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Abstract
The paper investigates control and synchronization of fractional-order maps
described by the Caputo h-difference operator. At first, two new fractional maps are
introduced, i.e., the Two-Dimensional Fractional-order Lorenz Discrete System
(2D-FoLDS) and Three-Dimensional Fractional-order Wang Discrete System
(3D-FoWDS). Then, some novel theorems based on the Lyapunov approach are
proved, with the aim of controlling and synchronizing the map dynamics. In
particular, a new hybrid scheme is proposed, which enables synchronization to be
achieved between a master system based on a 2D-FoLDS and a slave system based
on a 3D-FoWDS. Simulation results are reported to highlight the effectiveness of the
conceived approach.
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1 Introduction
The primary interpretation of the discrete fractional calculus (DFC), which is being
deemed one of the great modern branches in the field of calculus, was first proposed by
Diaz and Olserin in 1974 [1]. Over the previous decade, several results in theories and ap-
plications of such a branch have been carried out, with the aim to provide mathematical
models for a number of natural phenomena. Examples include the use of DFC for model-
ing the movement of a bead on a wire [2], as well as for describing optimal control systems
[3].

As a matter of fact, several types of difference discrete operators (DDOs), which are fre-
quently proposed in the DFC field, could be derived and formulated through discretizing
their corresponding continuous operators as in [1]. These operators are related to various
fractional-order derivatives (FoDs), such as the Riemann–Liouville (RL) derivative [4, 5],
the Caputo derivative [6], and the Grünwald–Letnikov (GL) derivative [7]. In particular,
these three types of operators fall under the name of fractional h-DDOs [8]. Further de-
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velopments of another operator, called h-sum operator, have been recently accomplished
in [8]. Moreover, some discrete chaotic systems have been explored in accordance with
the so-called ν-Caputo delta DDO (see [9–11]). Additionally, in [12] different fractional
difference operators have been studied and formulated on the isolated time scale with
step h. In particular, difference operators with different discrete kernels have been studied
in [12], including the power law, the exponential law, and the Mittag-Leffler law. In [13]
fractional difference operators with discrete generalized Mittag-Leffler kernels have been
illustrated for both the Atangana–Baleanu–Riemann type and the Atangana–Baleanu–
Caputo type. In [14] two types of dual identities for Caputo fractional differences are inves-
tigated. Namely, the first type relates nabla and delta type fractional sums and differences,
whereas the second type (represented by the Q-operator) relates left and right fractional
sums and differences [14]. In [15] two types of dual identities for Riemann fractional sums
and differences have been investigated, along with the solution for a higher-order Rie-
mann fractional difference equation. In [16] the stability of discrete nonautonomous sys-
tems (in the sense of the Caputo fractional difference) has been studied via the Lyapunov
direct method. In particular, the conditions for uniform stability, uniform asymptotic sta-
bility, and global uniform asymptotic stability for such systems have been deeply analyzed
[16, 17]. Despite all these studies, so far an accurate definition of the fractional-order DDO
(FoDDO) has not been agreed upon. Namely, what has been agreed upon is the fact that
such an operator has infinite memory (unlike the integer operator [18]) and represents an
extension of the binomial formulation via the Gamma function [19].

Over the last few years, several fractional-order difference models have been discretized
based on efficient tools introduced by the DFC. The so-called fractional-order chaotic
discrete systems (FoCDSs) are the most significant among those models [19]. The first
examples of chaotic maps have been presented in [20, 21]. In particular, in [20] a frac-
tional logistic map is proposed and its chaotic behavior is numerically illustrated. In [21]
a fractional Lorenz map is introduced and its chaotic synchronization is studied based on
the stability results. References [20] and [21] have received significant consideration by
many researchers, also due to the wide range of applications of chaotic maps in applied
science and engineering areas. In particular, the infinite memory characteristic of frac-
tional maps allows flexible modeling, along with the capability to achieve higher degree
of chaotic behaviors. These features actually increase the usefulness of chaotic maps in
several applications, including data encryption [22, 23], secure communications [24–27],
and control theory [28]. Typical examples of such chaotic discrete-time systems include
the Lozi map [29], the Hénon map [30], the generalized Hénon map [31], the Stefanski
map [32], the Baier–Klein system [33], the Rossler map [34], the Lorenz system [35], and
the Wang map [36]. It has been become apparent that these maps have richer dynamics
compared to the classical ones [19]. In other words, their trajectories highlight very com-
plex dynamic behaviors, depending on both the initial conditions and the fractional-order
values [18, 37]. Referring to the very recent results in the literature regarding fractional
discrete-time systems, a new fractional logistic map with two parameters is proposed in
[38], along with an image encryption application. In [39] a novel short-memory fractional
modeling approach is applied to memristors, neural networks, and material’s relaxation
property. In [40] new variable-order fractional chaotic systems are proposed. In particu-
lar, the fractional order is defined by the use of a piecewise constant function, which leads
to rich chaotic dynamics, for both continuous- and discrete-time systems [40].
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In general, when dealing with FoCDSs, two main aspects should be explored, i.e., con-
trol and synchronization of their chaotic modes [37]. Controlling these systems consists
in proposing a suitable adaptive controller for their chaotic modes, so that their states are
forced to be asymptotically stable, or are stabilized at zero [18, 41, 42]. Control issues are,
for instance, of great importance in several industrial processes, like in robotics where
chaotic motions of a rigid body need to be controlled [43–45]. On the other hand, syn-
chronization, which has been considered a key concept in chaos theory over the last three
decades, targets to compel the states of a slave system to tend towards the exact trajectories
that are determined by a master system, assuming that both systems start from different
initial points in phase space [19]. Different synchronization and control techniques have
been suggested and implemented on some FoCDSs [18, 19, 35, 46]. One could observe
that all the aforementioned works, that have discussed both issues of synchronization and
control, have employed some linearization methods or some nonlinear laws to implement
their strategies [47]. As far as we know, the topic of controlling and synchronizing FoCDSs
based on h-DDOs remains, to date, a new and almost unexplored field.

Based on these considerations, this paper makes a contribution to the topic of FoCDSs
by presenting novel versions of two- and tree-dimensional Lorenz and Wang fractional
chaotic maps, respectively, as well as by providing efficient improvements in the schemes
for controlling and synchronizing their dynamics. This objective is achieved by introduc-
ing novel theorems that exploit Lyapunov-based approaches [48, 49]. The paper is or-
ganized as follows. Section 2 introduces the definition of fractional h-DDOs and useful
results related to the Lyapunov stability. In Sect. 3 some new versions of FoDCSs are intro-
duced via the Caputo h-DDO, and their chaotic dynamics are analyzed in detail. In Sect. 4
linear control laws are proposed to stabilize the dynamics of the considered FoDCSs at the
origin. In Sect. 5 a new hybrid scheme is proposed, which enables synchronization to be
achieved between a master system based on the two-dimensional fractional Lorenz map
and a slave system based on the three-dimensional fractional Wang map. Finally, simula-
tion results are reported to highlight the effectiveness of the conceived approach.

2 Fractional h-DDOs and Lyapunov stability
As already mentioned, the DFC is considered a relatively new topic that has not been
settled, yet. From this perspective, this section presents some preliminaries and notations
related to such topic for completeness.

Definition 1 ([5]) Let X : (hN)a →R. For a given ν > 0, the νth-order h-sum is given by

h�
–ν
a X(t) =

h
�(ν)

t
h –ν∑

s= a
h

(
t – σ (sh)

)(ν–1)x(sh), σ (sh) = (s + 1)h, t ∈ (hN)a+νh, (1)

where a ∈R is a starting point and the h-falling factorial function is defined as

t(ν)
h = hν

�( t
h + 1)

�( t
h + 1 – ν)

, t,ν ∈R,

while (hN)a+(1–ν)h = {a + (1 – ν)h, a + (2 – ν)h, . . .}.



Talbi et al. Advances in Difference Equations        (2020) 2020:624 Page 4 of 15

Definition 2 ([6, 12]) For a function x(t) defined on (hN)a, and for a given ν > 0 such that
ν /∈N, the Caputo h-DDO is defined by

C
h �ν

aX(t) = �–(n–ν)
a �nX(t), t ∈ (hN)a+(n–ν)h, (2)

where �X(t) = X(t+h)–X(t)
h and n = �ν� + 1.

Remark 1 Using the Caputo h-difference operator is useful when dealing with applications
of control theory. Namely, controllability (i.e., the possibility to transfer the considered sys-
tem from a given initial state to a final state using controls from some set) and observability
(i.e., the possibility of reconstruction of an initial state using control inputs and output se-
quences) are both readily achievable when a fractional discrete system is described via the
Caputo h-difference operator [50, 51]. Examples of the usefulness in adopting the Caputo
h-difference operator are illustrated in [52–54], regarding the controllability and observ-
ability of fractional control systems.

From the point of view of obtaining a significant result and a useful inequality for Lya-
punov functions reported in [48], which are briefly illustrated below, some stability con-
ditions of the zero equilibrium point for a nonlinear fractional-order difference discrete
system will be identified later on. Such a nonlinear system has the form:

C
h �ν

aX(t) = f
(
t + νh, X(t + νh)

)
, t ∈ (hN)a+(1–ν)h. (3)

Theorem 1 ([48]) Let x = 0 be an equilibrium point of system (3). If there exists a posi-
tive definite and decreasing scalar function V (t, X(t)) such that C

h �ν
aV (t, X(t)) ≤ 0, then the

equilibrium point is asymptotically stable.

Lemma 2 ([48]) For any discrete time t ∈ (hN)a+(1–ν)h, the following inequality holds:

C
h �ν

aX2(t) ≤ 2X(t + νh)C
h �ν

aX(t), (4)

where 0 < ν ≤ 1.

3 Some new forms of FoDCSs
In this part, two new forms of the FoDCSs are introduced using fractional h-DDOs. The
first is associated with the Two-Dimensional Fractional-order Lorenz Discrete System
(2D-FoLDS), while the second one is associated with the Three-Dimensional Fractional-
order Wang Discrete System (3D-FoWDS).

3.1 2D-FoLDS
The earlier release of the FoLDS was established in [55] using the ν-Caputo delta DDO. It
turned out that this map, which possesses two nonlinear terms, is actually chaotic for some
proper values of its parameters (α,β) and fractional-orders ν , where ν ∈ (0, 1]. Herein, a
new version of 2D-FoLDS is derived using, this time, the Caputo h-DDO. In particular,
the following equations are proposed:

⎧
⎨

⎩

C
h �ν

axm(t) = αβx(t + νh) – βy(t + νh)x(t + νh),
C
h �ν

aym(t) = β(x(t + νh)2 – y(t + νh)),
(5)
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where C
h �ν

a denotes the Caputo h-DDO, t ∈ (hN)a+(1–ν)h, a ∈R is the starting point, and α

and β are the system’s parameters. Map (5), however, can be regarded as a generalized form
of the FoLDS constructed in [55]. Its solution, moreover, can be obtained via employing
the fractional h-sum operator. That is, the two corresponding implicit discrete formulae
of the two equations given in (5) are reported in [8] as follows:

⎧
⎨

⎩
x(n) = x(0) + hν

�(ν)
∑n

j=1
�(n–j+ν)
�(n–j+1) (αβx(j) – βy(j)x(j)),

y(n) = y(0) + hν

�(ν)
∑n

j=1
�(n–j+ν)
�(n–j+1) (β(x2(j) – y(j))),

(6)

subject to the given initial conditions x(0) and y(0).
In the light of the predictor–corrector scheme (see [56]), the two equations given in

(6) could be converted into another two explicit forms which might then be utilized for
examining the dynamic behavior of system (5). Anyhow, taking the initial conditions x(0) =
0.2 and y(0) = 0.3, the fractional-order value ν = 0.9, and the system’s parameters α = 1 and
β = 0.73 yields the attractor of map (5) exhibited in Fig. 1(a). Furthermore, Fig. 1(b)–(c)
shows the resultant calculations of both the bifurcation diagram and the largest Lyapunov
exponent (LLE) as a function of α. Obviously, the chaotic behavior of system (5) has been
demonstrated in those figures according when α = 0.95, β =1, and ν = 0.9.

3.2 3D-FoDWS
The first form of the FoDWS, with its classical case due to Wang, was addressed and ex-
plored well by considering also the ν-Caputo DDO in [37]. Like the previously proposed
map, the Caputo h-DDO is employed to propose the following new 3D-FoDWS:

⎧
⎪⎪⎨

⎪⎪⎩

C
h �ν

ax(t) = α3y(t + νh) + α4x(t + νh),
C
h �ν

ay(t) = α1x(t + νh) + α2z(t + νh),
C
h �ν

az(t) = α7z(t + νh) + α6y(t + νh)z(t + νh) + α5,

(7)

where t ∈ (hN)a+(1–ν)h and αi’s are the system’s parameters, i = 1, 2, . . . , 7. Accordingly, the
three equations given in (7) have the following equivalent numerical formulae:

⎧
⎪⎪⎨

⎪⎪⎩

x(n) = x(0) + hν

�(ν)
∑n

j=1
�(n–j+ν)
�(n–j+1) (α3y(j) – α4x(j)),

y(n) = y(0) + hν

�(ν)
∑n

j=1
�(n–j+ν)
�(n–j+1) (α1x(j) + α2z(j)),

z(n) = z(0) + hν

�(ν)
∑n

j=1
�(n–j+ν)
�(n–j+1) (α7z(j) + α6y(j)z(j) + α5).

(8)

In Fig. 2(b), the attractor of map (7) is displayed by considering the initial conditions x(0) =
0.5, y(0) = 0.6, z(0) = 0.02, and assuming ν = 0.9, whereas the system’s parameters are set to
be (α1,α2,α3,α4,α5,α6,α7) = (–1.9, 0.2, 0.5, –2.3, 2, –0.6, –1.9). Furthermore, the resultant
calculation of the bifurcation diagram as a function of α3 is exhibited in Fig. 2(a). Thence,
it has been clearly shown that the chaotic behavior of system (7) will occur, e.g., when
h = 0.1, ν = 0.9, and when the same values of αi’s are taken as above, where i = 1, 2, . . . , 7.

4 Linear control laws
This section proposes two control laws related to the 2D-FoLDS and 3D-FoWDS. Besides,
the Lyapunov approach is employed to establish the asymptotic convergence of the two
controllers.
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Figure 1 Bifurcation and the LLE diagrams of the 2D-FoLDS versus α , for system’s parameter β = 0.73 and
initial condition x0 = 0.2, y0 = 0.3: (a) bifurcation diagram and (b) LLE. (c) Chaotic attractor of the 2D-FoLDS for
α = 1, β = 0.75 and ν = 0.9
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Figure 2 Bifurcation diagram and chaotic attractor of the 3D-FoWDS versus α3, for system’s parameter
(α1,α2,α3,α4,α5,α6,α7) = (–1.9, 0.2, 0.5, –2.3, 2, –0.6, –1.9) and initial condition x0 = 0.5, y0 = 0.6, z0 = 0.02:
(a) bifurcation diagram and (b) chaotic attractor
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Theorem 3 The 2D-FoLDS given in (5) can be controlled under the following one-
dimensional control law:

C(t) = –(1 + αβ)x(t), t ∈ (hN)a+(1–ν)h. (9)

Proof Considering (5) yields its controlled version, of course, under the controller given
in (9). This version has the form

⎧
⎨

⎩

C
h �ν

ax(t) = αβx(t + νh) – βy(t + νh)x(t + νh) + C(t + νh),
C
h �ν

ay(t) = β(x(t + νh)2 – y(t + νh)).
(10)

Consequently, (10) takes the form

⎧
⎨

⎩

C
h �ν

ax(t) = –x(t + νh) – βy(t + νh)x(t + νh),
C
h �ν

ay(t) = β(x(t + νh)2 – y(t + νh)).
(11)

One might employ the Lyapunov approach by first considering the Lyapunov function,
V (t), in the form:

V =
1
2

x2(t) +
1
2

y2(t). (12)

The adoption of the Caputo h-DDO yields

C
h �ν

aV (t) =
1
2

C

h
�ν

ax2(t) +
1
2

C

h
�ν

ay2(t). (13)

Using Lemma 2 leads to the following steps:

C
h �ν

aV ≤ x(t + νh)C
h �ν

ax(t) + y(t + νh)C
h �ν

ay(t)

= – x2(t + νh) – βy(t + νh)x2(t + νh)

+ βy(t + νh)x(t + νh)2 – βy2(t + νh)

= –x2(t + νh) – βy2(t + νh) < 0 (because β = 0.73).

Hence, it can be deduced, based on Theorem 1, that the equilibrium point at zero of system
(11) is asymptotically stable. Therefore, it has been indeed shown that the dynamics of the
proposed 2D-FoLDS given in (5) can be stabilized by controller (9). �

In order to highlight the potency of the proposed controller, we illustrate the evolution
of all the states and the phase-space plots of the controlled system (10) in Fig. 3 when α = 1,
β = 0.73, and ν = 0.9. Obviously, all these plots clearly reflect that the proposed 2D-FoLDS
has been completely controlled. Next, an additional control law related to the 3D-FoWDS
given in (7) is, moreover, established in identical fashion of the preceding discussion.
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Figure 3 The states and phase space of the controlled 2D-FoLDS

Theorem 4 The 3D-FoWDS given in (7) can be controlled under the following two-
dimensional control law:

⎧
⎨

⎩
L1(t) = –(α3 + α1)y(t) – (α4 + 1)x(t),

L2(t) = –α5 – (|α6b|)z(t) – α2y(t),
(14)

where |y(t)| ≤ b and t ∈ (hN)a+(1–ν)h.

Proof By considering both (7) and (14), the following controlled map will be deduced:

⎧
⎪⎪⎨

⎪⎪⎩

C
h �ν

ax(t) = α3y(t + νh) + α4x(t + νh) + L1,
C
h �ν

ay(t) = α1x(t + νh) + α2z(t + νh),
C
h �ν

az(t) = α7z(t + νh) + α6y(t + νh)z(t + νh) + α5 + L2.

(15)

Substituting (14) into (15) yields the following system:

⎧
⎪⎪⎨

⎪⎪⎩

C
h �ν

ax(t) = –α1y(t + νh) – x(t + νh),
C
h �ν

ay(t) = α1x(t + νh) + α2z(t + νh),
C
h �ν

az(t) = (α7 – |α6|b)z(t + νh) + α6y(t + νh)z(t + νh) – α2y(t + νh).

(16)

Now, assume the Lyapunov function has the form

V =
1
2

x2(t) +
1
2

y2(t) +
1
2

z2(t). (17)

This implies C
h �ν

aV =C
h �ν

ax2(t) +C
h �ν

ay2(t) +C
h �ν

az2(t), and then by applying Lemma 2, one
obtains

C
h �ν

aV ≤ x(t + νh)C
h �ν

ax(t + νh) + y(t + νh)C
h �ν

ay(t) + z(t + νh)C
h �ν

az(t)

= –α1x(t + νh)y(t – 1 + ν) – x2(t + νh) + α1y(t – 1 + ν)x(t + νh)

+ α2y(t + νh)z(t + νh) +
(
α7 – |α6|b

)
z2(t + νh) + α6y(t + νh)z2(t + νh)

– α2z(t + νh)y(t + νh)

≤ –x2(t + νh) +
(
α7 – |α6|b

)
z2(t + νh) + α6y(t + νh)z2(t + νh)
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Figure 4 The states of the controlled 3D-FoWDS

≤ –x2(t + νh) +
(
α7 – |α6|b

)
z2(t + νh) +

∣∣α6y(t + νh)
∣∣z2(t + νh)

≤ –x2(t + νh) +
(
α7 – |α6|b

)
z2(t + νh) + |α6|bz2(t + νh)

= –x2(t + νh) + α7z2(t + νh) < 0 (because α7 = –1.9).

Again, it can be concluded, based also on Theorem 1, that the equilibrium point at zero
of system (16) is asymptotically stable. In this case as well, it has been shown that the
dynamics of the other proposed 3D-FoWDS given in (7) could be stabilized by controller
(14). �

Remark 2 The existence of the upper-bound constant b, identified in Theorem 4, is justi-
fied by the boundedness property that characterizes all chaotic maps’ states.

With the aim of showing some findings associated with Theorem 4, a numerical simu-
lation has been illustrated in Fig. 4. In this figure, the evolution of all the states and the
phase-space plots of the controlled system (15) have been exhibited when ν = 0.9 and
(α1,α2,α3,α4,α5,α6,α7) = (–1.9, 0.2, 0.5, –2.3, 2, –0.6, –1.9). Based on such simulation, one
can definitely observe that the 3D-FoWDS has been also completely controlled.

Remark 3 Observe that the two controllers established in this section demand a minor
control effort due to their linearity.

5 Hybrid synchronization scheme
In this part, the two fractional-order maps (2D-FoLDS & 3D-FoWDS) will be investigated,
despite their various dimensions, for the possibility to be synchronized via a suitable syn-
chronization scheme within a certain time. One might suppose the 2D-FoLDS as a master
system, and indicate to its states by the subscript, m, for each of them. That is,

⎧
⎨

⎩

C
h �ν

axm(t) = αβxm(t + νh) – βym(t + νh)xm(t + νh),
C
h �ν

aym(t) = β(xm(t + νh)2 – ym(t + νh)).
(18)
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At the same time, the 3D-FoWDS is supposed to be a slave system and all its states are
indicated by another subscript, say s, for each of them, i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

C
h �ν

axs(t) = α3ys(t + νh) + α4xs(t + νh) + U1,
C
h �ν

ays(t) = α1xs(t + νh) + α2zs(t + νh) + U2,
C
h �ν

azs(t) = α7zs(t + νh) + α6ys(t + νh)zs(t + νh) + α5 + U3,

(19)

where U1, U2, and U3 are the synchronization controllers that need to be established. Ac-
tually, the process of picking up an adaptive control law (U1, U2, U3)T aims to compel the
following synchronization errors:

⎧
⎪⎪⎨

⎪⎪⎩

e1 = xs – xm,

e2 = ys + ym,

e3 = zs – (xm + ym),

(20)

to be asymptotically close to the origin, i.e.,

lim
t→+∞

∣∣ei(t)
∣∣ = 0, for i = 1, 2, 3. (21)

Remark 4 In light of the error system (20), it is apparent that the two states xs and xm

are completely synchronized, while the state ys is antisynchronized with its correspond-
ing state ym, and finally, the state zs appears full-state synchronized with two other states,
xm and ym. Such three types of synchronization (complete, anti-, and full-state synchro-
nization) show coexisting between the master and slave systems given in (18) and (19),
respectively.

For highlighting other significant results related to the proposed synchronization
scheme, we state the following theorem which is considered one of the main results of
this work.

Theorem 5 The two master and slave systems given in (18) and (19), respectively, achieve
synchronized dynamics under the following control law:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U1(t) = –βym(t)xm(t) – α3ys(t) + (αβ – α4)xm(t),

U2(t) = –βx2
m(t)–α2zs(t) – α1xs(t) – βys(t),

U3(t) = –(α7 + 1)zs(t) – α6ys(t)zs(t) – βym(t)xm(t) – α5 + βx2
m(t)

+ (β + 1)ym(t) + (αβ + 1)xm(t),

(22)

where t ∈ (hN)a+(1–ν)h.

Proof For the purpose of establishing asymptotic convergence of the synchronization er-
rors given in (20) to zero according to (22), we start applying the Caputo h-DDO on (20),
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which yields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
h �ν

ae1 = α3ys(t + νh) + α4xs(t + νh) – αβxm(t + νh)

+ βym(t + νh)xm(t + νh) + U1,
C
h �ν

ae2 = α1xs(t + νh) + α2zs(t + νh) + βx2
m(t + νh) – βym(t + νh) + U2,

C
h �ν

ae3 = α7zs(t + νh) + α6ys(t + νh)zs(t + νh) + α5 – αβxm(t + νh)

+ βym(t + νh)xm(t + νh) – βx2
m(t + νh) – βym(t + νh) + U3.

(23)

Substituting the proposed control law given in (22) into (23) leads to the following new
discrete system:

⎧
⎪⎪⎨

⎪⎪⎩

C
h �ν

ae1 = α4e1,
C
h �ν

ae2 = –βe2,
C
h �ν

ae3 = –e3.

(24)

Now, letting V = 1
2 e2

1(t) + 1
2 e2

2(t) + 1
2 e2

3(t) implies C
h �ν

aV =C
h �ν

ae2
1(t) +C

h �ν
ae2

2(t) +C
h �ν

ae2
3(t),

and, by using Lemma 2, we obtain

C
h �ν

aV ≤ e1(t + νh)C
h �ν

ae1(t + νh) + e2(t + νh)C
h �ν

ae2
2(t) + e3(t + νh)C

h �ν
ae3(t)

= α4e2
1 – βe2

2 – e2
3 < 0.

In the light of Theorem 1, it can be deduced that the dynamics of the error system (20)
have been stabilized at the origin. As a consequence, the master and slave systems given
in (18) and (19), respectively, have achieved the synchronized dynamics via non-control
laws. �

In order to show the effectiveness of the proposed approach, Fig. 5 displays the syn-
chronization errors. These plots clearly show that the two fractional-order maps achieve
hybrid synchronization.

6 Conclusion and future work
This work has established two new versions of the Factional-order Discrete Chaotic
Systems (FoDCSs), namely the Two-Dimensional Fractional-order Lorenz Discrete Sys-
tem (2D-FoLDS) and Three-Dimensional Fractional-order Wang Discrete System (2D-
FoWDS). Using the Caputo h-Difference Discrete Operator (h-DDO), all the states of
such two versions have been demonstrated to contain chaos. Despite all this, these states
could still be controlled through quite simple linear controllers as is demonstrated in some
parts of this work. Besides, we have constructed a suitable synchronization scheme which
has allowed us to establish a proper controller that has the ability to synchronize the two
fractional-order maps under consideration. It has been further shown that all the trajec-
tories of such two maps, together with their proposed controller, converge asymptotically
to zero using Lyapunov approach. Finally, several numerical simulations have been per-
formed to highlight the potency of all proposed theoretical findings.
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Figure 5 Synchronization error of the 2D-FoLDS and 3D-FoWDS

All the results of this work, without doubt, will inspire us to go deeper into this subject
by focusing on two essential steps. The first is related to further experimental implemen-
tations of such two maps with the aim of reaching the highest degree of their complexity
for their trajectories, whereas the second revolves around the execution of the proposed
linear controllers to the field of image encryption. In other words, our future strategy can
be described by entering and implementing the proposed master–slave synchronization
scheme in a hardware device. This contribution, together with an appropriate encryption
algorithm, will allow us to experimentally generate and recover the secret keys.
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