+qB )
. (30)

By inserting (29) in (18) we obtain

L∗
e =

B(αλZ̃6I∗(r + 1) – γ I∗ + μ1Z̃6)
g1B + k1h

. (31)

Here

Z̃6 =
(g1B + hk1)(αλZ̃5I∗(r + 1) + μ2Z̃5 – σ I∗) + γ I∗

(k2h + Bg2)(αλI∗(r + 1) + μ1)
. (32)

By inserting (31) in (6) we obtain

L∗
f =

h(αλZ̃6I∗(r + 1) – γ I∗ + μ1Z̃6)
g1B + k1h

. (33)

We obtain the expressions of S∗, L∗
e , L∗

f , R∗
1, R∗

2, T∗ and K∗ as a function of I∗. Actu-
ally, the expression of I∗ can be extracted from obtained expressions. Hence, disease-free
equilibrium (DFE) and the endemic equilibrium (EE) are found.

3.4 Basic reproduction number
The DFE of the system (1) is X0 = (S0, 0, 0, 0, 0, 0, 0, 0), with S0 = �

μ1
. The Jacobian matrix

of the system (1) at X0 is

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–μ1 0 0 – αλ�
μ1

0 0 0 0
0 –Y 0 αλp�

μ1
0 0 r2 r3

0 h –Z 0 0 0 0 0
0 q w –A 0 0 0 0
0 g1 k1 γ –μ1 0 0 0
0 g2 k2 σ 0 –μ1 0 0
0 0 0 β 0 0 –B 0
0 0 0 v 0 0 0 –C

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here Y = (μ1 + h + g1 + g2 + q), Z = (μ1 + w + k1 + k2), A = ((r1 + β + v + μ1 + μ2 + σ +
γ ) – (αλ(1 – p) �

μ1
)), B = (μ1 + μ2 + r2) and C = (μ1 + μ2 + r3).

Considering just the infected compartments as noted in [27], the resulting Jacobian ma-
trix is given by

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

–Y 0 αλp�

μ1
r2 r3

h –Z 0 0 0
q w –A 0 0
0 0 β –B 0
0 0 v 0 –C

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (34)
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Writing J = F – V where F contains the new infections in the compartment of infectious
individuals. In order to determine F and V we write the system (1) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L̇e = αλpSI + αλrI(R1 + R2) + r1I + r2T + r3K – B̃Le,

L̇f = hLe – (μ1 + w + k1 + k2)Lf ,

İ = wLf + qLe – ÃI + αλR1I + αλR2I + αλ(1 – p)SI,

Ṫ = βI – (μ1 + μ2 + r2)T ,

K̇ = vI – (μ1 + μ2 + r3)K ,

Ṡ = � – αλpSI – αλ(1 – p)SI – μ1S,

Ṙ1 = g1Le + k1Lf + γ I – αλrR1I – μ1R1 – αλR1I,

Ṙ2 = σ I + k2Lf + g2Le – αλrR2I – μ1R2 – αλR2I,

N = S + Le + Lf + I + R1 + R2 + T + K .

(35)

Here Ã = (r1 + γ + β + σ + v + μ1 + μ2) and B̃ = (μ1 + h + q + g1 + g2).
We note Fi(x) the rates of new individuals in the compartment i, V+

i (x) represents the
rates that individuals come in the compartment i for any others reasons; V–

i (x), represents
the rates that individual go out from the compartment i.

We set Vi(x) = V–
i (x) + V+

i (x). Considering the system (35) we obtain the values of F ,
V+(x) and V–(x) as follows.
F is given by

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

αλpSI + αλrI(R1 + R2)
0

αλR1I + αλR2I + αλ(1 – p)SI
0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

V+(x) is given by

V+(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1I + r2T + r3K
hLe

wLf + qLe

βI
vI
�

g1Le + k1Lf + γ I
σ I + k2Lf + g2Le

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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and V–(x) is given by

V–(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(μ1 + h + q + g1 + g2)Le

(μ1 + w + k1 + k2)Lf

(r1 + γ + β + σ + v + μ1 + μ2)I
(μ1 + μ2 + r2)T
(μ1 + μ2 + r3)K

αλpSI + αλ(1 – p)SI + μ1S
αλrR1I + μ1R1 + αλR1I
αλrR2I + μ1R2 + αλR2I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Considering that V(x) = V–(x) – V+(x) we obtain

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(μ1 + h + q + g1 + g2)Le – r1I – r2T – r3K
(μ1 + w + k1 + k2)Lf – hLe

αλR1I + αλR2I + αλ(1 – p)SI
(r1 + γ + β + σ + v + μ1 + μ2)I – wLf – qLe

(μ1 + μ2 + r2)T – βI
(μ1 + μ2 + r3)K – vI

αλpSI + αλ(1 – p)SI + μ1S – �

αλrR1I + μ1R1 + αλR1I – g1Le – k1Lf – γ I
αλrR2I + μ1R2 + αλR2I – σ I – k2Lf – g2Le

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Considering only the compartment which contains infected individuals (Le, Lf , I , T , K )
and calculation of the first partial derivative on the DFE at X0 = (0, 0, 0, 0, 0, S0, 0, 0) with
S0 = �

μ1
we obtain

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 Q 0 0
0 0 0 0 0
0 0 G 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here Q = αλp�

μ1
and G = αλ(1–p)�

μ1
.

For V(x) we obtain the following result:

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

A 0 –r1 –r2 –r3

–h B 0 0 0
–q –w C 0 0
0 0 –β D 0
0 0 –v 0 E

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here A = μ1 + h + q + g1 + g2, B = μ1 + w + k1 + k2, C = r1 + γ + β + σ + v + μ1 + μ2,
D = μ1 + μ2 + r2 and E = μ1 + μ2 + r3.

By definition, the basic reproduction number R0 is the spectral radius of the next gen-
eration matrix, as follows: R0 = ρ(FV –1).
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The eigenvalues of the matrix ρ(FV –1) is given by

[

–
ABDEG + BDEQq + DEQhw

Ỹ
, 0, 0, 0, 0

]

. (36)

The value of R0 is the maximum eigenvalue:

R0 =
∣
∣
∣
∣–

ABDEG + BDEQq + DEQhw
Ỹ

∣
∣
∣
∣

=
ABDEG + BDEQq + DEQhw

Ỹ
.

(37)

Here

Ỹ = ABCDE – BDEqr1 – BEβqr2 – BDqr3v

– DEwhr1 – Eβwhr2 – Dwhr3v.

3.5 Stability of equilibrium points
By Theorem 2 in [27], if R0 < 1, then the DFE given by X0 is locally asymptotically stable,
but if R0 > 1, it is unstable. This leads to the following theorem.

Theorem 3.2 If R0 < 1 the disease-free equilibrium X0 of the system (1) is locally asymp-
totically stable. If R0 > 1, then X0 is unstable.

The proof of Theorem 3.2 follows the same steps as Theorem 2 in [27].
We note that the global stability of DFE and EE were observed from simulations and that

the mathematical proof was not realized here.

4 Numerical simulations
In this section, numerical simulations of the proposed TB model are presented. The total
population is set at 1000 susceptible individuals. The performed simulations aim to show
the stability of the DFE and EE of the system (1). The impact of some parameters and
groups/compartments of individuals on the dynamics of the TB infection is also presented
through numerical simulations.

4.1 Parameters used in the model
Table 1 presents the parameters used for simulations. Most of them was taken from the lit-
erature and other was fitted based on data at our disposal. The meanings of all parameters
are also presented in the Table 1.

4.2 The EE of the model, R0 > 1
In the first simulation we present the actual situation of TB in the DRC that is endemic.
The stability of the endemic equilibrium (EE), X∗, of the model system (1) is presented in
Fig. 2. Here we simulated the model with R0 > 1. The simulation is carried out over several
years and attests to the persistence of TB disease in the population.
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Table 1 Parameter values and their meanings

Prms Meaning Value Reference Fitted

� Rate of recruitment (� × N) 0.0100 Yes
μ1 Natural death rate 0.0222 [28]
μ2 Mortality rate linked to TB 0.040 [2]
γ Recovered rate after treatment (I to R1) 0.840 [2]
σ Spontaneously recovered rate (I to R2) 0.250 [29]
α Contact rate 0.0010 Yes
λ Rate of transmission 0.100 [30]
1 – p Fraction of fast-developing active TB 0.05 [31, 32]
β Rate of transfer to a hospital 0.010 Yes
v Rate of lost to follow-up 0.030 [2]
q Progression rate (Le to I) 0.129 [33]
h Rate of progression of TB (Le to Lf ) 0.821 [33]
r Reinfection rate (Ri to Le) with i=1,2 0.030 [31]
r1 Rate of re-infection (I to Le) 0.63 [33]
r2 Rate of re-infection (T to Le) 0.63 [33]
r3 Rate of re-infection (K to Le) 0.63 [33]
g1 Rate of recovered (Le to R1) 0.840 [2]
g2 Rate of spontaneously recovered (Le to R2) 0.250 [29]
k1 Rate of recovered (Lf to R1) 0.840 [2]
k2 Rate of spontaneously recovered (Lf to R2) 0.250 [29]
w Rate of progression (Lf to I) 0.075 [33]

Figure 2 Evolution of the model for several years and endemic equilibrium stability using parameters
presented in Table 1 withR0 > 1. Simulation of the model forR0 = 3.99347 and S = 1000, respectively

4.3 The DFE of the model, R0 < 1
In the second simulation we present the stability of the DFE, X0, of the system (1). Figure 3
shows the disease-free equilibrium of the full model. We reduce the rapid progression
rate q from Le (early latent) to I (infectious compartment) with the aim of reducing the
incidence rate of TB in the population.

4.4 Impact of lost to follow-up and transferred individuals
The third simulation presents the impact of individuals lost to follow-up (K ) and trans-
ferred (T ) on the dynamics of the TB in the DRC population. Figures 4(a) and 4(b) show,
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Figure 3 Evolution of the model for several years and disease-free equilibrium stability of the model system
(1) withR0 = 0.68873 (R0 < 1). The values of I, Le and Lf reach zero between the 50th and 60th year

Figure 4 Evolution of the model withR0 > 1. (a) and (b) present the evolution of the compartment I(t) for
several values of K and T for v = 0.030 and β = 0.010. With the same parameters (c) shows the evolution of
the compartment I(t) when T and K are considered simultaneously. In (d) there are several values of v
considered to see the evolution of I over time
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Figure 5 Evolution of the model by maintaining the transmission rate of TB λ = 0.100, we show the result of
simulation when α = 0.0010, 0.0015, 0.0020, 0.0025, 0.0030 and 0.0035

respectively, the evolution of the number of infectious individuals over time for several
different values of K and T . Figure 4(c) shows the result of simulation when T and K are
considered simultaneously. Figure 4(d) presents results of simulation with several values
of the rate of lost to follow-up.

4.5 Impact of transmission and contact rates on the disease dynamics
The fourth simulation presents the impact of α and λ on the dynamics of the TB pro-
posed model. By maintaining the value of the rate of transmission λ = 0.100 as in [30], the
simulation will try several values of the rates of contact and we will see its impact on the
proposed TB model. Figure 5 shows the results obtained.

5 Discussion of results
5.1 General discussion
By considering parameters used (Table 1), the actual situation of TB in the Democratic
Republic of the Congo is endemic. Results obtained show that there is at least an endemic
equilibrium point because R0 > 1. Figure 2 with R0 = 3.99347 shows that the simulation
was performed for several years in order to confirm the stability of the endemic equi-
librium which implies that the TB will persist in the DRC population according to this
condition.

To reach the DFE, the DRC health system is called to find mechanism that can help to
reduce contamination. The simulation of our mathematical model shows that with certain
value of parameters (R0 < 1), the DFE is globally stable. It means that the tuberculosis will
die out in the DRC population. As shown in Fig. 3 we simulate the model for several years
to be sure that there is stability of the DFE. To confirm the asymptotically stability of the
DFE, we also simulate the model with different several values of infectious people I . We
note that the values of I , Le and Lf reach zero between the 50th and 60th year, while the
model is simulated for several years (300 years). Based on the results obtained here, it is
clear that if the Congolese public health authorities focus on setting up mechanisms that
can help to reduce R0 to a value below 1, pulmonary tuberculosis will be totally eradicated
from the Congolese population in the future.
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Results obtained show that lost to follow-up and transferred individuals constitute a risk,
but less than the cases carrying germs. Rapidly evolving latent/exposures are responsible
for the incidence increase in the short and medium term, while slower evolving exposures
will be responsible for the persistent long-term incidence and maintenance of TB and de-
lay elimination in the DRC population. Results obtained in Fig. 4 show that if some people
are lost to follow-up and/or transferred (not followed), the number of these individuals
who are untreated has an impact on the incidence of the disease but negligible compared
to people with latent tuberculosis. Indeed, if the number of these individuals is high, the
results show that the number of new cases of TB increases. By setting the rate of infectious
individuals who are lost to follow-up equal to zero, v = 0, this means that these people are
not followed by health care personnel and therefore remain infectious. The results ob-
tained in Fig. 4(d) show that the number of new infected cases is increasing and spreading
over several years. This situation means that the individuals lost to follow-up (3% in the
DRC [2]) who remain untreated, infect susceptible individuals in the population and then
the disease continue to spread in uncontrolled areas. Once the rate of lost to follow-up v is
increased, the results show that the number of new cases of infected individuals decreases
significantly. In this case, individuals who are lost to follow-up can become Le according
to the rate of re-infection r3. It means that these individuals can be treated and cure ac-
cording to the rate of recovered. It is consequently important that Congolese public health
authorities set up patient monitoring teams in order to reduce the rate of lost to follow-
up and transferred (no followed), because these individuals are a permanent danger and
constitute the source of TB emergence in the DRC population.

The value of the contact rate has a significant impact on the dynamics of TB disease
in the population. Figure 5 shows that, as the contact rate is high, there are more new
cases each year and therefore the severity of infection increases while the recovery rate
decreases. These results imply that if the contact rate of infectious people is significantly
reduced, this will significantly reduce the incidence of TB in the population. To reduce
contamination (parameters α and λ), it will be necessary to strengthen preventive mea-
sures, i.e. against contamination. This is where early detection of patient and treatment
measures have their major role, because they reduce the number of potential unknown in-
fected individuals. In addition to these measures, tuberculosis infection control measures
include all measures to reduce contact between healthy and infectious people (ventilation
of buildings, avoid confinement of patients and wearing masks for caregivers and visitors
in the pavilions of tuberculosis patients).

5.2 Concluding remarks
We have presented in this paper the analysis and simulation of a compartmental mathe-
matical model of the dynamics of tuberculosis in Democratic Republic of the Congo for
a population that incorporates various factors like the lost to follow-up and transferred
individuals. The results obtained demonstrate that control lost to follow-up and trans-
ferred individuals, monitoring contact, detection of latent individuals and their treatment
are actions to be taken to reduce the incidence of the disease and thus effectively control
it in the DRC population. This will enable the Congolese authorities in charge of public
health to significantly reduce the value of R0 and move towards a possible elimination of
TB in the future. This is the first instance where such analysis is performed in the DRC
popultion and therefore improves the preceding ones. It contributes to our knowledge of
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the spread of this disease, which remains one of the priorities of the DRC’s public health
policy agenda. In order to maintain the validity of the proposed model, most of parame-
ters used in this paper was taken from literature, some parameters was estimated based
on TB data from DRC. The compartmental model proposed in this paper is well adapted
to the reality of the DRC, in the sense that it takes into account groups of individuals who
are not generally considered in existing compartmental models. This research provides
to the DRC government another way of understanding TB dynamics in the population,
which allows it to improve its unsuccessful TB control. It also gives it necessary materials
for fruitful Sustainable Development Goals (SDG) of the United Nations which focus on
the global tuberculosis epidemic elimination in 2035.

As part of the perspectives, we intend to integrate the consideration of antibiotic re-
sistance into this model. Obtained model should provide solutions in the fight against
multi-resistant TB, which nowadays presents one of the challenges in the fight against TB
worldwide [34] and more particularly in the Democratic Republic of the Congo.
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